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ABSTRACT: A common strategy for virtual screening considers a systematic docking of
a large library of organic compounds into the target sites in protein receptors with
promising leads selected based on favorable intermolecular interactions. Despite a
continuous progress in the modeling of protein−ligand interactions for pharmaceutical
design, important challenges still remain, thus the development of novel techniques is
required. In this communication, we describe eSimDock, a new approach to ligand
docking and binding affinity prediction. eSimDock employs nonlinear machine learning-
based scoring functions to improve the accuracy of ligand ranking and similarity-based
binding pose prediction, and to increase the tolerance to structural imperfections in the
target structures. In large-scale benchmarking using the Astex/CCDC data set, we show
that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover,
using binding sites predicted by recently developed eFindSite, eSimDock models ligand
binding poses with an RMSD of 4 Å for 50.0−39.7% of the complexes at the protein
homology level limited to 80−40%. Simulations against non-native receptor structures, whose mean backbone rearrangements
vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of
∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the
crystal structures of protein−ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures
distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific
applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations
of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models.
eSimDock is freely available to the academic community as a Web server at http://www.brylinski.org/esimdock.

■ INTRODUCTION

Due to extremely high costs of high-throughput screening,
many drug discovery projects commonly employ inexpensive
computations to support experimental efforts. Here, the idea is
to considerably reduce the number of candidate compounds
that need to be tested experimentally against a protein target of
interest. As of September 2013, the ZINC database of
commercially available small molecule entities for drug
discovery contains 15,798,630 drug-like compounds collected
from the catalogues of 209 vendors.1 At the outset of drug
development process, this vast array of drug candidates
representing a broad chemical diversity must be considerably
downsized to typically hundreds to thousands of molecules,
which can be further subject to experimental screens.
Consequently, a significant interest in virtual screening
technologies continues to stimulate the development of novel
computational approaches,2 which currently branch into two
distinct categories.3 One group of methods comprises ligand-
based virtual screening tools.4,5 These algorithms require an
initial set of known bioactive compounds, which are used to
build a consensus pharmacophore model of the target receptor.
Subsequently, any number of molecules can be compared to
this model to identify a small subset of highly compatible, thus
promising lead candidates. Individual methods within this

category employ different strategies to extract chemical
information from known binders in order to construct
functional pharmacophores. For example, various types of
molecular fingerprints containing numerical descriptors6 and
structural keys7 are widely used in 2D chemical similarity
analysis.8 An increase in the performance of fingerprint-based
methods can be achieved by using data fusion,9 machine
learning,10 and profile scaling techniques.11 Another group
comprises qualitative structure−activity relationship, QSAR,
models, which correlate “response” variables, e.g. bioactivity,
with a set of ″predictor″ variables, such as the physicochemical
properties or theoretical molecular descriptors of organic
compounds. QSAR methods can be categorized based on
dimensionality into 6 classes,12 varying from the simplest
methods using molecular properties like pKa and logP,13 to
more sophisticated that consider ensembles of ligand
configurations,14 explicit induced fit protocols,15 and various
solvation models.16 Finally, shape similarity-based methods
have been developed; these approaches exploit the fact that
small organic molecules bind into a defined and complex site
on a macromolecular target surface, thus molecular shape is an
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important indicator of biological activity.17 A common feature
of ligand-based strategies is that they require only an initial set
of known binders. Moreover, it has been demonstrated that
when this information is unavailable for a target of interest,
evolutionarily derived compounds can be used instead.18

Contrastingly, structure-based methods do not require a
priori knowledge on previously identified active compounds;
however, a three-dimensional structure of the target protein
must be available. At the core of these techniques is molecular
docking, which predicts the optimal orientation of drug
candidates with respect to the target structure; this is followed
by applying a scoring function to estimate binding affinity.19

Each docking algorithm incorporates two components, which
are critical to the accuracy of protein−ligand modeling: a search
algorithm and a scoring function. Common search algorithms
include molecular dynamics20 and Monte Carlo21,22 simu-
lations, genetic algorithms,23,24 and shape-complementarity
methods25 as well as systematic pose generation followed by
stochastic optimization.26 Docking is computationally challeng-
ing due to the size of protein−ligand conformational space,
which grows exponentially with the size of docking molecules.
Furthermore, a large number of commercially available drug
candidates pose considerable constraints on docking times,
often compromising the level of detail and the overall
performance. The second component, a scoring function,
estimates the likelihood of docking compounds to form a stable
complex when bound to the target receptor. Most commonly
used scoring terms employ physics-based force fields summing
the strength of intermolecular van der Waals and electrostatic
interactions,25,27 empirical functions counting the number of
various interaction types,28 and statistical potentials29,30 derived
from large databases such as the Protein Data Bank (PDB).31 A
comprehensive evaluation of several scoring functions for
molecular docking demonstrated that despite most of them
perform well identifying experimentally observed conformation
among a large number of computer-generated decoys, only a
few give moderate correlations between predicted binding
scores and experimentally determined protein−ligand binding
affinities.32 Another weakness of many scoring functions is a
correlation between docking scores and compound molecular
weight, which was reported in several studies.33,34 Certainly,
both issues represent a significant problem in virtual screening
because even with correctly predicted binding poses, true hits
may still be missed.
Successful docking simulations typically require high-quality

target receptor structures. This in turn complicates large-scale
applications of molecular docking since the structures of many
potential drug targets have not yet been determined by X-ray
crystallography or NMR spectroscopy. Using protein models
alleviates this problem; nevertheless, structural imperfections of
theoretically constructed structures present a challenge to
docking algorithms. For instance, it has been demonstrated that
the performance of docking calculations is affected by the
particular receptor conformation and that holo structures yield
the highest accuracy.35 Another study conducted for 41
protein−ligand complexes showed that docking reliability
drops off dramatically with the decreasing quality of target
structures; almost 90% of the initial docking accuracy is lost if
the mean structural distortions are greater than 1.5 Å.36 More
recently, it has been suggested that, in general, docking
accuracy depends on the structure quality within the binding
site, thus modeling the conformations of the active site residues
is critical for docking into homology models.37 A growing body

of research indicates that using homology models in virtual
screening yields compound selection better than random. It has
been shown that docking to a homology model based on a
template with only 30% global sequence identity to the target
gives enrichment as high as that obtained from the crystal
structure.38 However, another study shows that the enrichment
is consistently far better than random when the sequence
homology within the binding site region is greater than 50%.39

Furthermore, the accuracy of virtual screening calculations does
not correlate well with the quality of modeled target structures,
indicating that standard measures of structure quality are rather
poor estimates of virtual screening confidence.38 It has been
suggested that alternative modeling protocols that account for
conformational changes in the active site upon ligand binding
should be considered.40 A new “induced-fit” methodology was
proposed to address the issue of substantial protein rearrange-
ments upon ligand binding with encouraging results obtained
from docking benchmarks against crystal structures;41 however,
allowing for the flexibility of key side chains was also shown to
produce a modest improvement in ligand docking against
protein models.38 Moreover, considering protein flexibility in
ligand docking against non-native receptor structures does not
improve the geometry of binding regions due to the
imperfections of all-atom force fields and the rugged energy
landscape of protein−ligand interaction space.42

In that regard, similarity-based docking techniques have been
developed to address the problem of ligand docking against
particularly weakly homologous protein models containing
significant structural distortions in binding regions.18 These
algorithms work by superposing query ligands onto template
compounds, which are either bound to the target protein or
evolutionarily related structures. This strategy yields encourag-
ing results; however, docking and scoring functions rely on
purely geometrical criteria without considering molecular
interactions with the target proteins. For example, a similarity
to the ligand anchor was used to rank compounds in virtual
screening.18 In this study, we describe a new approach,
eSimDock, which further extends similarity-based docking. It
incorporates a composite force field and various scoring
functions evaluating a fit between ligands and the target
binding sites, the probability of binding as well as binding
affinity. The scoring functions are nonlinear, employing
machine learning techniques. Using comprehensive data sets,
we perform benchmarking calculations of eSimDock with
respect to the accuracy of binding pose prediction, virtual
screening, and the prediction of binding affinity. In general,
eSimDock was developed to exploit binding information
extracted from evolutionarily related protein−ligand com-
plexes; therefore, we carry out additional benchmarks to
quantify the effect of sequence homology on the accuracy of
similarity-based docking. Furthermore, we also address the
issue of using non-native protein structures as docking and
screening targets. Specifically, we perform a series of
simulations gradually decreasing the quality of target structures
and measure the impact of structural deformations on the
performance of ligand pose and binding affinity prediction. In
comparative benchmarks, we analyze the performance of
eSimDock and AutoDock Vina with respect to the accuracy
of binding pose prediction as well as ligand ranking in virtual
screening experiments. Finally, a couple of case studies are
selected to demonstrate the flexibility of eSimDock, which not
only represents a general approach to similarity-based ligand
docking and virtual screening, but it can be easily tailored to
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specific applications. Encouraging results indicate that
eSimDock has all the characteristics required for large-scale
applications at the proteome level, i.e. it is fast, robust, and fairly
insensitive to structural distortions in modeled protein
structures.

■ MATERIALS AND METHODS
Docking Data Sets. Two primary data sets are used in this

study: Astex/CCDC and BindingDB. The former consists of
280 pharmacologically relevant high-quality crystal structures of
protein−ligand complexes43 that are widely used as a gold
standard for assessing the accuracy of docking algorithms.44,45

The latter comprises 1,151 complexes selected from Bind-
ingDB,46 for which both compound binding affinity (Ki) is
experimentally determined and the crystal structure of the
complex is available in the Protein Data Bank.31 Here, we also
accept these crystal complexes, in which the binding ligand is
not necessarily identical to the BindingDB compound but is
significantly similar at the 2D Tanimoto coefficient (2D-TC)
threshold of ≥0.5.47 In addition to the crystal structures of
target receptors, we constructed several sets of distorted
structures using an in-house software that employs local
conformational Monte Carlo sampling to reach the desired
RMSD from native.48 For the Astex/CCDC data set, 10 non-
native sets are generated with an average Cα-RMSD close to
0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 Å; for the
BindingDB data set, we use 6 distorted receptor sets with 0.5,
1.0, 1.5, 2.0, 2.5, and 3.0 Å Cα-RMSD.
For each compound in the BindingDB data set, we also

compiled a set of 25 ligand decoys from the ZINC7 collection
of organic compounds.1 Here, we use a nonredundant subset of
ZINC7, where the redundancy is removed at the 1D Tanimoto
coefficient (1D-TC) of 0.7.49 Decoy compounds are selected
such as their average molecular weight corresponds to that of
the parent binding ligand ±50 Da. Furthermore, we make sure
that these compounds are topologically dissimilar to the native
ligand with a 1D-TC of <0.3; the average 1D-TC across the
ligand decoy sets is ∼0.2.
Generation of Ligand Ensembles. To speed up docking

calculations, we adopt a ligand ensemble docking approach.
This is a common methodology, in which first an ensemble of
target compound conformations is generated, and then each
conformer is docked into the binding site using rigid ligand
docking. To construct a nonredundant ensemble, we generate a
large set of low-energy conformations using Balloon and the
MMFF94-like force field,50 which are subsequently subject to a
clustering procedure. First, we cluster conformers using a
pairwise similarity threshold of 1 Å RMSD for the atomic
coordinates. If the number of resulting clusters is larger than 50,
we repartition them in the RMSD distance space into 50
clusters using CLUTO clustering software.51 As a result, the
final ensemble comprises up to 50 low-energy conformers with
a pairwise RMSD of >1 Å.
Anchor Substructures and Chemical Matching. Sim-

ilarity-based ligand docking requires two important compo-
nents: an anchor substructure used as the template and a
chemical matching algorithm to establish atomic equivalences
between the target compound and the anchor substructure. As
a chemical matching engine, we use KCOMBU, which stands
for K(ch)emical structure COMparison using the BUild-up
algorithm.47 This algorithm formalizes chemical matching as
the maximum common subgraph problem and provides a
heuristic solution; in addition to the atomic equivalences, it also

calculates a 2D-TC score that assesses the similarity between
matching compounds.
In benchmarking calculations, we test three types of anchor

substructures. The first one is simply a target ligand itself; this is
an ideal case that delineates the upper bound of docking
accuracy under perfect conditions. The second anchor type is
the largest rigid fragment extracted from the target ligand. Here,
the binding pose of the anchor is taken from the crystal
complex structure; however, it provides only a partial coverage
for the docking compound, and its flexible parts are modeled
without using template coordinates as the reference positions.
The last anchor type corresponds to the most practical
situation, in which no ligand-bound crystal structure is available
for the target receptor. Here, we detect binding pockets using
eFindSite,52 a recently developed successor of FINDSITE,53

and the target ligands as auxiliary compounds. eFindSite
employs meta-threading by eThread54 to identify evolutionary
related proteins; subsequently, it finds the locations of putative
binding sites and extracts template-bound compounds for use
as anchor substructures in similarity-based docking. The quality
of anchor substructures in terms of their chemical and
structural conservation with respect to the target ligand
undoubtedly depends on the level of homology between the
target receptor and evolutionarily related template proteins
identified by threading. Therefore, to quantify the effect of
sequence homology on the accuracy of similarity-based
docking, we detect binding sites and extract template ligands
at different target-template sequence identity thresholds: 100%,
80%, 60%, and 40%. Furthermore, multiple anchor sub-
structures are typically extracted from template proteins; in
these cases, we use the one that has the highest chemical
similarity to the target ligand measured by 2D-TC.

Similarity-Based Docking and Local Optimization.
Similarity-based docking procedure implemented in eSimDock
comprises two steps. First, each target ligand conformer from
the ensemble is superposed onto the anchor substructure
according to the atomic equivalences calculated by KCOM-
BU.47 In the next step, each superposed conformer is subject to
local energy minimization using AutoDock Vina.55 This fast
procedure mostly removes atom clashes keeping the docked
conformation close to the anchor substructure. Also, using a
nonredundant ensemble precalculated for the target ligand
ensures that its internal energetically favorable conformational
space is also sufficiently explored. Preprocessing input files,
which includes adding partial charges and hydrogen atoms, is
done using Open Babel56 for ligands and MGL-Tools57 for
receptor proteins. All docked and energy-optimized conformers
are finally subject to a scoring procedure using nonlinear
machine learning models.

Nonlinear Scoring Functions. A typical scoring function
for ligand docking implements a linear combination of
weighted energy terms;25,45 however, recent studies suggest
that nonlinear scoring function may yield better results.58 Here,
we developed three nonlinear scoring functions that assess
fitness (how well the target ligand fits into the receptor pocket),
binding (chances that the target ligand binds to the receptor),
and affinity (in terms of the dissociation constant Ki). All three
scoring functions use the following 9 individual structure-based
energy terms: from AutoDock Vina,55 Vina_gauss1, Vina_-
gauss2, Vina_repulsion, Vina_hydrophobic, Vina_hydrogen;
from DrugScore,29 DSX_pair, DSX_sas; from LPC,59

LPC_complementarity; and from DFIRE for protein−ligand
complexes,60 DFIRE_pair. In addition to the structure-based
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scoring functions, binding and affinity calculations also include
a set of 5 ligand-based terms calculated for docking ligands by
OpenBabel:56 MW (molecular weight), plogp (octanol/water
partitioning coefficient), PSA (polar surface area), and by
MayaChemTools:61 HB_donor and HB_acceptor (number of
hydrogen bond donors and acceptors, respectively).
Machine learning models are constructed by libSVM.62

Fitness and binding scoring functions employ Support Vector
Machines (SVM) suitable for classification problems (SVC),
whereas affinity prediction uses epsilon-Support Vector
Regression (SVR). The training and validation of the fitness
SVC model is carried out using the Astex/CCDC data set. For
each complex structure, we generate a large ensemble of
docking poses; native-like (positives) and misdocked (neg-
atives) conformations are defined as these binding poses that
have a heavy-atom RMSD from native of ≤2 Å and ≥3 Å,
respectively. Binding SVC model is optimized on the
BindingDB data set, where BindingDB compounds are
positives and topologically dissimilar ZINC compounds are
negatives. Affinity SVR is trained on the dissociation constants
(Ki) provided by BindingDB. For each machine learning model,
we perform an exhaustive grid search to find the optimal set of
SVM parameters: a cost function, gamma in the kernel function
(SVC and SVR), and epsilon in loss function (SVR only).
Furthermore, all models are cross-validated to assess the real
performance avoiding memorization effects. Specifically, leave-
one-out cross-validation is applied at the receptor level, i.e. all
complexes of a particular receptor with different ligands are
excluded from training and then used for model validation.
Finally, we constructed a couple of additional machine learning

models that are tailored for specific cases; this is described in
case study sections below.

AutoDock Vina. The performance of eSimDock on both
primary data sets, Astex/CCDC and BindingDB, is compared
to AutoDock Vina.55 Target protein structures are converted to
the required PDBQT format using MGL-Tools.57 The addition
of polar hydrogens and partial charges as well as format
conversion to PDBQT of ligand molecules is carried out using
OpenBabel.56 All docking simulations using Vina are performed
using the default set of parameters.

Case Study: Factor Xa Data Set. The accuracy of
eSimDock in discriminating between strong and weak binders
is evaluated on a data set of 435 benzamidine inhibitors of
factor Xa (fXa).63 These compounds fall into two categories:
weak binders with Ki higher than 1 μM (156 molecules) and
strong binders with Ki lower than 10 nM (279 molecules).
First, 93 crystal structures of fXa complexed with low molecular
weight inhibitors were obtained from PDB. All-against-all
structure alignments identified the most “typical” fXa holo-
structure with the lowest average Cα-RMSD from the
remaining structures (1.5 Å). This fXa structure in complex
with a cis-1,2-diaminocyclohexane derivative (PDB-ID: 3iit,
chain A)64 is used for docking of benzamidine inhibitors by
eSimDock. Next, we constructed a nonredundant set of fXa
inhibitors by clustering 93 fXa-bound compounds from PDB.
Here, we use the SUBSET program65 and a 1D-TC similarity
threshold of 0.7; the resulting 62 ligands are used as the set of
anchor substructures for docking benzamidine inhibitors using
eSimDock.
Here, we also demonstrate that different machine learning

techniques can be used to construct a scoring function. As a

Figure 1. Flowchart of eSimDock. Target protein structure (A), either experimental or modeled, is used to define a ligand binding site. If the target
protein is cocrystallized with small molecules, a known binding pocket is used (B), otherwise it is predicted by eFindSite (C). Ligand templates are
extracted from the target binding pocket and chemical matching to the target ligand (D) is performed (E). An ensemble of conformations is
constructed for the target ligand (F) and each conformer is superposed onto the template ligand (G). Superposed conformers are subject to local
refinement followed by scoring, ranking, and binding affinity prediction by machine learning models (H). Best conformation is selected as the final
docking result (I).
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strong/weak binding classifier, we employ a Naıv̈e Bayes model
(NB) with an optimized Gaussian kernel.66 To train and
validate the discriminant capability of the NB model, we use
two subsets of 290 and 145 compounds, respectively, as
described in the original publication.63 Similarly to SVM
models, the NB model employs a set of 14 features (9
structure-based + 5 ligand-based). The performance of NB
classifier is assessed by receiver operator characteristics (ROC)
analysis.
Case Study: CDK2 Data Set. We also benchmark

eSimDock in predicting the enzymatic half maximal inhibitory
concentration (IC50). As an example, we use the human cyclin-
dependent kinase 2 (CDK2) and 903 inhibitors for which
experimental IC50 values are available from BindingDB.46 A
high-resolution (2.0 Å) crystal structure of CDK2 complexed
with ATP in the active site was obtained from PDB (PDB-ID:
1b38, chain A).67 Next, using BLAST and CDK2 sequence, we
collected from PDB 2,508 homologous proteins at the
expectation value threshold of 0.01. These structures were
subsequently aligned onto CDK2 structure using Fr-TM-align68

retaining only very close structural neighbors with a TM-
score69 of ≥0.7. Upon the global superposition, we extracted
these kinase ligands that have geometric centers within 4 Å
from the geometric center of ATP bound to CDK2. Finally,
using the SUBSET program65 and a 1D-TC similarity threshold
of 0.7, we clustered these compounds to construct a
nonredundant set of 488 anchor structures for docking of
CDK2 inhibitors using eSimDock.
The SVR model employing a set of 14 features used to

estimate the binding affinity is retrained here to predict IC50
values for CDK2 inhibitors instead. To minimize the risk of
memorization, we partitioned the set of 903 benchmarking
inhibitors into 252 clusters using a 1D-TC threshold of 0.7.
Leave-one-out cross-validation is done at the cluster level rather
than for individual inhibitors, i.e. a whole cluster is removed
from the training set, the SVR model is constructed, and IC50
values are predicted for inhibitors from the excluded cluster.
This procedure is repeated for all clusters. The accuracy is
assessed by calculating a cross-validated correlation between
experimental and predicted IC50 values across the entire set of
CDK2 inhibitors.

■ RESULTS AND DISCUSSION
Overview of eSimDock. Similarity-based ligand docking

by eSimDock represents a hierarchical approach that comprises
several consecutive steps as depicted in Figure 1. Docking
procedure starts from the selection of the target protein
structure (Figure 1A), which can be either solved exper-
imentally or predicted from its amino acid sequence. If the
experimental structure is selected and the target protein is
cocrystallized with a small molecule, the target binding site is
known (Figure 1B). For experimental structures in the apo
conformational state as well as for protein models, binding
pockets are predicted using eFindSite (Figure 1C). In the next
step, ligand templates are extracted from the target binding site
for use as anchor substructures in similarity-based docking. For
experimental holo structures, cocrystallized compounds are
used as the anchor substructures, otherwise eSimDock employs
compounds extracted from evolutionarily related ligand-bound
templates identified by eFindSite. Subsequently, atomic
equivalences are established between the target (Figure 1D)
and the template ligands in order to select the best anchor
substructure (Figure 1E, anchor is shown as thick solid sticks).

In this study, we benchmark the performance of eSimDock
using different anchor substructures; however, in real
applications typically multiple ligand templates are identified.
In that case, the anchor substructure is selected based on the
highest chemical similarity to the target ligand. To explore the
internal conformational space of the target ligand, an ensemble
of low-energy conformations is generated (Figure 1F). Note
that the ensemble is constructed only once for a given ligand
and can be reused in docking simulations against different
target receptors. Each conformer is superposed onto the anchor
substructure according to the atomic equivalences reported by
chemical matching (Figure 1G, target ligand is solid) and
subject to a refinement procedure to remove atom clashes and
locally optimize the interactions with the target protein. Next,
nonlinear models are applied to each minimized conformation
to evaluate fitness and binding scores and to predict the binding
affinity (Figure 1H). Conformers are ranked based on the
fitness score, and the top-ranked conformation is selected as the
final docking result (Figure 1I, solid; experimental binding pose
is transparent).
We can clearly identify several components of eSimDock that

are critical for the docking accuracy and, consequently, affect
the reliability of binding affinity prediction. For example, the
quality of the target structure (experimental or modeled) will
likely have an effect on the docking outcome. Moreover, the
chemical similarity of ligand templates to the target compound
is crucial for positioning the latter correctly within the binding
pocket. When ligand templates are extracted from evolutio-
narily related proteins, we may expect the docking accuracy to
depend on the level of protein homology. Also, since eSimDock
employs only a local energy minimization, the ensemble of
conformers precalculated for the target ligand should contain
biologically relevant conformations. Finally, the accuracy of
nonlinear scoring functions is critical for the correct evaluation
of fitness and binding scores, leading to successful virtual
screening experiments. These factors are assessed in the
subsequent sections.

Pseudoflexible Ligand Docking. Mimicking ligand
internal flexibility by ensemble docking is a commonly used
technique for the modeling of ligand-protein interactions.22,70

In this approach, first an ensemble of low-energy conformations
is precalculated, and then each conformer is docked using a
rigid ligand docking protocol. The main advantage is the
computational speed, since computing different ligand
conformations explicitly is replaced by a look-up table; for
example, a speed-up of 100 compared to docking a single
flexible conformation has been reported in large-scale virtual
screening of 117,000 compounds.70 To date, numerous
algorithms have been developed to generate sets of low-energy
conformations for small molecules, e.g. Balloon,50 TrixX
Conformer Generator,71 and Frog2.72 Critical for the docking
success is the presence of at least one native-like conformation
in the generated ensemble. Table 1 shows RMSD values for the
closest and farthest rotamer in the ensemble from the native
ligand conformation using Astex/CCDC ligands. For small
ligands with up to 5 rotatable bonds, the closest conformation
is typically within 0.77 Å heavy-atom RMSD from native. Even
for larger compounds having up to 15 rotatable bonds, there is
at least one native-like rotamer in the ensemble with an RMSD
of <2.0 Å on average. This analysis suggests that, in most cases,
pseudoflexible ligand docking calculations have a chance to
explore biologically relevant ligand rotamers.
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Recognition of Native-like Docking Conformations. A
successful docking approach should have a strong capability to
discriminate between native-like and misdocked ligand
conformations. In binding pose prediction, eSimDock employs
a set of 9 structure-based features, which are combined using a
nonlinear machine learning model. Model training and
validation is carried out for a set of native-like and misdocked
decoys generated for protein−ligand complexes in the Astex/
CCDC data set. First, we assess how well the average values of
individual scores separate both sets of conformations. Figure 2
shows that the most effective scoring functions are DSX_pair
and Vina_gauss1, with a median score for native-like
(misdocked) conformations of −19.7 (619.9) and 66.0
(114.3), respectively. In addition, weakly discriminatory

functions include Vina_repulsion, DFIRE_pair, and DSX_sas,
with the respective values of 13.2 (199.2), 0.9 (0.6), and −14.3
(−5.6). This analysis shows that individual scoring terms
should have good discriminant capabilities against misdocked
conformations; below, we demonstrate that their nonlinear
combination using machine learning is highly accurate in
picking up native-like docking conformations.
Figure 3 shows the ROC analysis of the separation of native-

like conformations from misdocked decoys across trajectories

Table 1. Characteristics of Ligand Ensembles Generated for
Docking Compounds in the Astex/CCDC Data Setb

# rotatable bonds molecular weight min RMSDa [Å] max RMSDa [Å]

1−5 251.9 ± 102.9 0.77 ± 0.36 1.74 ± 0.72
6−10 413.4 ± 105.6 1.24 ± 0.45 3.14 ± 0.86
11−15 521.7 ± 154.6 1.84 ± 0.55 4.17 ± 0.71
16−20 570.1 ± 161.0 2.21 ± 0.72 4.74 ± 0.82
>20 698.2 ± 96.0 2.73 ± 0.70 5.22 ± 0.42

aCalculated over heavy atoms. bCompounds are grouped by the
number of rotatable bonds. Min and max RMSD values report the
average similarity ±standard deviation of the closest and farthest
rotamer in the ensemble to the native ligand conformation,
respectively.

Figure 2. Distribution of the energy component values over a set of native-like conformations as well as misdocked decoys. (A) Vina_gauss1, (B)
Vina_gauss2, (C) Vina_repulsion, (D) Vina_hydrophobic, (E) Vina_hydrogen, (F) DSX_pair, (G) DSX_sas, (H) LPC_complementarity, and (I)
DFIRE_pair.

Figure 3. ROC plot for the recognition of native-like conformations in
docking ensembles by eSimDock compared to its individual scoring
functions. TPR − true positive rate, FPR − false positive rate. Inset:
zoom in at the very beginning of the ROC space at FPR of <0.001.
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generated during docking simulations. In general, all individual
scoring functions identify native-like poses better than a purely
random selection; however, DSX_pair is the most effective,
followed by Vina_repulsion, DSX_sas, and DFIRE_pair, which
is consistent with previous results. More importantly, a
nonlinear machine learning model designed to assess ligand
fitness performs better than any individual scoring function.
This is particularly noticeable in the inset of Figure 3; at the
expense of only 0.1% false positive rate, the sensitivity of
eSimDock is 50%, which is ∼20% higher than the best single
scoring function, DSX_pair.
Accuracy of Binding Pose Prediction. A typical docking

procedure often generates multiple acceptable solutions;
however, from a practical point of view, the most important
is the accuracy of the top-ranked conformation selected as the
final docking result. In Figure 4A, we show the distribution of
RMSD from crystal calculated over ligand heavy atoms for
complexes constructed by eSimDock for the Astex/CCDC data
set. Using the entire ligand as the anchor substructure, the
heavy atom RMSD vs crystal for the top-ranked docking
conformations is <2 Å (<3 Å) for 78.2% (89.6%) of the cases.
When only the largest rigid substructure extracted from the
native ligand is used, 53.9% (67.9%) of the modeled ligands
have RMSD of <2 Å (<3 Å). This can be explained by a
chemical similarity of rigid substructures to native ligands. Left
inset in Figure 4A shows that only in 61.1% of the cases, 1D-
TC between the two molecules is >0.5. As a rule, a high 1D-TC
is needed to achieve a high accuracy of the final docked pose;
this relation is shown in the right inset of Figure 4A, where the
median RMSD is below 2 Å (1.5 Å) only when these rigid
substructures, whose 1D-TC is at least 0.5 (0.7), are used.
In general, the success of docking simulations depends on

two factors: a sampling efficiency and the accuracy of a scoring
function. RMSD spectrum plots provide a convenient assess-
ment tool to decouple sampling and scoring failures in binding
pose prediction.73 Both characteristics are analyzed in Figures
4B and 4C using as an anchor the entire ligand and the largest

rigid substructure, respectively. As might be expected, for a
small RMSD cutoff of 1 Å, the docking outcome in the majority
of cases is classified as sampling failures; this is because no
ligand conformations are generated within this RMSD range.
Nevertheless, for a more realistic RMSD cutoff of 2 Å, sampling
and scoring failures in docking using the entire ligand as an
anchor account for only 16.1% and 5.7% of the cases,
respectively. This demonstrates that the nonlinear scoring
function implemented in eSimDock is highly effective in
recognizing native binding poses. When the largest rigid
substructure is used as an anchor, the number of sampling and
scoring failures is roughly doubled (35.0% and 11.1%,
respectively); however, in most of the cases (53.9%), the
ligand binding pose is predicted within 2 Å RMSD. Moreover,
relaxing the RMSD cutoff to 3 Å increases the success rate to
67.9%. Approximately three times more sampling failures than
scoring errors suggest that further improvements of eSimDock
should focus on enhancing the sampling efficiency rather than
the scoring function.

Evolutionarily Derived Anchor Substructures. Simu-
lations using the largest rigid substructure as an anchor are
useful for e.g. docking of series of derivatives of a compound
whose experimental complex structure with a target protein is
available. There are many examples of such applications in lead
optimization, where sets of derivatives are constructed by
substituting the R-group(s) of a prototype compound with
different chemical moieties.74 However, for a target protein not
cocrystallized with ligands that are sufficiently similar to
docking compounds, we need to consider a different source
of anchor substructures. One possibility is to derive them from
evolutionarily related holo-proteins. Here, we use eFindSite, a
recently developed template-based binding site predictor,52

which detects conserved binding sites across sets of
evolutionarily related proteins. It also extracts template-bound
ligands for use as anchor substructures in similarity-based
docking. First, we analyze the accuracy of eFindSite for the
Astex/CCDC data set in terms of the prediction of pocket

Figure 4. Docking accuracy of eSimDock for the Astex/CCDC data set. (A) Heavy atom RMSD from the crystal binding pose for the top-ranked
conformation; the simulations employ as an anchor either the ligand itself or its largest rigid substructure. Left inset in A: 2D-TC between the entire
ligand and its largest rigid substructure across the Astex/CCDC data set. Right inset in A: the dependency of the accuracy of the top-ranked pose on
the 2D-TC. (B) RMSD spectrum plot for similarity-based docking using the entire ligand; (C) RMSD spectrum plot for docking using the largest
rigid substructure. In B and C, the RMSD cutoff displayed on the x-axis is used to calculate the number of successfully docked compounds, sampling
failures and scoring failures, which are shown in green, red, and yellow, respectively.
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location and the similarity of extracted template-bound ligands
to these compounds complexed with Astex/CCDC proteins.
We note that eFindSite predictions are obtained at different
target-template sequence identity thresholds. Figure 5A shows
that using a maximum pairwise sequence identity of 100%, 80%,
60%, and 40%, the top-ranked pocket center is predicted within
4 Å from the geometric center of bound ligand in the
experimental complex in 73.5%, 71.4%, 70.2%, and 70.2% of the
cases, respectively. This clearly demonstrates that the perform-
ance of eFindSite using only weakly homologous templates
(<40% sequence identity) is almost the same as that obtained
by including closely related templates (>40%). The chemical
similarity of template-bound ligands to the native ligand can be
assessed by fingerprint-based virtual screening; here we use a
representative and nonredundant at a 1D-TC of 0.8 ZINC121

collection of 244,659 small organic compounds. We add each
Astex/CCDC ligand to the library and then rank all
compounds using eFindSite and consensus fingerprints
constructed from template-bound ligands. Inset plot in Figure
5A shows that this procedure ranks the native ligand in the top
1% (10%) of the screening library in 58.4% (80.8%), 50.6%
(77.6%), 51.0% (78.0%), and 52.7% (77.6%) of the cases,
including only these templates whose sequence identity to the
target protein is no more than 100%, 80%, 60%, and 40%,
respectively. As expected, these results are in good agreement
with the accuracy of binding site prediction; it has been
previously observed that ligand ranking tends to be more
accurate for correctly predicted pockets.53

From now on, we will be focusing on these Astex/CCDC
pockets that are predicted within 4 Å from the experimental
pocket center. Figure 5B presents the accuracy of similarity-
based ligand docking using eSimDock and evolutionarily
derived anchor substructures at different levels of homology
between the target and template proteins. The fraction of
targets for which the ligand binding pose is predicted within 2
Å (4 Å) using these templates whose sequence identity is no
more than 100%, 80%, 60%, and 40% is 34.8% (65.2%), 21.1%
(50.0%), 20.6% (48.5%), and 15.2% (39.7%), respectively. We
note that two factors need to be considered assessing these
results. First, the predicted pocket center is up to 4 Å away

from the experimental pocket, which may cause the predicted
ligand binding pose to be shifted with respect to the
experimental conformation. Second, we use anchor substruc-
tures extracted from evolutionarily related complexes, whose
chemical similarity to docking compounds may vary. This is
shown in the inset to Figure 5B. As one might expect,
decreasing homology between the target and template proteins
results in lower chemical similarity between docking ligands
and the anchor substructures used in eSimDock with a median
1D-TC of 0.81, 0.58, 0.57, and 0.50 for sequence identity
threshold of 100%, 80%, 60%, and 40%, respectively. This is
consistent with previous benchmarking results reported in the
right inset to Figure 4A, which shows that docking accuracy
falls off with decreasing 1D-TC between the target ligand and
the anchor substructure used in similarity-based docking.
Nevertheless, even in the most difficult situation when only
weakly homologous templates are available, eSimDock still
generates fairly accurate ligand binding poses in many cases.
These could be a good starting point for further postdocking
binding pose refinement calculations.75

Tolerance to Distortions in Receptor Structures. A
desired feature of a ligand docking approach is its tolerance to
structural deformations of target proteins. This considerably
expands the application range to proteome-wide docking
studies, where only computationally generated protein models
are available for most of the target receptors. To evaluate the
sensitivity of eSimDock to protein structure distortions, we
perform docking simulations against a series of non-native
conformations constructed for Astex/CCDC proteins. Table 2
provides the characteristics of these receptor conformations in
terms of the global structure quality measured by Cα-RMSD76

and TM-score69 as well as a local heavy-atom RMSD calculated
over binding residues. Comparative protein structure modeling
typically results in models whose Cα-RMSD from native is 2−
2.5 Å.77,78 At this global structure quality, the local geometry of
ligand-binding regions is fairly well preserved with all-atom
RMSD of <2 Å on average, see Table 2. However, weakly
homologous models generated by e.g. threading and fold
recognition are frequently less accurate with a Cα-RMSD of 4−
6 Å.79 Binding pockets in such structures can be severely

Figure 5. Docking results for the Astex/CCDC data set using template ligands identified by eFindSite. (A) Cumulative fraction of targets for which
the top-ranked binding site is predicted within a distance displayed on the x-axis. Inset in A: cumulative fraction of targets for which the native ligand
was ranked within the top fraction of the screening library shown on the x-axis. (B) Heavy atom RMSD from the crystal binding pose for the top-
ranked conformation constructed using template ligands. Inset in B: the distribution of 1D-TC between native and template ligands extracted from
predicted pockets. eFindSite calculations were performed excluding homologous templates at several sequence similarity thresholds shown in
different colors.
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deformed to 3−4 Å RMSD presenting a significant challenge to
ligand docking algorithms.
Figure 6A reports the accuracy of ligand docking using

eSimDock against theoretical protein models whose structure
quality progressively deteriorates. As opposed to self-docking
simulations, where we hope for docked conformations with 0 Å

RMSD, docking against non-native receptor structures have an
upper bound for the accuracy of ligand pose prediction. This is
a consequence of the distorted geometry of ligand binding
regions; here, the upper bound can be estimated by directly
transferring ligand conformation from the crystal to the
modeled structure upon the optimal superposition of binding
residues. Moreover, it is more meaningful to measure the
docking accuracy using the fraction of correctly predicted
protein−ligand atomic contacts instead of heavy atom RMSD.
In that regard, Figure 6 shows that the upper bound expressed
as the fraction of native contacts measured using transferred
ligands correlates well with the overall structure quality of target
proteins and decreases linearly from 0.88 to 0.40 for Cα-RMSD
increasing from 0.5 Å to 5.0 Å. The accuracy of eSimDock
assessed using the same evaluation metric drops from 0.59 to
0.27 for receptor models distorted to 0.5 Å and 5.0 Å Cα-
RMSD, respectively. However, the ratio of docking accuracy
and the estimated upper bound is at a constant level of ∼0.65
across the entire data set of non-native receptor structures
demonstrating that the performance of eSimDock is unaffected
by the deformations of ligand binding regions. This remarkable
and important feature of similarity-based docking arises from
the global structure alignments of ligand-bound templates onto
target proteins, which position anchor substructures in
approximately correct orientations. Interestingly, Table 2 also
shows that despite the implemented scoring function assessing
ligand “fitness” correctly recognizes structural distortions in

Table 2. Quality of the Distorted Receptor Structures
Constructed for the Astex/CCDC Data Setc

structure quality

receptor
data set Cα-RMSDa TM-scorea pocketb

fitness
(docking)

set 0.0 0.80 ± 0.36
set 0.5 0.75 ± 0.36 0.98 ± 0.02 0.44 ± 0.13 0.61 ± 0.43
set 1.0 1.13 ± 0.28 0.96 ± 0.02 0.78 ± 0.19 0.45 ± 0.42
set 1.5 1.58 ± 0.29 0.93 ± 0.03 1.15 ± 0.27 0.28 ± 0.39
set 2.0 2.05 ± 0.28 0.89 ± 0.04 1.50 ± 0.34 0.20 ± 0.33
set 2.5 2.50 ± 0.31 0.86 ± 0.05 1.85 ± 0.41 0.13 ± 0.29
set 3.0 3.03 ± 0.48 0.82 ± 0.06 2.28 ± 0.56 0.11 ± 0.25
set 3.5 3.47 ± 0.35 0.78 ± 0.07 2.64 ± 0.54 0.08 ± 0.22
set 4.0 3.96 ± 0.37 0.75 ± 0.08 2.99 ± 0.66 0.09 ± 0.23
set 4.5 4.47 ± 0.41 0.72 ± 0.08 3.44 ± 0.77 0.06 ± 0.18
set 5.0 4.95 ± 0.42 0.69 ± 0.08 3.79 ± 0.77 0.05 ± 0.17

aGlobal, calculated over backbone Cα atoms. bLocal RMSD calculated
over heavy atoms of binding residues. cLast column reports the
average fitness score estimated by eSimDock in docking simulations
against each distorted receptor data set.

Figure 6. Docking accuracy with respect to structural distortions in target receptors for (A) eSimDock and (B) AutoDock Vina. The accuracy is
evaluated by the fraction of correctly predicted interatomic native contacts. Transferred ligands estimate the upper bound for the docking accuracy.
The ratio of the docking accuracy and the corresponding upper bound is shown as solid black triangles/lines.
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target binding sites, the generated ligand conformations are
fairly accurate considering the maximum theoretical docking
accuracy.
Virtual Screening Benchmarks. Ligand ranking capa-

bilities of eSimDock are assessed in virtual screening bench-
marks using the BindingDB data set. This set comprises 1,151
protein−ligand complexes with experimentally measured bind-
ing affinities. For each active compound, we also include 25
topologically and chemically different ligand decoys whose
molecular weight is comparable to that of binding molecules.
Note that this is a standard practice used in cheminformatics to
create high-quality benchmarking sets for virtual screening such
as DUD80 or its recently enhanced version, E-DUD.81 The
results are assessed by several metrics that account for different
aspects of the ranking performance. One of the most
commonly used, enrichment factor (EF) measures how many
active compounds are recovered in the top-ranked fraction (1%,
2%, 5%, and 10%) of the screening library. Boltzmann-
enhanced discrimination of receiver operating characteristic,
or BEDROC, was developed to address the “early recognition”
problem of ranking actives early in an ordered list.82 Compared
to EF, it is also sensitive to ranking performance before and
after the selected cutoff and retains the statistical significance of
ROC. The area under the enrichment curve (AUC) is used to
assess the overall performance of virtual screening over the

entire screening library. Finally, ACT-50 corresponds to the top
fraction of the library that needs to be scanned through to
recover half of the active compounds.
Table 3 shows ligand ranking accuracy comparing eSimDock

to its individual component scoring functions. For the latter,
the most effective is DSX_pair with an EF10%, BEDROC20,
AUC, and ACT-50 of 6.67, 0.60, 0.88, and 0.05, respectively.
Other sensitive scoring functions include DSX_sas, Vina_r-
epulsion, and DFIRE_pair. These results are consistent with
our previous analysis of discriminant capabilities against
misdocked conformations; see Figures 2 and 3. Interestingly,
individual scoring functions have different characteristics; for
instance, Vina_repulsion gives lower EF 1−5% than DSX_pair,
but it is more accurate when assessed by BEDROC 5−10,
AUAC, and ACT-50. Table 3 also demonstrates that this
variety can be beneficially exploited using nonlinear machine
learning models. As a result, eSimDock systematically outper-
forms its individual scoring functions offering high compound
ranking capabilities, which should be sufficient for successful
virtual screening applications.

Binding Affinity Prediction. Virtual screening benchmarks
evaluate the relative ranking of bioactive compounds with
respect to nonbinding decoys. Here, we also investigate how
reliably the actual binding affinity can be predicted for active
molecules. eSimDock uses SVR, machine learning for

Table 3. Accuracy of Virtual Screening by eSimDock Compared to Its Individual Component Scoring Functions As Well As to
AutoDock Vinaa

enrichment factor BEDROC

scoring function 1% 2% 5% 10% 5% 10% 20% 30% AUC ACT-50

Vina_gauss1 0.44 0.36 0.48 0.64 0.19 0.09 0.04 0.03 0.53 0.48
Vina_gauss2 2.40 1.82 1.27 1.11 0.25 0.15 0.10 0.08 0.55 0.45
Vina_repulsion 0.51 1.93 3.29 3.60 0.53 0.36 0.23 0.17 0.80 0.15
Vina_hydrophobic 1.02 1.02 0.87 0.93 0.19 0.11 0.07 0.05 0.50 0.52
Vina_hydrogen 0.36 0.51 0.67 0.88 0.24 0.13 0.06 0.04 0.57 0.41
DSX_pair 19.37 15.77 10.12 6.67 0.74 0.66 0.60 0.59 0.88 0.05
DSX_sas 5.39 4.77 3.71 2.91 0.43 0.31 0.24 0.21 0.70 0.23
LPC_complementarity 0.87 0.55 0.64 0.73 0.22 0.11 0.05 0.04 0.59 0.42
DFIRE_pair 1.31 1.49 1.54 1.55 0.30 0.18 0.11 0.09 0.61 0.36
eSimDock 24.91 24.47 17.52 9.19 0.94 0.92 0.91 0.91 0.95 0.02
AutoDock Vina 6.92 4.95 3.26 2.48 0.37 0.27 0.21 0.20 0.63 0.32

aResults are assessed in terms of the enrichment factors and BEDROC values calculated for the top 1, 2, 5, and 10% of the screening library as well as
the area under the enrichment curve (AUC) and the top fraction of the screening library that contains 50% of binding compounds (ACT-50).

Figure 7. Correlation between experimental and predicted binding affinity for BindingDB compounds. (A) Binding affinity is predicted for the
binding compounds. (B) Binding affinity is predicted for nonbinding decoys. In B, the mean binding affinity and the corresponding standard
deviation is calculated from docking a set of 25 decoys per one binding compound. CC is the Pearson correlation coefficient.
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regression problems, to estimate binding affinity (Ki) from
individual docking scores. As shown in Figure 7A, Pearson
correlation coefficient (CC) between experimental and
predicted by eSimDock Ki values is 0.58. We note that this
correlation is measured for a representative data set of 1,151
complexes using leave-one-out cross-validation at the receptor
level. According to the scale provided by Salkin,83 this value can
be interpreted as a moderate/strong positive correlation. A
common drawback of many scoring functions is that predicted
binding affinities are highly correlated with the molecular
weight of testing compounds.33,34 We look into this issue in
Figure 7B by plotting the correlation between experimental Ki
values for BindingDB compounds and these predicted for their
isomolecular weight decoys. Encouragingly, CC drops to 0.36,
which can be interpreted as a weak relationship clearly
demonstrating that the previous high CC of 0.58 develops
from specific protein−ligand interactions rather than just the
number of contacts. Furthermore, we also show in Table 4 that

eSimDock more accurately predicts binding affinity than its
component scoring functions. Best performing single scores are
from Vina: Vina_gauss2, Vina_hydrophobic, and Vina_gauss1,
which give weak CC for binding (decoy) compounds of 0.36
(0.32), 0.28 (0.30), and 0.27 (0.29), respectively.
Similar to the assessment of binding pose prediction, we also

quantify the impact of structural distortions in the target
pockets on binding affinity prediction. As shown in Table 5, we

use non-native receptor structures whose global Cα-RMSD
(TM-score) to crystal ranges from 0.52 Å (0.99) to 2.66 Å
(0.86); the corresponding deformations of ligand binding
regions are in the range of 0.32−1.57 Å. As we previously
demonstrated for the Astex/CCDC data set, fitness and binding
probability estimates from machine learning classifiers are
correlated with the degree of structural distortions in protein
targets; see docking results in Table 5. CC for the experimental
vs predicted binding affinity also drops as the target structures
become more distorted; however, these relationships still have a
moderate strength for up to a Cα-RMSD of 3.0 Å. This analysis
indicates that eSimDock predicts binding affinity with a fair
accuracy even against modeled receptor structures, which is a
nontrivial result.

Examples of Successful Docking Calculations. Figure 8
illustrates three representative examples from the Astex/CCDC
data set: dihydrofolate reductase (1aoeB), carbonic anhydrase I
(1azmA), and neuraminidase (1a4gA). Experimental binding
sites of 1aoeB, 1azmA, and 1a4gA with bound ligands are
shown in Figure 8A along with pockets (global receptor
structures) distorted to 1.4 Å (1.6 Å), 2.0 Å (3.0 Å), and 3.4 Å
(4.4 Å) all-atom (backbone Cα) RMSD, respectively. Using
crystal receptor structures and the ligand itself (the largest rigid
substructure) as the docking anchor, the predicted ligand
binding poses have an RMSD of 1.69 Å (1.75 Å), 0.82 Å (1.19
Å), and 1.53 Å (1.81 Å), respectively; see Figure 8B (Figure
8C). Figure 8D shows the most similar ligand templates
identified by eFindSite at a sequence identity threshold of 80%,
60%, and 40%, respectively. These are subsequently used to
dock query ligands using eSimDock; the generated binding
poses presented in Figure 8E have an RMSD from crystal of
1.87 Å, 1.31 Å, and 1.58 Å, respectively. The last panel, Figure
8F, shows ligand poses predicted using the distorted receptor
structures. Here, the docking accuracy measured by the fraction
of recovered native protein−ligand contacts (the corresponding
upper bound) is 0.70 (0.87), 0.44 (0.63), and 0.45 (0.52),
respectively. These examples depict the performance of
eSimDock using different quality receptor structures, various
anchor substructures, and template ligands extracted at different
homology levels.

Comparison to AutoDock Vina. Using both primary data
sets, Astex/CCDC and BindingDB, we compare the perform-
ance of eSimDock to AutoDock Vina,55 which is one of the
most widely used programs for structure-based virtual screen-
ing. Figure 6B shows the accuracy of Vina against crystal
structures (0 Å Cα-RMSD) as well as a series of non-native
conformations constructed for Astex/CCDC proteins (0.5−5.0

Table 4. Pearson Correlation Coefficients between
Experimental and Predicted Binding Affinities for Binding
Compoundsa

scoring function binding compds decoy compds

Vina_gauss1 0.27 0.29
Vina_gauss2 0.36 0.32
Vina_repulsion 0.16 0.30
Vina_hydrophobic 0.28 0.30
Vina_hydrogen 0.09 0.02
DSX_pair 0.11 0.30
DSX_sas 0.18 0.01
LPC_complementarity 0.01 0.23
DFIRE_pair 0.16 0.15
eSimDock 0.58 0.36

aThe accuracy of binding affinity prediction by eSimDock is compared
to its individual component scoring functions. The last column reports
correlation coefficient between experimental affinities of binding
compounds and these predicted for nonbinding decoys.

Table 5. Docking of BindingDB Compounds to Non-Native Structuresc

structure quality docking results

receptor set Cα-RMSDa [Å] TM-scorea pocket RMSDb [Å] fitness binding CC

set 0.0 0.80 ± 0.35 0.71 ± 0.36 0.58
set 0.5 0.52 ± 0.06 0.99 ± 0.00 0.32 ± 0.16 0.69 ± 0.42 0.59 ± 0.41 0.55
set 1.0 1.02 ± 0.09 0.97 ± 0.01 0.67 ± 0.24 0.64 ± 0.40 0.51 ± 0.40 0.54
set 1.5 1.44 ± 0.13 0.94 ± 0.02 0.91 ± 0.33 0.60 ± 0.43 0.44 ± 0.41 0.53
set 2.0 1.85 ± 0.16 0.92 ± 0.03 1.15 ± 0.41 0.49 ± 0.44 0.34 ± 0.39 0.50
set 2.5 2.25 ± 0.19 0.89 ± 0.04 1.37 ± 0.49 0.38 ± 0.43 0.27 ± 0.37 0.49
set 3.0 2.66 ± 0.21 0.86 ± 0.04 1.57 ± 0.58 0.33 ± 0.42 0.24 ± 0.35 0.46

aGlobal, calculated over backbone Cα atoms. bLocal RMSD calculated over heavy atoms of binding residues. cData set characteristics include both
global and local structure quality of the receptor proteins. Docking results report the estimated fitness and binding scores as well as Pearson
correlation between experimental and predicted binding affinity (CC).
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Å Cα-RMSD). Focusing on the crystal structures, the accuracy
of Vina is only slightly lower than that of eSimDock; the
median fraction of correctly predicted protein−ligand atomic
contacts is 0.57 and 0.64, respectively. However, the perform-
ance of Vina considerably deteriorates with the increasing
magnitude of structural deformations in target structures. The
ratio of docking accuracy and the estimated upper bound is at a
level of ∼0.35 across the set of distorted receptor structures.
This analysis clearly demonstrates that the performance of
traditional ligand docking drops off dramatically with the
decreasing quality of target structures, which is in line with
previous reports.35,36 Contrastingly, as discussed above, the
ratio of docking accuracy and upper bound for eSimDock is at a
constant level of ∼0.65 across the entire data set (Figure 6A).
Next, using the BindingDB data set, we evaluate the

performance of AutoDock Vina in ligand ranking and compare
the results to these obtained for eSimDock. We note that this
data set comprises 1,151 protein−ligand complexes and
includes 25 topologically different isomolecular weight ligand
decoys per active compound. Table 3 shows that in general,
Vina performs better than most individual scoring functions
used in eSimDock, with the exception of these from
DrugScore,29 DSX_pair and DSX_sas. For example, the
enrichment factor calculated for the top 1% of the screening
library is 7 times better than random, AUC is 0.63, and ACT-50
is 0.32, which shows that Vina ranks at least half of the binding
molecules within the top one-third of the library. Nevertheless,
the accuracy of eSimDock is significantly higher than this

obtained from Vina; compare the last two rows in Table 3. We
can identify two factors responsible for the better performance
of eSimDock. First, it employs DrugScore potentials, which
have remarkably high ranking capabilities; see DSX_pair in
Table 3. Second, nonlinear scoring functions implemented in
eSimDock effectively combine individual scoring terms
enhancing ranking accuracy in virtual screening. We conjecture
that replacing the linear combination of weighted energy terms
in Vina with nonlinear machine learning models should further
improve its ranking capabilities, in analogy to recent successful
modifications of the scoring function of the docking program
eHiTS.58

Case Study: fXa Inhibitors. In addition to calculations
using two representative data sets, Astex/CCDC and Bind-
ingDB, we discuss two case studies to demonstrate that
eSimDock represents a general methodology, which can be
conveniently adapted for more specific purposes. The first case
study evaluates the performance of eSimDock in discriminating
between 279 strong and 156 weak inhibitors of fXa whose
experimentally determined binding affinities are <10 nM and
>1 μM, respectively. 62 molecules bound to fXa are used as a
set of anchor substructures for similarity-based docking of 435
benzamidine inhibitors by eSimDock. The three nonlinear
scoring functions implemented in eSimDock that assess fitness,
binding, and affinity employ SVM models. In this case study,
we also demonstrate that other machine learning techniques,
e.g. Naıv̈e Bayes classifiers, can be used. NB models the
distribution of numerical scores using a mean and the

Figure 8. Examples of successful docking simulations using eSimDock. Three cases are shown: dihydrofolate reductase (1aoeB), carbonic anhydrase
I (1azmA), and neuraminidase (1a4gA). (A) Close look at the crystal binding pose: selected binding residues are shown as tan sticks and labeled, the
largest rigid substructure of a ligand is colored in blue with the remaining parts shown in yellow. Equivalent binding residues in the distorted receptor
structures are shown as orange sticks. Top-ranked docked conformation using as an anchor (B) the entire ligand and (C) the largest rigid
substructure. (D) The most similar ligand template identified by eFindSite. (E) Target ligand docked using the template ligand shown in D. (F)
Target ligand is docked into the distorted binding site (orange sticks in A) rather than the receptor crystal structure. In B−F, the reference crystal
binding pose is transparent and the docked conformation (template ligand in D) is solid; both molecules are colored by atom type.
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corresponding standard deviation for each feature. These
statistical dispersion characteristics across the training set of
290 compounds are reported in Table 6 for all individual

scoring functions. We note that these values are calculated from
binding poses predicted by eSimDock; there is a clear difference
between the individual distributions obtained for strong and
weak binders. Figure 9 shows that this is efficiently exploited by

machine learning and the performance of the NB classifier is
quite high. Specifically, the optimal posterior probability cutoff
depicted by a black triangle in Figure 9 yields a true positive
rate of 0.81 at the expense of a false positive rate of 0.19. This
corresponds to the accuracy, specificity, and precision of 0.81,
0.81, and 0.86, respectively, demonstrating a very good
performance of eSimDock in discriminating between strong
and weak inhibitors of fXa.
Case Study: CDK2 Inhibitors. The second example

selected in this study considers the prediction of IC50 values
for a diverse set of 903 CDK2 inhibitors. Here, anchor
structures are extracted from homologous proteins identified by
BLAST. As a nonlinear scoring function, we use the SVR model
developed for binding affinity prediction, which is now

retrained on IC50 against CDK2 rather than Ki values. Figure
10 shows that the cross-validated Person correlation coefficient

is 0.72, thus the SVR model implemented in eSimDock
maintains a high accuracy when it is modified for specific
applications.

■ CONCLUSIONS
In this study, we describe the development and benchmarking
of eSimDock, a new approach to similarity-based ligand docking
and binding affinity prediction. A unique feature of eSimDock is
a set of nonlinear machine learning-based scoring functions
constructed to evaluate the confidence of binding pose
prediction, calculate the likelihood that a query ligand forms
a stable complex with the receptor protein, and predict binding
affinity. In large-scale benchmarks using representative data sets
of protein−ligand complexes, we demonstrate that machine
learning models are specific and accurate, systematically
outperforming individual scoring functions. As a similarity-
based approach, eSimDock requires template ligands to
preposition docking compounds; we show that this information
can be extracted from related proteins at various levels of
homology. Another important feature of eSimDock is its
remarkably high tolerance to structural distortions in the target
structures, thus protein models with varying structure quality
can be effectively utilized in virtual screening calculations. It is
possible that the insensitivity to structural deformations in
binding regions will affect the selectivity among homologous
members within the same family. Nevertheless, even close
homologues typically have different amino acid composition of
binding pockets, which may be sufficient to maintain high
selectivity; this will be investigated in future studies. Finally, we
assess the performance of eSimDock in selected case studies
demonstrating that it can be easily adapted for specific
applications and different nonlinear scoring functions are
effective as well.
Based on the overall algorithm design and benchmarking

results, we identify two types of primary applications eSimDock
is particularly suitable for. First application is a rapid evaluation
of a series of compounds having similar scaffold but different

Table 6. Average (± Standard Deviation) Values of
Individual Scoring Terms Calculated Across the Sets of
Strongly and Weakly Binding Inhibitors of Factor Xa

scoring function strong binders weak binders

Vina_gauss1 130.90 ± 38.52 84.33 ± 36.38
Vina_gauss2 1663.54 ± 279.06 1330.71 ± 311.94
Vina_repulsion 130.31 ± 110.12 81.22 ± 94.22
Vina_hydrophobic 57.35 ± 25.99 38.76 ± 25.71
Vina_hydrogen 4.59 ± 2.99 3.65 ± 1.66
DSX_pair 361.78 ± 360.73 195.49 ± 286.55
DSX_sas −21.80 ± 9.55 −16.45 ± 9.02
LPC_complementarity 0.85 ± 0.30 0.78 ± 0.23
DFIRE_pair 1.07 ± 0.21 1.08 ± 0.15

Figure 9. ROC plot for the discrimination between strong and weak
binders of fXa using a Naıv̈e Bayes classifier implemented in
eSimDock. A solid black triangle corresponds to the best performance
that maximizes the accuracy. The gray area shows the performance of a
random classifier.

Figure 10. Correlation between experimental and predicted IC50 for
903 inhibitors of the human cyclin-dependent kinase 2, CDK2. CC is
the Pearson correlation coefficient.
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side groups. At the outset of the docking experiment, at least
one experimental target structure cocrystallized with a scaffold
compound is required. When binding affinities are measured
for a subset of testing compounds, nonlinear scoring functions
implemented in eSimDock can be easily retrained on new
experimental data substituting the default scoring scheme with
target-specific machine learning models. This notable feature
allows eSimDock to be tailored to specific projects, as
demonstrated in this study for fXa and CDK2. The second
application is ligand docking to theoretical receptor structures.
Computational efficiency of similarity-based docking together
with encouraging results obtained from docking simulations
against distorted targets and evolutionarily derived anchor
substructures indicate that eSimDock can be integrated with
evolution/structure-based approaches to ligand binding pre-
diction providing a virtual screening component to across-
proteome function annotation projects.
eSimDock is freely available to the academic community as a

Web server at http://www.brylinski.org/esimdock. The Web
site also provides all data sets and benchmarking results
reported in this paper as well as another case study on
inhibitors of heat shock protein 90 in the form of step-by-step
instructions for using online services.
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