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Abstract

Background: Deciphering complete networks of interactions between proteins is the key to comprehend cellular
regulatory mechanisms. A significant effort has been devoted to expanding the coverage of the proteome-wide
interaction space at molecular level. Although a growing body of research shows that protein docking can, in
principle, be used to predict biologically relevant interactions, the accuracy of the across-proteome identification of
interacting partners and the selection of near-native complex structures still need to be improved.

Results: In this study, we developed a new method to discover and model protein interactions employing an
exhaustive all-to-all docking strategy. This approach integrates molecular modeling, structural bioinformatics,
machine learning, and functional annotation filters in order to provide interaction data for the bottom-up assembly
of protein interaction networks. Encouragingly, the success rates for dimer modeling is 57.5 and 48.7% when
experimental and computer-generated monomer structures are employed, respectively. Further, our protocol
correctly identifies 81% of protein-protein interactions at the expense of only 19% false positive rate. As a proof of
concept, 61,913 protein-protein interactions were confidently predicted and modeled for the proteome of E. coli.
Finally, we validated our method against the human immune disease pathway.

Conclusions: Protein docking supported by evolutionary restraints and machine learning can be used to reliably
identify and model biologically relevant protein assemblies at the proteome scale. Moreover, the accuracy of the
identification of protein-protein interactions is improved by considering only those protein pairs co-localized in the
same cellular compartment and involved in the same biological process. The modeling protocol described in this
communication can be applied to detect protein-protein interactions in other organisms and pathways as well as
to construct dimer structures and estimate the confidence of protein interactions experimentally identified with
high-throughput techniques.

Keywords: Protein-protein interactions, Protein docking, Structural bioinformatics, Machine learning, Gene Ontology
filters, eFindSitePPI, eRankPPI

Background
Protein-protein interactions (PPIs) are ubiquitous and
play crucial roles in all biological processes within and
between cells by mediating signaling pathways in cellular
networks and controlling intracellular communication
[1]. Since complex biological systems are governed by
sophisticated networks of PPIs, associations between

proteins ultimately determine the behavior of the cell.
Genome-sequencing projects provide comprehensive
datasets of biological sequences and numerous post-
genomic projects are largely focused on the exploration
and analysis of PPIs across proteomes [2, 3]. The number
of possible PPIs in an organism can be scaled as the
square of the total number of monomeric proteins, yield-
ing an estimated number of disparate protein complexes
in the order of millions. High-throughput approaches
allow the large-scale detection of protein-interaction
partners in many organisms. Although the PPI data is
being produced at a swift pace, the major issues in using
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the current genome-wide PPI data are a low coverage and
high false positive rates [4, 5]. Moreover, inter-study
discrepancies between different experimental approaches
applied to the same biological system are not uncommon
[6]. Last but not least, while these high-throughput
methods identify proteins interacting with one another,
they do not provide structural information on biologically
relevant protein complexes.
On the other hand, interaction details, which can only

be obtained from three-dimensional structures, are cru-
cial to fully comprehend interaction mechanisms at the
atomic level. Unfortunately, despite ongoing efforts in
structural genomics projects to determine complex
structures, structural biology is lagging behind in the
current trends of high-throughput methods. While the
repertoire of monomeric protein structures solved by X-
ray crystallography and NMR spectroscopy is increasing
exponentially, the structural space of interacting proteins
is still far from complete. In fact, there is an increasing
gap between the number of identified interactions and
the number of 3D structures of these associations. Thus,
it is imperative to develop and continuously improve
computational techniques to accurately identify interact-
ing proteins and the corresponding complex structures.
A number of computational approaches have been

developed to discover and model new interactions at a
system level. Modeling complex structures can be accom-
plished using two distinct types of techniques, template-
free and template-based. The former methods, also known
as protein docking, construct a complex model by assem-
bling the monomeric structures of target proteins through
a conformational search followed by the selection of high
scoring binding orientations. In contrast, template-based
approaches build complex structures by mapping mono-
meric targets to experimentally solved template complexes
often followed by the refinement of the initial structural
framework. Both methods have advantages and disad-
vantages. Template-based approaches can construct
dimeric models directly from target sequences, therefore,
monomer structures may not be required. Further, these
techniques select templates based on sequence [7, 8],
sequence-to-structure [9] and structure alignments [10, 11]
often yielding more accurate results than template-free
docking [12, 13]. Although dimer templates are available in
the Protein Data Bank (PDB) [14] to model all complexes
in which the monomer structures are either known or can
independently be modeled [15], the success rate of
template-based docking is only about 23% when no closely
homologous templates with a sequence identity to the
target of >40% can be found for at least one monomer
chain. Analogous interaction templates cannot be identi-
fied in the current PDB to effectively guide template-based
docking in those failed cases [16]. The fact that suitable
templates are available only for a limited number of

interactions significantly lowers the coverage of proteome-
scale datasets.
In contrast, template-free methods are, in principle,

applicable to those protein targets whose monomer struc-
tures are either solved experimentally or can be generated
with homology modeling. These techniques do not require
the structures of related complexes to model the associ-
ation between targets proteins. Consequently, template-
free approaches provide a higher coverage in large-scale
applications focusing on the construction and analysis of
PPI networks. Although template-free modeling is often
applied to a pair of proteins known to interact with one
another, several studies have successfully employed the
exhaustive rigid-body protein docking and post-docking
analysis to predict PPIs and PPI networks [17–19]. For
instance, a docking experiment comparing the distribution
of docking scores collected for proteins known to interact
to those between putatively non-interacting proteins was
reported [20].
Another study attempted to predict the protein-

protein interaction network of the bacterial chemotaxis
signaling pathway using an all-to-all docking approach
[21]. Here, two docking tools, MEGADOCK [18] and
ZDOCK [22], were employed to conduct rigid-body
docking of all possible combinations of 101 proteins
belonging to 13 families, which are known to be part of
the chemotaxis signaling pathway. Based on a previous
observation that the decoys of interacting proteins form
dense clusters as opposed to the lack of dense clusters
formed by non-interacting proteins [17, 18], clustering
high-scoring decoys was used to evaluate protein binding
affinity and to predict the PPI network. Encouragingly,
combining positive predictions from both docking tools
correctly identified almost all core-signaling interactions
in bacterial chemotaxis. Although the aforementioned
methods were shown to discriminate true protein inter-
actions from likely non-interacting pairs, the native
complexes of interacting proteins have not been recov-
ered mainly due to an insufficient ranking accuracy of
docking algorithms. Further, the reported benchmark-
ing calculations conducted using relatively small data-
sets of experimental structures may not be indicative of
the performance of the proteome-scale identification of
molecular interactions.
In that regard, we developed a new approach to discover

and model PPIs across proteomes employing an exhaust-
ive all-to-all docking strategy. This pipeline comprises six
major steps including protein threading and homology
modelling, the prediction of binding interfaces, a rigid
body docking, the flexible refinement and scoring of the
modeled interfaces, and a series of function annotation
filters. Our approach was carefully benchmarked on a
large and representative dataset of experimental structures
and computer-generated models of target proteins. In
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order to demonstrate its utility in large-scale projects, we
modeled dimer structures and predicted PPIs across the
proteome of Escherichia coli. Interaction data generated
for E. coli is primed for experimental validation and
further computational analyses. In addition, we validated
our method against the human immune disease pathway.
Encouragingly, our results demonstrate that protein dock-
ing can be used not only to identify near-native complexes
but also to predict interaction partners. Overall, this study
shows that combining computational modeling, structural
bioinformatics, machine learning, and function annotation
provides a powerful methodology for the bottom-up
assembly of protein-protein interaction networks.

Methods
Datasets
The pipeline to model PPIs is benchmarked on the
BM1905 dataset (available at http://www.brylinski.org/
content/efindsiteppi-datasets), which was previously com-
piled to evaluate the accuracy of interface residue pre-
diction and the re-ranking of docked models [23, 24].
This dataset contains experimental target structures
(BM1905C) as well as high-quality computer-generated
models (BM1905H). The quality of monomer models was
assessed by the root-mean-square deviation (RMSD) and
the Template Modeling score (TM-score) [25]. The latter
ranges from 0 to 1 with values >0.4 indicating a significant
structural similarity to the native conformation. BM1905H
comprises models whose mean Cα-RMSD is 6.94 Å ±4.61
and mean TM-score is 0.72 ± 0.15.
The algorithm to predict binary interactions is trained

and validated against a non-redundant and representa-
tive dataset of 18,162 protein dimers selected from the
PDB. First, all dimers having at least 20 interface resi-
dues were categorized as either homo-dimers whose in-
dividual chains share at least 85% sequence identity or
hetero-dimers when the sequence identity was below
85%. Next, each subset was clustered with CD-HIT [26]
at 80% sequence identity. Finally, redundant dimers that
have similar interfaces with the Matthews correlation co-
efficient (MCC) calculated over interface residues of >0.5
were removed from each cluster. This procedure resulted
in a set of 14,944 homodimers (HOM14944) and a set of
3,519 heterodimers (HET3519). In addition, the algorithm
to predict binary interactions is tested on 1,688 non-
interacting protein pairs derived from the Negatome 2.0
database [27]. Computer models of individual proteins in
Negatome 2.0 were built with Modeller [28] using
templates identified by eThread [29], followed by a high-
resolution structure refinement with ModRefiner [30].
The developed pipeline to predict PPI networks is

validated using E. coli as a model organism. Protein
interaction data for E. coli consisting of 13,374 known
interactions formed by 2,994 bacterial proteins were

downloaded from the Database of Interacting Proteins
(DIP) [31] in March 2016. We removed from the ori-
ginal dataset redundant proteins as well as those targets
longer than 600 residues, which may be difficult to
model with threading, and shorter than 50 residues be-
cause these molecules are likely peptides. The final E.
coli dataset consists of 2,300 proteins forming 6,341 in-
teractions. DIP provides the sequences of interacting
proteins, therefore, we constructed monomer structures
with Modeller [28] using templates identified by eThread
[29], followed by a high-resolution structure refinement
with ModRefiner [30].
Finally, the protocol to predict and model protein inter-

actions is validated against the human immune disease
pathway associated with the Toll-Like Receptor (TLR)
signaling cascade. Information on proteins involved in this
pathway as well as experimentally detected interactions
were obtained from the Reactome database [32] in June
2016. The human immune pathway comprises 26 proteins
connected through 112 interactions; protein monomer
structures are constructed with the same protocol as that
used to model DIP proteins.

Protein docking, ranking and refinement
For a given pair of protein targets, a collection of docking
solutions is generated with the FFT-based rigid body dock-
ing program ZDOCK version 3.02 [33]. We use the default
parameters to exhaustively search the 3D grid space
around the receptor by rotating and translating the ligand.
Subsequently, the top 2,000 conformations reported by
ZDOCK are re-ranked with eRankPPI [23], a recently de-
veloped algorithm to identify near-native conformations
from the high-scoring hits. The scoring function imple-
mented in eRankPPI employs multiple features including
residue-level interface probability estimates, protein dock-
ing potentials, and energy-based scores. Surface residues
in target receptors are annotated with interface probability
estimates by eFindSitePPI [24], a structure/evolution-based
approach to detect interface residues. eFindSitePPI builds
on a strong conservation of the location and geometry of
binding sites in evolutionarily related dimers and employs
meta-threading, structural alignments, and machine learn-
ing to predict interfacial residues for a target protein. The
top 10 models selected by eRankPPI are finally subjected
to a flexible refinement with FiberDock [34]. FiberDock
mimics the induced fit by accounting for both side-
chain and backbone flexibility. The side-chain flexibility is
modeled using a rotamer library, whereas a normal mode
procedure is used to model the backbone flexibility.

Assessing the quality of protein complex models
The accuracy of dimer models is primarily assessed with
iAlign [35] against experimental complex structures
retrieved from the PDB. iAlign evaluates the quality of
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structural models with the Interface Similarity score
(IS-score) combining Cartesian distances with the overlap
of interfacial contact patterns [36]. IS-score ranges from 0
to 1 with values greater than 0.210, 0.311 and 0.473 indi-
cating a statistically significant interface similarity at p-
values of 10-2, 10-5 and 10-10, respectively. In addition, the
quality of dimer models is assessed with iRMSD, a stand-
ard evaluation measure in the Critical Assessment of PRe-
dicted Interactions (CAPRI) [37] and the Pairwise Contact
Score (PCS) [23]. iRMSD is the interfacial Cα-RMSD
between ligands in the predicted and experimental com-
plexes upon the superposition of receptor structures. In
iRMSD calculations, interface residues are defined as
those having at least one atom within 10 Å from any
atom in the other protein chain. The PCS employs the
Matthews correlation coefficient to evaluate the overlap
between predicted and the actual interfacial contacts; it
ranges from about 0 (random prediction) to 1 (perfect
prediction). The docking success rate is defined as the
percentage of targets for which at least one correct
model is ranked within the top 10 conformations. The
acceptance criteria for correct predictions are an
iRMSD of ≤2.5 Å and a PCS of ≥0.65 for experimental
structures, and an iRMSD of ≤8.5 Å and a PCS of ≥0.30
for computer-generated models, as described in [23].

Protein-protein interaction prediction with supervised
learning
The scoring function to identify biologically relevant
assemblies was trained and cross-validated against the
HET3519 dataset of experimental hetero-dimers used as
positives and a simulated dataset of 14,944 likely non-
interacting pairs used as negatives. The negative dataset
was constructed by randomly swapping ligands within
the HOM14944 dataset. Since HOM14944 proteins
share less than 80% sequence identity, this procedure
resulted in a random set of hetero-dimers referred to as
RND14944. Uniformly choosing random protein pairs
excluding experimental interactions produces an un-
biased estimate of the distribution of negatives in the
prediction of protein-protein interactions [38]. Hence,
this procedure is a common practice to generate nega-
tive datasets containing at most a negligible fraction of
interacting proteins [39–41]. FiberDock calculates sev-
eral binding energy scores, including attractive and re-
pulsive van de Waals forces, the atomic contact energy,
partial electrostatics, hydrogen and disulfide bonds, π-
stacking, and aliphatic interactions. These scores were
used as a feature vector to train a Random Forest
Classifier (RFC) returning a single probabilistic score to
assess whether two interacting proteins are biologically
relevant. The machine learning model was 10-fold
cross-validated against the positive set HET3519 and
the negative set RND14944.

Annotation filters
Positive predictions are further subjected to filtering
with Gene Ontology (GO) terms. GO is a hierarchically
organized database providing a controlled vocabulary to
characterize gene products, divided into three sub-
ontologies: cellular component (CC), biological process
(BP) and molecular function (MF) [42]. Here, we use GO
slims, which are cut-down versions of the GO ontologies
without the detail of the specific fine grained terms. GO
slims were extracted from the PANTHER classification
system [43], whereas annotations for E. coli proteins were
obtained from the EcoCyc database [44] in May 2016. We
tested whether CC, BP and MF slims can be used to refine
prediction results by considering proteins localized in the
same cellular component, assigned to the same biological
process, and having different molecular functions.

Performance evaluation metrics
PPI prediction is assessed using standard evaluation
metrics for classification problems:
True positive rate:

TPR ¼ TP
TP þ FN

ð1Þ

False positive rate:

FPR ¼ FP
FP þ TN

ð2Þ

Accuracy:

ACC ¼ TP þ TN
TP þ FP þ TN þ FN

ð3Þ

Matthews correlation coefficient:

MCC ¼ TP � TN−FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ TNð Þ FP þ FNð Þ TN þ FNð Þp

ð4Þ
where TP (True Positives), FN (False Negatives) and FP
(False Positives) are the number of correctly predicted,
under-, and over-predicted PPIs, respectively. TN (True
Negatives) is the number of correctly predicted non-
interacting partners. The MCC quantifies the strength of
the correlation between predicted and actual classes; by
heavily penalizing both over- and under-predictions, it
provides a convenient assessment measure that balances
the sensitivity and specificity.

Results and discussion
The goal of this study was to develop and test a new
protocol to model putative protein complex structures
across proteomes that can subsequently be used to assem-
ble protein-protein interaction networks. The modeling
procedure for a pair of proteins is presented in Fig. 1. The
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construction of a hetero-dimer starts with the prediction
of 3D structures of individual monomer chains using eTh-
read and Modeller (Fig. 1a). Here, the larger monomer is
the receptor and the smaller monomer is the ligand; the
size is proportional to the number of amino acid residues.
Subsequently, eFindSitePPI is employed to predict a pro-
tein binding site in the receptor structure and, simultan-
eously, a rigid-body docking of the ligand to the receptor
is performed with ZDOCK (Fig. 1b). In the next step,

docking conformations are filtered and re-ranked with
eRankPPI utilizing the binding interface predicted by
eFindSitePPI (Fig. 1c). The identified putative dimers are
then subjected to a flexible refinement with FiberDock
(Fig. 1d) followed by the evaluation of binding energies
with the RFC in order to select the final model (Fig. 1e). A
probability score reported by the RFC is used together
with annotation filters according to Gene Ontology terms
(Fig. 1f) to make the final decision whether or not the
constructed dimer is biologically relevant (Fig. 1g).
Although the comprehensive benchmarks of eFindSitePPI

and eRankPPI have been already reported [23, 24], we found
that a flexible refinement improves the accuracy of dimers
assembled from experimental as well as computer-
generated monomer structures. In addition, using ma-
chine learning to evaluate the refined interfaces is
shown to reliably detect biologically relevant protein
complexes. Finally, we demonstrate that annotation
filters can successfully be employed in genome-wide
projects to further refine the classification results and
more accurately identify putative pairs of interacting
proteins.

Sampling and scoring in template-free docking
In this work, the structures of protein complexes are mod-
eled via a protocol utilizing template-free docking with
ZDOCK. Template-free docking consists of two successive
tasks, sampling and scoring. Sampling employs a rigid-
body search over different rotational-translational degrees
of freedom, whereas the purpose of scoring is to rank the
sampled poses in order to identify near-native configura-
tions. Consequently, sampling and scoring failures are two
major reasons for the lack of success in protein docking.
The former are caused by an insufficient sampling, viz.
near-native conformations are not generated by a sam-
pling algorithm, therefore, reliable dimer models cannot
be constructed. These errors can frequently be corrected
simply by increasing the sampling exhaustiveness. Scoring
failures are unsuccessful docking calculations, in which at
least one near-native conformation is generated, however,
it is not selected by a scoring function as a feasible solu-
tion; correcting these errors is more challenging compared
to sampling failures. eRankPPI was developed specifically
to address scoring failures by improving the accuracy of
dimer ranking in protein docking [23].
Here, we assess docking success rates, sampling and

scoring failures for crystal structures as well as computer-
generated models for the BM1905 dataset. The results are
shown as IS-score spectrum plots in Fig. 2. For instance,
at an IS-score of 0.210 corresponding to a p-value of 10-2,
the success rate of ZDOCK against crystal structures is
73.4%, with the remaining 26.6% cases classified as scoring
failures (Fig. 2a). Re-ranking of the docked poses with
eRankPPI increases the success rate to 88.1%, decreasing

Fig. 1 Flowchart of the across-proteome modeling of dimer structures
and the prediction of protein-protein interactions. a Query protein
structures are first built with homology modeling. b Subsequently, a
binding site is identified in the receptor and initial dimer models are
generated through rigid body docking. c Initial models are then re-
ranked by eRankPPI taking into account the binding site information
and (d) subjected to a flexible refinement. e Machine learning followed
by (f) annotation filters are finally employed to identify biologically
relevant protein assemblies (g)
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the rate of scoring failures to only 11.9% (Fig. 2b). For
computer-generated models, the success rates (scoring
failures) are 64.4% (35.6%) for ZDOCK and 71.9% (28.1%)
for eRankPPI (Fig. 2c and d, respectively). Note that the
lack of sampling failures at an IS-score of 0.210 suggests
that rigid-body docking successfully samples the conform-
ational space of dimers assembled with experimental as
well as computer-generated models of monomer proteins.
Sampling failures come into sight only at higher IS-score
values, for example, conformations with an IS-score of at
least 0.473 corresponding to a p-value of 10-10 are not
constructed by ZDOCK for 19.1 and 61.1% of the cases
when experimental monomer structures and computer-
generated models are used, respectively. However, one
should keep in mind that the models of individual mono-
mers may already contain significant inaccuracies, thus in-
terfaces highly similar to those in experimental structures
simply cannot be constructed by rigid-body docking.
Overall, this analysis shows that scoring failures are re-
sponsible for the majority of unsuccessful docking calcula-
tions and that eRankPPI improves the success rate by
reducing the number of scoring failures by 14.7% for crystal
structures and 7.5% for protein models.

Dimers constructed from experimental monomer structures
Interface quality in the modeled dimer structures is
assessed in Fig. 3 by the distribution of IS-scores [36]
across the BM1905 dataset. Figure 3a shows the accur-
acy of complex models constructed from experimental
monomeric structures with ZDOCK alone, ZDOCK
followed by FiberDock, eRankPPI, and eRankPPI followed
by FiberDock. For each receptor-ligand pair, we first
selected the top 10 highest scoring ZDOCK models and
picked the model with the best IS-score. At least one
model with a statistically highly significant IS-score of
0.473 is found in 34.9% of the cases. This percentage

increases to 42.4% when the initial dimers are refined by
FiberDock. Next, we re-ranked the top 2,000 models
from ZDOCK with eRankPPI in order to more reliably
identify near-native structures. Encouragingly, in 50.5%
of the cases, at least one model having an IS-score
higher than 0.473 is now found within the top 10 dimers
re-ranked by eRankPPI. Further refinement with Fiber-
Dock increases this fraction to as high as 57.5%. In
addition to the IS-score, Table 1 shows that success rates
measured with iRMSD as well as PCS increase when
eRankPPI and FiberDock are included in the modeling
protocol.
Altogether, eRankPPI and FiberDock generate the

most accurate dimers in these benchmarking calcula-
tions. Figure 3a and Table 1 show that re-ranking with
eRankPPI places more near-native structures within the
top-ranked models compared to ZDOCK, which is in
accordance with our previous studies [23] reporting ~10%
improvement in the success rate. In general, the refine-
ment by FiberDock considering both backbone and
sidechain flexibility consistently improves the model
accuracy, however, the improvement clearly depends on
the quality of the top-ranked dimers. Most significant
improvement for models selected by eRankPPI is
achieved when the IS-score of the initial dimers is in
the range of 0.4-0.8.

Dimers constructed from computer-generated monomer
structures
The unavailability of experimentally determined struc-
tures for a vast majority of gene products necessitates
using computer-generated models for genome-wide
determination of PPIs. On that account, we investigate
how protein docking, and dimer re-ranking and refine-
ment are affected when computer-generated models are
used instead of experimental structures. Figure 3b

Fig. 2 Analysis of success and failure rates in protein docking. Spectrum plots are constructed for (a, b) crystal monomer structures and (c, d)
protein models. Successful docking cases shown in green correspond to those predictions for which at least one native-like configuration with an IS-
score greater than a value display on the x-axis is ranked within the top 10 poses by (a, c) ZDOCK and (b, d) eRankPPI. The remaining cases represent
two types of docking failures. Scoring failures shown in red correspond to those predictions in which at least one native-like configuration is present in
a set of 2,000 dimer models, however, it was not ranked within the top 10 poses. Sampling failures shown in yellow correspond to the remaining cases
for which no native-like configurations have been generated
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shows the accuracy of dimer models constructed using
four protocols described above. Since monomers are
weakly homologous models containing structural inac-
curacies, the modeling results are evaluated with a
lower, yet still statistically significant IS-score threshold
of 0.311. We find that in 22.3 and 31.0% of the cases, at
least one model with an IS-score of ≥0.311 is found
within the top 10 conformations ranked by ZDOCK
and eRankPPI, respectively. Furthermore, a flexible
refinement with FiberDock increases the percentage of
successful cases to 32.2% for ZDOCK and to 48.7% for
eRankPPI. Table 1 shows that similar results are ob-
tained with the iRMSD and PCS used to measure the
success rate. Therefore, not only dimer models re-
ranked by eRankPPI and additionally refined by Fiber-
Dock are the most accurate, but also the refinement
procedure yields better improvements for eRankPPI

compared to ZDOCK. Despite the fact that protein
docking using weakly homologous monomer structures
is a difficult task and the dimer accuracy cannot be
expected to be higher than the accuracy of the mono-
mers, our analysis demonstrates that, in many cases,
using a protocol combining eRankPPI and FiberDock con-
structs reliable complexes as assessed by the IS-score,
iRMSD, and PCS.

Predicting biologically relevant interactions
Macromolecular complexes are stabilized by a variety of
interactions including solvation effects, changes in the
internal energy upon binding, electrostatics, van der
Waals interactions, hydrogen bonds, π-stacking, and
hydrophobic contacts across the interface. These interac-
tions are prevalently found in the crystal structures of
protein assemblies deposited in the PDB. Given that pro-
tein crystals mimic the actual interactions in an aqueous
solution, biologically relevant complex structures can be
predicted based on these contributions to the binding
energy. Figure 4 shows the distribution of various energy
terms calculated by FiberDock for the positive dataset
HET3519 and the negative dataset RND14944. Note a
clear distinction in the distribution of most energies
between interacting and non-interacting protein pairs
suggesting that these scores can be utilized to identify bio-
logically relevant interactions. For example, the median at-
tractive (repulsive) van der Waals energy is -0.230 (-0.187)
and 0.214 (-0.195) for interacting and non-interacting
pairs, respectively. Another highly discriminatory term
is the hydrogen bond energy with the median value
of -0.068 for interacting and 0.418 for non-interacting
pairs, which is consistent with other studies reporting
that the hydrogen bond potential greatly improves the

Fig. 3 Performance of ZDOCK, eRankPPI and FiberDock on the BM1905 dataset. Dimer complexes are constructed using (a) experimentally solved
monomer structures (BM1905C) and (b) computer generated monomer models (BM1905H). The results are presented as the cumulative fraction
of proteins with the IS-score between predicted and experimental complex structures larger than or equal to the value displayed on the x-axis

Table 1 Comparison of the success rates for protein dimers assembled from the crystal structures and computer-generated models
of monomers

Protocol Crystal structures Protein models

iRMSD ≤2.5 Å PCS ≥0.65 iRMSD ≤8.5 Å PCS ≥0.30

ZDOCK 51.5% 52.1% 28.1% 23.2%

ZDOCK + eRankPPI 58.3% 59.6% 43.7% 39.3%

ZDOCK + eRankPPI + FiberDock 72.8% 73.2% 52.4% 48.7%

The acceptance criteria for correct predictions are an iRMSD of ≤2.5 Å and PCS ≥0.65 for crystal structures, and an iRMSD of ≤8.5 Å and PCS ≥0.30 for protein
models. The best of top 10 dimer models is considered
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recognition of correctly docked protein-protein com-
plexes from large sets of alternative structures [45].
Next, we combine various interactions at the interface

for the top 3 refined models in order to evaluate the
complex stability and to predict whether the interaction
is biologically relevant or not. Specifically, the RFC is
employed to estimate a probability that a given complex
model represents a true interaction. Figure 5 shows a
receiver operating characteristic (ROC) plot evaluating
the performance of a classifier separating true interac-
tions within the HET3519 dataset from negative pairs
present in the RND14944 dataset. Using the top-ranked
model, the area under the curve for the prediction of
biologically relevant interactions is 0.72. The probability
threshold of 0.13 (a solid triangle in Fig. 5) maximizes
the MCC to a value of 0.43 at a true positive rate of 0.51
and a false positive rate of 0.14. Essentially, this thresh-
old corresponds to a point in the ROC space farthest
from the diagonal representing the performance of a
random classifier (gray area in Fig. 5).
Next, we improved the classification procedure by

employing up to top 5 ranked models constructed for a
given pair of receptor and ligand proteins. A pair is

predicted to represent a true interaction if a positive pre-
dictive score is greater than the optimized probability
threshold of 0.13 for at least one out of top n models.
Table 2 shows that this strategy indeed enhances the
discriminatory power. Considering the top 3 models
maximizes the MCC to a value of 0.61 with a true posi-
tive rate of 0.81 and a false positive rate of 0.19 (a solid
circle in Fig. 5). Finally, we independently test our classi-
fication protocol against the Negatome 2.0 database,
which provides a collection of protein pairs unlikely to
physically interact with each other [27]. We obtained a
false positive rate of 0.23, i.e. 23% of non-interacting
pairs included in Negatome 2.0 are predicted as interact-
ing proteins. This false positive rate is similar to that
calculated for the HET3519 and RND14944 datasets
suggesting that the RFC classifier is robust and its
performance is independent on the validation dataset.
Overall, the classifier performance is sufficiently high to
be applicable at a proteome scale.

Modeling protein-protein complex structures for E. coli
All-against-all docking of 2,300 proteins in E. coli produced
2,643,850 possible binary PPIs with 3 putative dimer

Fig. 4 Distribution of various components to the binding energy calculated with FiberDock. Negative pairs from the RND14944 dataset and
positive pairs from the HET3519 dataset are shown as white and gray boxes, respectively. The following normalized (Z-score) energy terms are
shown: (a) global energy, (b) attractive van der Waals potential, (c) repulsive van der Waals potential, (d) atomic contact energy, (e) internal
energy, and (f) hydrogen bond potential. Boxes end at quartiles Q1 and Q3 and a horizontal line in each box is the median. Whiskers point at
the farthest points that are within 1.5 of the interquartile range
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models generated for each unique receptor-ligand pair,
totaling 7,931,550 3D complex structures of bacterial pro-
teins. Applying the RFC trained on the HET3519 and
RND14944 datasets predicted 425,412 biologically relevant
interactions corresponding to 18.2% of all possible
PPIs (Additional file 1). Note that although the experimen-
tally covered PPI space provided by DIP [31] is very limited
with only 6,341 validated interactions, our structure-based
pipeline correctly identified 3,930 (62%) of these true PPIs.
According to the BioGRID Database Statistics, an estimated
number of 164,717 non-redundant interactions are present
in E. coli, suggesting that that additional filters are required
to further refine the set of predicted interactions. On that
account, we added annotation filters from Gene Ontology

to support the identification of biologically relevant dimers
constructed for the E. coli proteome.

Integrating structure-based prediction with Gene
Ontology
First, we tested whether CC, BP and MF slims can be
used as filters to identify interacting proteins by compar-
ing GO annotations in positive and negative protein
pairs. Here, the positive set contains known protein in-
teractions according to the DIP database, whereas the
negative set is compiled by randomly pairing E. coli
proteins included in the DIP database. Those protein
pairs having at least one common GO slim pass the
annotation filter. About 82% of positives pass the CC
filter that requires two proteins to co-localize in order to
form a physical interaction. In contrast, only 58% of
negatives are located in the same cellular component.
Further, as many as 93% of positives are part of the same
biological process, whereas 66% of negatives pass the BP
filter. These results are in line with previous studies
demonstrating that proteins localized in the same cellular
compartment are more likely to interact than those resid-
ing in spatially distant compartments [46, 47]. Similarly,
proteins involved in the same biological process have on
average a higher chance to interact compared to mole-
cules functioning in different biological processes. Thus,
both CC and BP filters retain the majority of true interac-
tions and reject a number of non-interacting protein pairs
leading to a better classification performance. In contrast,
molecular function cannot be used to improve the identi-
fication of biologically relevant interactions because a
similar percentage of positives (48%) and negatives (52%)
pass the MF filter. To further corroborate these results,
we applied both CC and BP filters to the HET3519 and
RND14944 datasets. Encouragingly, as many as 91 and
93% of HET3519 complexes passed CC and BP filters,
respectively. In contrast, significantly fewer pairs from the
random dataset RND14944 passed CC (63%) and BP
(44%) filters. The discriminatory performance of GO
filters applied to HET3519 and RND14944 is consistent
with that obtained for the E. coli dataset.

Assembly and analysis of PPI network in E. coli
In order to assemble the network of protein-protein inter-
actions in E. coli, we first applied the CC filter to 425,412
putative hetero-dimers identified by the RFC bringing this
number down to 253,230 interactions between proteins
localized in the same cellular compartment. Next, we
selected only those protein pairs involved in the same bio-
logical process further reducing the number of putative
hetero-dimers to 81,280. Although the BP filter is highly
sensitive correctly identifying 93% of true interactions, this
significant reduction of the number of positive predictions
is mainly attributed to the fact that BP annotations are

Fig. 5 Receiver operating characteristic (ROC) plot evaluating the
accuracy of the prediction of biologically relevant PPIs for the HET3519
and RND14944 datasets. The solid line corresponds to the performance
of a Random Forest Classifier employing the top-ranked models with
the black triangle pointing out the highest accuracy. Circles represent
the performance achieved by considering the top 2, 3, 4 and 5 ranked
models for each target complex. The gray area shows the performance
of a random classifier

Table 2 Accuracy of the prediction of biologically relevant PPIs
for the HET3519 and RND14944 datasets

Number of models MCC TPR FPR

1 0.43 0.53 0.11

2 0.58 0.74 0.14

3 0.61 0.81 0.19

4 0.58 0.85 0.20

5 0.58 0.88 0.22

Here, we consider up to top 5 ranked models constructed for a given pair of
receptor and ligand proteins
MCC Matthews correlation coefficient, TPR true positive rate, FPR false
positive rate
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available for only 1,294 out of 2,300 proteins. Combining
structure-based prediction of PPIs with both annotation
filters results in 61,913 biologically relevant interactions.
Note that GO filters are frequently employed to automat-
ically refine large sets of protein interactions. For instance,
the F-measure assessing the accuracy of PPI prediction for
the bacterial chemotaxis signaling pathway increased from
0.52 to 0.69 when the protein localization was taken into
consideration [21]. Our final set of protein interactions
with confidently modeled dimer conformations provide a
tremendous source of structural data relating to the net-
work of protein-protein interactions in E. coli.
Subsequently, we investigated several properties of the

PPI network constructed for E. coli in comparison with a
random network comprising the same number of nodes
and edges. The only difference between the predicted and
random networks is that the latter is built on interactions
randomly assigned to pairs of proteins. For the PPI net-
work predicted for E. coli by the structure-based approach,
the degree, diameter, and clustering coefficient [48] are
110.5, 6, and 0.30, respectively. Although the random net-
work has a similar degree of 111.4, its diameter is 3 and
the clustering coefficient is only 0.11. This analysis reveals
that the global topology of the constructed network sig-
nificantly differs from that of a random network. Specific-
ally, the predicted PPIs tend to cluster together forming
functional units around highly connected hubs, whereas
PPIs are distributed more uniformly in a random network.
In order to further corroborate these findings, we con-
structed a PPI network from experimental interactions in-
cluded in the DIP database and the corresponding
random network having the same number of nodes and
edges. Here the degree, diameter and clustering coefficient
calculated for the DIP (random) network are 6.9 (6.8), 12
(7), and 0.08 (0.004), respectively. The differences between
the network predicted by a structure-based approach and
that built on interaction data from DIP result from the in-
completeness of the latter, i.e. the DIP network is sparse,
having about 17 times less connections per node than the
predicted network. Nonetheless, the deviations of both
networks from their random counterparts are qualitatively
similar showing a notable tendency to form clusters and
sub-networks.
Figure 6 shows hive plots [49] generated for the pre-

dicted (Fig. 6a) and random (Fig. 6b) networks of PPIs
in E. coli. In both plots, true positives and false positives
with respect to experimentally validated interactions
from the DIP database are colored in green and red, re-
spectively. First, the structure-based approach including
GO filters correctly identifies the majority of experimen-
tal interactions (green lines), whereas these connections
are largely missed in the random network (red lines).
Second, the axes in both hive plots are sorted by the
clustering coefficient of individual nodes and the axis

scales in Fig. 6a and b are significantly different. Third,
considering the global network topology, the majority of
nodes in the random network are assigned to a medium-
degree group (y-axis) forming extensive connections to
themselves as well as to low- (x-axis) and high-degree
(z-axis) groups. In contrast, extensive connections be-
tween all groups are present in the network predicted by
the modeling of quaternary structures. These hive plots
effectively visualize differences between the predicted
and random networks described above.

Examples of dimer models selected from the E. coli
network
Since the PPI network for the E. coli proteome is assem-
bled by the modeling of interactions between proteins,
we discuss a couple of representative examples of the
modeled dimer structures. Note that experimentally
solved structures are unavailable for these proteins,
therefore, the presented molecular assemblies have been
constructed solely from the primary sequences of indi-
vidual monomers. Although monomer models are built
on templates whose sequence identity to the target pro-
tein is less than 40%, the estimated Global Distance Test
(GDT) [50] is greater than 0.7 indicating that these
computer-generated structures are highly confident. The
first example is a hetero-dimer assembled from fadJ and
fadI proteins involved in the fatty acid beta oxidation
pathway, which is part of lipid metabolism. This inter-
action was proposed to increase the efficiency of anaer-
obic beta-oxidation by favoring substrates of different
chain length [51]. Even though there is experimental
evidence that these two proteins interact with one
another [52], no structural data is available for the indi-
vidual proteins nor the complex. The modeling proced-
ure developed in this study correctly identified these
proteins to be interaction partners with the putative
fadJ/fadI hetero-dimer shown in Fig. 7. A protein bind-
ing site confidently predicted by eFindSitePPI on fadJ
comprises 11 residues, out of which 9 are also found at
the interface in the modeled fadJ/fadI complex. More-
over, fadJ has a NAD binding domain according to the
Pfam database [53]. Interestingly, we were able to not
only identify a binding pocket for NAD in the fadJ struc-
ture model with eFindSite [54], but also to dock a NAD
molecule to this pocket using our in-house ligand docking
software eSimDock [55].
The second example is glutaminase 2 (glsA2), an amido-

hydrolase enzyme responsible for generating glutamate
from glutamine, demonstrated to be a self-assembling
protein [56]. The GDT of the glsA2 monomer estimated
by eThread is 0.78 indicating a confident structure
model. Next, we predicted the structure of glsA2
homo-dimer as a symmetric complex shown in Fig. 8.
A unique feature of eFindSitePPI is that it not only
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detects interaction sites, but also points out specific
molecular interactions that stabilize a putative complex.
Molecular interactions predicted by eFindSitePPI for
glsA2 include a salt bridge between the side chains of
R232 (chain A) and E82 (chain B) as well as aromatic
contacts between W252 (chain A) and W252 (chain B),

which are found in the top-ranked complex model
selected by eRankPPI.

Analysis of PPIs in the human immune disease pathway
Finally, based on experimental data provided by the
Reactome database, we modeled protein complex struc-
tures for the human immune disease pathway associated
with the TLR signaling cascade. TLRs are sensors of the
innate immune system recognizing pathogen-associated
molecular patterns [57, 58]. These molecular sensors
participate in the first line of defense against invading
pathogens by promoting the activation and nuclear
translocation of certain transcription factors to induce
the secretion of inflammatory cytokines. Out of 26 gene
products involved in this pathway, we included the
following 17 proteins whose 3D structures have been
modeled (estimated GDT values are given in parentheses):
P58753 (0.64), Q15399 (0.45), Q9Y2C9 (0.46), P08571
(0.48), P16671 (0.59), O15111 (0.56), O14920 (0.54),
Q99836 (0.48), Q9NWZ3 (0.65), O60602 (0.49), Q15653
(0.71), Q00653 (0.32), Q04206 (0.52), P25963 (0.70),
P19838 (0.33), Q9BXR5 (0.41), and Q9Y6Y9 (0.77). The
remaining 9 structures have not been modeled due to
either their large size, the unavailability of reliable tem-
plates, or a significant content of transmembrane regions.
Although the total number of possible interactions for this
dataset is 153, only 58 are confirmed experimentally
according to the Reactome database. Figure 9 shows the
network structure and a binary interaction matrix for PPIs
predicted for this pathway. The structure-based approach
predicted a total of 90 unique interactions (dashed blue

Fig. 6 Hive plots of PPI networks for the proteome of E. coli. Turquoise circles (nodes) represent individual proteins connected by interactions (edges).
Three types of interactions are denoted by edges in different colors, positive predictions are gray, true positives (predicted interactions also present in
the DIP database) are green, and false negatives (DIP interactions that are not predicted) are red. a Network constructed by modeling the structures of
hetero-dimer complexes followed by the classification of interfaces with machine learning. b Random network comprising the same number of nodes
and edges as the structure-based network, however, with interactions randomly assigned to pairs of nodes. E. coli proteins are assigned to three axes
based on their degree d, low-degree (d <50) on the x-axis, medium-degree (50≤ d ≤80) on the y-axis, and high-degree (d >80) on the z-axis. Each axis
is then split into two identical axes in order to show interactions within each group. Further, nodes on the axes are sorted by the increasing clustering
coefficient c with the maximum value of c shown next to each axis (note the significant scale difference between a and b)

Fig. 7 Example of PPI prediction for a hetero-dimer. Cartoon
representation of the dimer complex of fadI (yellow) and fadJ
(purple). Interface residues predicted for the receptor are shown
as a solid surface. A small molecule ligand (NAD) docked to fadJ
is shown as sticks colored by atom type
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connections in Fig. 9a) including 38 known interactions
(solid green connections in Fig. 9a). Only 20 known inter-
actions have not been predicted by the quaternary struc-
ture modeling (dotted red connections in Fig. 9a).
Therefore, about two-thirds of true PPIs were correctly

recovered by the modeling of the complex structures of
proteins involved in the human immune disease pathway.
These results are in line with the analysis of the inter-
action network in E. coli, where our protocol correctly
identified 62% of known PPIs.

Fig. 8 Example of PPI prediction for a homo-dimer. Cartoon representation of the dimer complex of YneH with chains A and B colored in green
and blue, respectively. Protein interfaces predicted for the monomers are shown as a solid surface. Residues predicted to be involved in a salt
bridge R32(A)-E28(B) and aromatic contact W525(A)-W525(B) are shown as balls and sticks

Fig. 9 Structure-based prediction of PPIs for the human immune disease pathway. a Network diagram of the human immune disease pathway.
Yellow circles (nodes) represent individual proteins connected by interactions (edges). Three types of interactions are denoted by edges in
different colors, positive predictions are blue, true positives (predicted interactions also present in the Reactome database) are green, and false
negatives (interactions from Reactome that are not predicted) are red. b Matrix of binary interactions including positive predictions (blue), true
positives (green), and false negatives (red). Circles marked with a star and a dot show those protein pair that pass and fail the CC filter,
respectively. UniProt IDs of proteins involved in this pathway according to the Reactome database are shown in both a and b
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In addition, positive predictions, true positives and false
negatives are shown as a binary interaction matrix in Fig. 9b.
Here, we also mapped GO Slims for the cellular component
to individual proteins in order to improve the PPI prediction
accuracy by including function annotation filters. Since GO
annotations were available only for 8 proteins, the CC filter
was applied to 17 hetero-dimer models constructed by our
structure-based approach. Encouragingly, 12 of the pre-
dicted complexes passed the CC filter (black stars in Fig. 9b),
while only 5 failed (black dots in Fig. 9b). Although, the GO
annotation filter can be applied only to a fraction of
structure-based predictions for this pathway, it turns
out to be quite accurate. Therefore, we expect that new
function annotations available in the future will select-
ively reduce the number of positive predictions leading
to more accurate PPI prediction results.

Conclusions
In this work, we developed a new method combining mo-
lecular modeling, structural bioinformatics, machine learn-
ing, and functional annotation data to predict PPIs across
proteomes. We first comprehensively tested this protocol
on representative datasets of experimental structures and
computer-generated models of protein dimers and then we
applied this methodology to predict PPIs across the prote-
ome of E. coli and within the human immune disease path-
way. Our results indicate that protein docking supported by
evolutionary restraints and machine learning can be used
to reliably identify and model biologically relevant protein
assemblies. Furthermore, the accuracy of the identification
of interaction partners can greatly be improved by includ-
ing only those protein pairs co-localized in the same cellu-
lar compartment and involved in the same biological
process. The proposed method can be applied to detect
PPIs in other organisms and pathways as well as to con-
struct structure models and estimate the confidence of in-
teractions experimentally identified with high-throughput
techniques. Finally, with the growing volume of structural
data, experimentally confirmed protein interactions, and
functional annotation, we expect the coverage and accur-
acy of our approach to increase over time.

Additional file

Additional file 1: A text file containing binary interactions predicted for
E. coli proteins. (ZIP 1940 kb)
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