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Abstract

About 7000 rare, or orphan, diseases affect more than 350 million people worldwide. Although these
conditions collectively pose significant health care problems, drug companies seldom develop drugs for
orphan diseases due to extremely limited individual markets. Consequently, developing new treatments for
often life-threatening orphan diseases is primarily contingent on financial incentives from governments,
special research grants, and private philanthropy. Computer-aided drug repositioning is a cheaper and faster
alternative to traditional drug discovery offering a promising venue for orphan drug research. Here, we present
eRepo-ORP, a comprehensive resource constructed by a large-scale repositioning of existing drugs to orphan
diseases with a collection of structural bioinformatics tools, including eThread, eFindSite, and eMatchSite.
Specifically, a systematic exploration of 320,856 possible links between known drugs in DrugBank and orphan
proteins obtained from Orphanet reveals as many as 18,145 candidates for repurposing. In order to illustrate
how potential therapeutics for rare diseases can be identified with eRepo-ORP, we discuss the repositioning
of a kinase inhibitor for Ras-associated autoimmune leukoproliferative disease. The eRepo-ORP data set is
available through the Open Science Framework at https://osf.io/qdjup/.

© 2017 Elsevier Ltd. All rights reserved.
Introduction

Rare diseases are conditions afflicting a small
subset of people in a population, where “small” is
uniquely defined by each country. For example, the
United States denotes disorders affecting fewer than
200,000 patients as rare diseases, also referred to as
orphan diseases. Although each of approximately
7000 orphan conditions has a tiny number of patients,
they amount to 30million patients in theUnitedStates,
30 million in Europe, and around 350 million globally
[1]. Because pharmaceutical companies seldom
develop drugs for orphan diseases due to the lack of
consumers, special attention needs to be placed on
treating these conditions. After the success of the
Orphan Drug Act signed into law in the United States
by President Reagan in 1983, other governments
adopted similar mechanisms to facilitate orphan drug
development, mostly by granting market exclusivity
er Ltd. All rights reserved.
and reducing research and development costs [2].
These actions allow for not only sufficient financial
incentives for pharmaceutical companies, but also
manageable costs for non-profits. Fewer financial
difficulties, various governmental inducements, and
increasing public awareness, together with advances
in research techniques have stimulated a global
interest in orphan drug development and rare disease
research [3].
Certainly, without the support of quality data sets

and resources, the progress in orphan drug research
might not be as consistent as it has been. For
instance, Orphanet, the de facto rare disease refer-
ence source, contributes quality, robust data on rare
diseases aswell as reliable clinical practice guidelines
[4]. Most importantly, Orphanet enables researchers
to share common language and information to
undergo controlled scientific analysis and, ultimately,
orphan drug discovery. Similar to Orphanet, the
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Genetic and Rare Diseases Information Center at the
National Institutes of Health provides comprehensive
information regarding rare diseases and orphan drugs
[5]. Last but not least, the Developing Products for
Rare Diseases & Conditions section of the US Food
and Drug Administration (FDA) website hosts freely
accessible official legal documentation regarding
orphan drug development and regulations [6]. These
rich resources on orphan diseases available to
researchers worldwide facilitate the development of
new treatments for rare conditions. For instance, a
systems-level approach to find connections between
existing drug products and orphan diseases, known
as drug repositioning, holds a significant promise to
greatly expand the repertoire of orphan drugs.
As an alternative strategy to drug discovery,

compound repositioning finds new indications for
existing drugs. This approach can dramatically im-
prove the success rates by shortening the time of drug
development to about 3–12 years at the reduced
safety and pharmacokinetic uncertainty [7]. Repurpos-
ing of already-approved drugs would most likely
bypass initial clinical trials, especially if the corre-
sponding dosage does not exceed the maximum
approved by a regulatory agency. Although efficacy
tests for the new treatment are still required, an existing
drug is likely to have well-characterized long-term
toxicity and off-target effects. Furthermore, the magni-
tude of side effectsmay be an important determinant to
repurpose a drug. For example, a drug with a high risk
of significant side effects might not be appropriate
when the primary goal is tomaintain the quality of life of
a patient; however, repurposing the same drug to treat
a life-threatening disease may be acceptable.
Despite the fact that time- and cost-effective

rational drug repositioning is expected to play a
major role in the development of treatments for rare
conditions [8], it is not trivial and poses a number of
onerous challenges. It is, therefore, not surprising
that most of the repositioned drugs currently on the
market are the result of serendipity. Perhaps the
most recognizable example is sildenafil; originally
intended to treat hypertension and angina pectoris
in the 1980s, it was later repurposed to erectile
dysfunction and pulmonary arterial hypertension [9].
Another instance is memantine [10], synthesized in
the 1960s as a potential agent to treat diabetes,
although it was found ineffective at lowering blood
sugar. Its activity against the N-methyl-D-aspartate
receptor was discovered in the 1980s, and presently,
memantine is used to treat Alzheimer's disease,
vascular dementia, and Parkinson's disease [11].
These examples show that although drug reposi-
tioning is regarded as one of the most promising
strategies for translational medicine, many new
indications for existing drugs have been found
serendipitously. Therefore, there is a clear need to
establish rational, preferably computer-guided rou-
tines for drug repositioning.
In this communication, we describe eRepo-ORP, a
new resource for orphan drug research. eRepo-ORP
is a drug repositioning data set that builds on the
results of a large-scale pocket matching between
target sites for known drugs and those binding
pockets identified in proteins linked to rare diseases.
Known drugs and their macromolecular targets are
extracted from DrugBank, a unique bioinformatics
and cheminformatics resource providing detailed
chemical, pharmacological, and structural data on
drug–target associations [12], whereas proteins con-
nected to orphan diseases are obtained from Orpha-
net [4]. Furthermore, we designed a sophisticated
protocol incorporating several state-of-the-art algo-
rithms to find potential candidates for repositioning by
modeling the high-quality structures of drug targets
with eThread [13], comprehensively annotating their
binding sites with eFindSite [14,15], and effectively
detecting similar drug-binding pocketswitheMatchSite
[16,17]. In general, this approach builds on ligand-
binding homology, a technique previously employed
in computer-aided drug development to detect binding
sites [18] and to discover potential leads through
virtual screening [19,20]. Ras-associated autoimmune
leukoproliferative disease is discussed as a repre-
sentative example illustrating how eRepo-ORP can
be used to identify therapeutics for orphan diseases.
eRepo-ORP is a large collection of knowledge-
based predictions to initiate more extensive basic
and clinical research focused on investigating poten-
tially new indications for existing drugs. The com-
plete data set is freely available to the research
community through the Open Science Framework
at https://osf.io/qdjup/.
Results and Discussion

Protocol for template-based drug repositioning

eRepo-ORP is constructed based on a large-scale
drug repositioning conducted with accurate,
template-based techniques according to a protocol
presented in Fig. 1. The first phase is to generate
structural data for FDA-approved drugs and their
molecular targets based on information extracted from
the DrugBank database (Fig. 1a). Structure models
of drug targets are constructed by eThread and
annotated with drug-binding sites and residues by
eFindSite (Fig. 1b). Next, for each drug–target pair, we
identify in the Protein Data Bank (PDB) [21], a globally
similar template binding a ligand that is chemically
similar to the DrugBank compound (Fig. 1c). This
holo-template is structurally superposed onto the
DrugBank target (Fig. 1d) and then the DrugBank
compound is aligned onto the template-bound ligand
(Fig. 1e). This procedure produces 2012 atomic
models of drug–target complexes involving 348

https://osf.io/qdjup


Fig. 1. Flowchart of the drug repositioning procedure employed to construct eRepo-ORP. This protocol utilizes data
from three sources, DrugBank, PDB, and Orphanet, shown in blue, red, and green, respectively. Databases are indicated
by gray boxes. (a) For a given protein sequence from DrugBank, template-based structure modeling is conducted with
eThread in order to construct (b) a 3D model subsequently annotated by eFindSite with drug-binding sites and residues
represented by little circles. (c) A globally similar template binding a ligand that is chemically similar to the DrugBank
compound is selected from the PDB. (d) The template carrying its ligand is structurally aligned onto the DrugBank
apo-structure. (e) The DrugBank compound is then aligned onto the template-bound ligand generating (f) a 3D model of
the drug–target complex. (g) For a given protein sequence from Orphanet, (h) a 3D model is constructed with eThread and
annotated with eFindSite. (i) A local alignment is performed for a pair of binding sites in DrugBank and Orphanet models
with eMatchSite. (j) The DrugBank compound is transferred to the Orphanet model when the similarity of binding pockets in
DrugBank and Orphanet models is sufficiently high and the resulting complex is refined.
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unique proteins and 715 drugs (Fig. 1f). The second
phase is to model proteins associated with orphan
diseases obtained from the Orphanet database
(Fig. 1g). Structure models of 922 Orphanet proteins
with predicted drug-binding sites and residues
(Fig. 1h) are generated by a similar protocol to that
used for DrugBank targets. The last phase is to
identify similar binding sites in DrugBank and Orpha-
net models in order to reposition existing drugs. This
task is accomplished by employing eMatchSite to
construct local alignments for 320,856 possible pairs
of DrugBank and Orphanet proteins (Fig. 1i). For
18,145 pairs producing a statistically significant local
alignment, a drug molecule bound to the DrugBank
protein is transferred to the Orphanet target and the
complex model is subjected to all-atom refinement
(Fig. 1j). Refined structure models are included in the
eRepo-ORP database.

Quality of structural data generated for
DrugBank and Orphanet

Structure models are generated for the DrugBank
and Orphanet data sets with eThread, a meta-
threading approach employing state-of-the-art fold
recognition. Initial models constructed by Modeller
from eThread alignments are refinedwithModRefiner,
which performs atomic-level energy minimization in a
composite physics- and knowledge-based force field
improving side-chain positions and hydrogen-bonding
networks. An independent assessment of the quality
of protein models is carried out with ModelEvaluator
utilizing the predicted secondary structure, relative
solvent accessibility, residue contact map, and
beta-sheet structure. Statistics reported in Supple-
mentary Table S1 show that the template-based
modeling protocol employed in this study produces
highly confident structure models, whose mean
estimated Global Distance Test (GDT) score [22]
values are 0.71 and 0.68 for DrugBank and Orphanet
proteins, respectively. In addition, the mean confi-
dence for the top-ranked binding sites predicted in
these models by eFindSite is as high as 0.87 for
DrugBank and 0.82 for Orphanet targets.
The structure models of DrugBank complexes are

constructed by aligning the protein and the drug onto
a holo-template selected from the PDB. Supplemen-
tary Table S1 reports the mean Tanimoto coefficient
(TC) [23] between the DrugBank compound and the
template-bound ligand of 0.49 and the mean
Template Modeling (TM) score [24] between recep-
tor proteins of 0.65. Note that both TC and TM score
are even higher when only those cases producing
statistically significant pocket alignments are con-
sidered. These numbers clearly indicate that globally
similar templates binding chemically similar ligands
are selected for the majority of drug–protein pairs
from DrugBank to produce highly confident complex
models. Supplementary Table S1 also provides
statistics for DrugBank → Orphanet pairs. Both TM
score and eMatchSite score (eMS score) values are
very low for all data, basically showing that randomly
selected pairs of proteins share neither global nor
local structure similarity. However, considering the

image of Fig. 1
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subset of 18,145 pairs producing statistically signif-
icant local alignments, the mean eMS score is
as high as 0.91, although the mean TM score is
still only 0.27. These results demonstrate that the
vast majority of similar binding sites included in
eRepo-ORP are identified by eMatchSite in Drug-
Bank and Orphanet proteins having unrelated global
structures.

Matching DrugBank drugs to Orphanet proteins

The results of a large-scale pocket matching
between DrugBank and Orphanet proteins are pre-
sented as a heat map in Fig. 2. Pocket similarity is
measured with eMS score reported by eMatchSite.
eMS score ranges from 0 to 1, with values of ≥0.56
indicating statistically significant local alignments.
Furthermore, binding sites predicted by eFindSite in
DrugBank and Orphanet proteins are subjected to
ligand-based virtual screening employing molecular
fingerprints extracted from template-bound ligands.
Protein targets in each data set in Fig. 2 are clustered
with respect to the chemical similarity of the top-
ranked compounds selected by virtual screening. Five
distinct groups of proteins marked by rounded boxes
bind compounds containing nitrogen bases, carbohy-
drates, amino acids, fatty acids, and other molecules.
Only 5.6% of 320,856 local alignments between
DrugBank and Orphanet proteins are statistically
significant at an eMS score of 0.56, indicating that
these pairs of pockets bind similar molecules.
Although the majority of similar pockets, marked by
Fig. 2. Heat map visualizing all-against-all binding site
eRepo-ORP. Binding pocket similarity is quantified with the eM
corner. DrugBank and Orphanet proteins are hierarchically cl
resulting dendrograms shown on the left side and at the top o
distinct groups of proteins binding compounds containing nitrog
(AA; yellow), fatty acids (FA; green), and other molecules (O;
dark spots in Fig. 2, are detected between proteins
binding the same type of ligands, for example, those
compounds containing nitrogen bases, similarities are
detected between different groups as well. Because
some DrugBank proteins bind multiple drugs, more
than one drug can be repositioned to the Orphan
target basedon a single alignment of a pair of pockets.
Specifically, eRepo-ORP comprises 31,142 unique
putative complexes between DrugBank compounds
and Orphanet proteins, modeled from 18,145 pairs of
pockets producing statistically significant local align-
ments. The database can be searched with the
disorder name and identification according to Orpha-
net, as well as the DrugBank identifier. In the following
section, we discuss a representative case selected
from eRepo-ORP showing a DrugBank compound
that can potentially be repositioned to an Orphanet
protein associated with a rare disease.

Ras-associated autoimmune leukoproliferative
disease and vandetanib

Ras-associated autoimmune leukoproliferative
disorder (RALD; ORPHA:268,114) is a chronic,
non-malignant condition characterized by monocy-
tosis and often associated with leukocytosis, lym-
phoproliferation, and autoimmune phenomena [25].
RALD is linked to certain mutations in GTPase KRas
(KRAS), which plays an important role in the
regulation of cell proliferation promoting oncogenic
events; thus, it is considered a major target in
anticancer drug discovery [26]. Specifically, amino
matching between DrugBank and Orphanet proteins in
S score according to the color scale displayed in the top-left
ustered by the chemical similarity of their ligands with the
f the heat map, respectively. Rounded rectangles identify
en bases (NB; blue), carbohydrates (CH; red), amino acids
gray).

image of Fig. 2
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acid substitutions in codons 12 and 13 of KRAS in
RALD patients cause the constitutive binding of GTP
and the activation of the KRAS protein inducing the
Raf–MEK–ERK signaling pathway [25]. According to
eRepo-ORP, KRAS produces a highly significant
local alignment with protein-tyrosine kinase 6 (PTK6)
implicated in the regulation of a variety of signaling
pathways that control the differentiation and mainte-
nance of normal epithelia, as well as tumor growth
[27]. PTK6 is a target for vandetanib, an oral kinase
inhibitor of tumor angiogenesis and tumor cell
proliferation approved by the FDA to treat non-
resectable, locally advanced, or metastatic medul-
lary thyroid cancer in adult patients [28].
Figure 3 presents structuremodels of PTK6 (purple)

and KRAS (gold). The model of PTK6 constructed
with eThread from tyrosine-protein kinase HCK
(PDB-ID: 1qcf, chain A, 42.6% sequence identity)
[29] is assigned a high estimated GDT score of 0.74.
Furthermore, vandetanib (DrugBank-ID: DB05294)
was transferred to PTK6 according to the global
structure alignment with cyclin-dependent kinase 6
bound to this inhibitor (PDB-ID: 2ivu, chain A, TM
score of 0.54) [30]. The final model of the vandetanib–
PTK6 complex is shown in Fig. 3a as solid ribbons and
sticks. We selected this particular case because the
vandetanib–PTK6 model was generated using the
October 2016 version of the PDB, and in January
2017, a crystal structure of PTK6 kinase domain
complexed with another inhibitor, dasatinib, was
released (PDB-ID: 5h2u, chain A) [31]. This experi-
mental structure superposed onto the vandetanib-
PTK6 model is shown in Fig. 3a as transparent
ribbons and sticks. A TM score between the PTK6
Fig. 3. Repositioning of vandetanib from PTK6 to KRAS
colored purple and gold, respectively, whereas ligands are col
oxygen; yellow, sulfur; citron, chlorine; pink, fluorine; cyan, bro
(purple ribbons) and vandetanib (thick sticks) with predicted
experimental structure of PTK6 (teal ribbons) bound to dasatin
with predicted drug-binding residues shown as spheres sup
ribbons) bound to GDP (thin sticks). (c) Local superposition of P
the sequence order-independent pocket alignment by eMatchS
the remaining surface is transparent. Vandetanib repositioned
model and the experimental structure is as high as
0.92 with a Cα-RMSD of 2.3 Å. Furthermore, the
RMSD calculated over dasatinib-binding residues is
only 0.7 Å, demonstrating that not only the backbone
but also the binding pocket ismodeledwith a very high
accuracy. Although vandetanib and dasatinib have a
low chemical similarity with a TC of only 0.15, both
inhibitors have a similar shape and the modeled
binding pose of vandetanib resembles the experi-
mental conformation of dasatinib. Moreover, the
top-ranked binding site predicted with 99.7% confi-
dence by eFindSite in the PTK6 model substantially
overlaps with the dasatinib-binding pocket in the
experimental complex structure. The Matthews
correlation coefficient [32] between predicted and
dasatinib-binding residues reported by Ligand–
Protein Contacts software is 0.62.
The model of KRAS was constructed from Ras-

related protein Rap-1b (PDB-ID: 4m8n, chain G,
58.4% sequence identity) and assigned a high
estimated GDT score of 0.85. Although several
inhibitors of KRAS are available, these compounds
target the secondary binding site [33]. In Fig. 3b, a
GDP-bound KRAS (transparent) is superposed onto
themodel structure (solid). This superposition yields a
high TM score of 0.93 and a low Cα-RMSD of 1.4 Å;
furthermore, the RMSD calculated over GDP-binding
residues is only 1.1 Å. The top-ranked drug-binding
site comprising 27 residues, annotated by eFindSite
with 95.7% confidence, has a Matthews correlation
coefficient against GDP-binding residues of 0.61.
Despite a very low global sequence identity of 12.9%
and a structure similarity with a TM score of 0.32
between PTK6 and KRAS, eMatchSite reports a
according to eRepo-ORP. PTK6 and KRAS proteins are
ored by atom type (green/teal, carbon; blue, nitrogen; red,
mine). (a) Structure model of the complex between PTK6
binding residues shown as spheres superposed onto the
ib (thin sticks). (b) Structure model of KRAS (gold ribbons)
erposed onto the experimental structure of KRAS (teal
TK6 (purple ribbons) and KRAS (gold surface) according to
ite. Annotated binding residues in KRAS are solid, whereas
to KRAS is represented by thick sticks.

image of Fig. 3
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significant local similarity of their binding sites with an
eMS score of 0.99. Figure 3c shows the conformation
of vandetanib repositioned from PTK6 to KRAS
according to the sequence order-independent pocket
alignment by eMatchSite, which results in 4.3 Å
Cα-RMSD over 25 aligned residues. Repositioned
vandetanib fits well into a deep cavity in the KRAS
structure forming hydrogen bonds with A18, N116,
and K117; aromatic interactions with F28; and
hydrophobic contacts with V8 and V9. The interaction
energy between vandetanib and KRAS calculated
by Distance-scaled Finite Ideal-gas REference is
−441.5, which is only slightly higher than −485.6
obtained for the vandetanib–PTK6model. Altogether,
these results suggest that the nucleotide-binding
pocket of KRAS may be a suitable target for
vandetanib. If so, we anticipate that the competitive
binding of vandetanib to KRASmay subdue its gain of
function caused by activatingmutations, leading to the
mitigation of RALD conditions.
Conclusions

In this study, we employ a collection of state-of-
the-art algorithms to match, at an unprecedented
scale, binding sites for knowndrugswith thosepockets
identified in proteins associated with rare diseases.
Based on these data, we created eRepo-ORP, a new
resource for orphan drug research. eRepo-ORP
comprises 31,142 putative complexes between Drug-
Bank compounds and Orphanet proteins exposing
vast opportunities to reposition existing drugs to rare
diseases. In order to illustrate how potential therapeu-
tics for orphan diseases can be identified with
eRepo-ORP, we discuss a possibility to repurpose a
kinase inhibitor for Ras-associated autoimmune leu-
koproliferative disease. Freely available through the
Open Science Framework at https://osf.io/qdjup/,
eRepo-ORP provides a list of pairs of DrugBank and
Orphanet proteins sorted by the matching score,
structure models of DrugBank and Orphanet proteins
with predicted drug-binding sites, sequence and
secondary structure profiles, structure models of
DrugBank complexes annotated with energy scores,
and complex models of DrugBank drugs repositioned
to Orphanet proteins with the corresponding energy
scores. We expect that eRepo-ORP will prove
valuable to orphan disease research by providing a
robust, rational drug repositioning component.

Materials and Methods

DrugBank data set

FDA-approved drugs whose molecular weight is in
the range of 150–550 Da and for which at least one
target protein is known were selected from DrugBank
[12]. Target structures composed of 50–999 amino
acids were modeled with eThread, a template-based
structure prediction algorithm [13]. eThread employs
meta-threading with HH-suite [34], RaptorX [35], and
SparksX [36] to select structure templates in the
non-redundant and representative subset of the PDB.
Comparative structure modeling in eThread is carried
out with Modeller [37] based on the top-ranked
template and incorporating secondary structure re-
straints from PSIPRED [38]. Initial models assembled
byModellerwere refinedwithModRefiner [39]. Finally,
eachmodel was assigned an estimatedGDT score by
ModelEvaluator [40].
In the next step, drug-binding pockets were

predicted by eFindSite [14] in confidently modeled
target proteins whose estimated GDT score is ≥0.4.
Pockets assigned by eFindSite a high and moderate
confidence were then subjected to fingerprint-based
virtual screening [15]. Each target pocket was
screened against a library containing drug molecules
from DrugBank [12] and a background collection of
244,659 non-redundant compounds selected from the
ZINC database [41]. Only those drug–target pairs for
which the drug molecule was ranked within the top
10% of the screening library were retained. Further-
more, we devised a two-step alignment protocol to
position drug compounds within the predicted binding
pockets for each drug–target pair. First, holo-
templates selected by eFindSite were structurally
aligned onto the target protein with Fr-TM-align [42]
and then the drug molecule was superposed onto the
template-bound ligand according to the chemical
alignment constructed by kcombu [43].

Orphanet data set

Genes associated with rare disorders were obtained
fromOrphanet [4], and the sequencesof geneproducts
were downloaded from UniProt [44]. Subsequently, for
those protein sequences composed of 50–999 amino
acids, we employed a protocol described above for the
DrugBank data set to conduct comparative structure
modeling with eThread [13] followed by drug-binding
pocket prediction byeFindSite [14]. Finally, only protein
structures with an estimatedGDT score of ≥0.4 having
binding sites predicted with a high and moderate
confidence were retained.

Pocket matching with eMatchSite

All-against-all matching of drug-binding pockets in
DrugBank and Orphanet proteins was conducted
with eMatchSite [16,17]. eMatchSite constructs
sequence order-independent local alignments of
pocket residues by solving the assignment problem
with machine learning and the Hungarian algorithm
[45]. Subsequently, the local alignment is assigned a
similarity score, called the eMS score, calculated
based on the overlap of various physicochemical

https://osf.io/qdjup
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features and evolutionary profiles. eMS score
ranges from 0 for completely dissimilar pockets to
1 for identical pockets, with an optimized threshold of
0.56 accurately distinguishing between pockets
binding similar and dissimilar molecules [16].
eMatchSite has been benchmarked against a
number of established data sets; a comprehensive
recap of its performance is presented in Supple-
mentary Text S1. In addition to calculating the
similarity score, eMatchSite superposes two pockets
according to the constructed local alignments, so
that a drug molecule bound to one pocket can be
directly transferred to the other binding site. In this
study, we use this feature of eMatchSite to transfer
drugs bound to DrugBank target to binding sites in
Orphanet proteins. In the last step, the constructed
complexes of drugs repositioned to Orphanet pro-
teins are rebuilt with Modeller in order to refine drug–
target interactions and eliminate steric clashes. The
quality of the final complex models is assessed by a
knowledge-based statistical energy function for
protein–ligand complexes with the Distance-scaled
Finite Ideal-gas REference potential [46]. Specific
interactions between drugs and proteins, such as
hydrogen bonds, and hydrophobic and aromatic
contacts, are identified by Ligand–Protein Contacts
[47], LigPlot+ [48], and eAromatic [49].
Supplementary data to this article can be found

online at https://doi.org/10.1016/j.jmb.2017.12.001.
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