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a b s t r a c t

Exhaustive exploration of molecular interactions at the level of complete proteomes requires efficient
and reliable computational approaches to protein function inference. Ligand docking and ranking tech-
niques show considerable promise in their ability to quantify the interactions between proteins and small
molecules. Despite the advances in the development of docking approaches and scoring functions, the
genome-wide application of many ligand docking/screening algorithms is limited by the quality of the
binding sites in theoretical receptor models constructed by protein structure prediction. In this study,
we describe a new template-based method for the local refinement of ligand-binding regions in protein
models using remotely related templates identified by threading. We designed a Support Vector Regres-
sion (SVR) model that selects correct binding site geometries in a large ensemble of multiple receptor
conformations. The SVR model employs several scoring functions that impose geometrical restraints
on the Ca positions, account for the specific chemical environment within a binding site and optimize
the interactions with putative ligands. The SVR score is well correlated with the RMSD from the native
structure; in 47% (70%) of the cases, the Pearson’s correlation coefficient is >0.5 (>0.3). When applied
to weakly homologous models, the average heavy atom, local RMSD from the native structure of the
top-ranked (best of top five) binding site geometries is 3.1 Å (2.9 Å) for roughly half of the targets; this
represents a 0.1 (0.3) Å average improvement over the original predicted structure. Focusing on the sub-
set of strongly conserved residues, the average heavy atom RMSD is 2.6 Å (2.3 Å). Furthermore, we esti-
mate the upper bound of template-based binding site refinement using only weakly related proteins to be
�2.6 Å RMSD. This value also corresponds to the plasticity of the ligand-binding regions in distant homo-
logues. The Binding Site Refinement (BSR) approach is available to the scientific community as a web ser-
ver that can be accessed at http://cssb.biology.gatech.edu/bsr/.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

With the rapid accumulation of protein sequences generated by
the now numerous genome-sequencing projects (Aury et al., 2008;
Tettelin and Feldblyum, 2009; Wheeler et al., 2008), the key chal-
lenge in biological sciences has shifted from the study of single
molecules to the exhaustive exploration of molecular interactions
and biological processes at the level of complete proteomes
(Butcher et al., 2004; You, 2004). To achieve the ambitious goal
of characterizing and understanding the molecular function of all
gene products in a given proteome, a number of structure-based
approaches to protein function inference have been developed
(Juncker et al., 2009; Loewenstein et al., 2009; Rost et al., 2003).
Contemporary methods for binding site detection are fairly insen-
sitive to the overall quality of the target structures (Brylinski and
ll rights reserved.
Skolnick, 2008a) and facilitate the selection of correctly predicted
models in protein structure prediction (Chelliah and Taylor,
2008). Approximate protein models can be routinely generated
by the state-of-the-art structure prediction techniques for the
majority of gene products in a given proteome (Fiser, 2004; Gopal
et al., 2001; Yura et al., 2006; Zhang and Skolnick, 2004a); this
opens up the possibility of using low-to-moderate resolution mod-
els for genome-wide function annotation.

Qualitative protein function annotation using Enzyme Commis-
sion (EC) numbers or Gene Ontology (Ashburner et al., 2000) terms
is typically followed by a comprehensive functional characteriza-
tion at the molecular level. The studies of interactions between
proteins and other molecular species in a cell are routinely
supported by computations involving docking of DNA (Gao and
Skolnick, 2009; van Dijk and Bonvin, 2008), other protein partners
(Lyskov and Gray, 2008; Wiehe et al., 2008) and small ligands
(Goodsell et al., 1996; Moustakas et al., 2006). In the latter case,
the docking of specific ligands can be extended to large-scale

http://cssb.biology.gatech.edu/bsr/
http://dx.doi.org/10.1016/j.jsb.2010.09.009
mailto:skolnick@gatech.edu
http://dx.doi.org/10.1016/j.jsb.2010.09.009
http://www.sciencedirect.com/science/journal/10478477
http://www.elsevier.com/locate/yjsbi


M. Brylinski et al. / Journal of Structural Biology 173 (2011) 558–569 559
virtual screening of combinatorial libraries in order to discover no-
vel bioactive compounds (Rajamani and Good, 2007; Seifert et al.,
2007). Notwithstanding the advances in the development of dock-
ing approaches and scoring functions, the application of many li-
gand docking/screening algorithms to protein models is limited
by the quality of the binding site in the target structure; mean
structure rearrangements greater than 1.5 Å may cause the loss
of even 90% of the docking accuracy (Erickson et al., 2004). Many
other benchmark studies report a notable drop-off in the docking
accuracy when non-native structures are used as the target recep-
tors (Murray et al., 1999; Sutherland et al., 2007; Wu et al., 2003).

Despite progress in protein structure prediction (Kryshtafovych
et al., 2005), theoretical models, particularly those modeled using
remote homology, still have significant structural inaccuracies in li-
gand-binding sites (DeWeese-Scott and Moult, 2004; Piedra et al.,
2008); this has stimulated the development of methods for the local
refinement of binding pocket residues prior to ligand docking. The
local refinement of ligand-binding regions is complicated by many
factors. The conformational changes triggered by ligand binding
may require side chain geometries (Heringa and Argos, 1999)
absent in standard rotamer libraries (Dunbrack and Karplus, 1993;
Koehl and Delarue, 1994). Moreover, it has been demonstrated that
there is no correlation between the backbone movement of a resi-
due upon binding and the flexibility of its side chain (Najmanovich
et al., 2000). To tackle the difficult problem of binding site modeling,
Kauffman and colleagues incorporated information on the residues
involved in ligand binding in constructing the target-template
alignments and observed an improvement in the overall quality of
the modeled ligand-binding regions (Kauffman et al., 2008). In prin-
ciple, ligand molecules could also be explicitly used to model the
binding sites. However, due to imperfections of available all-atom
force fields, inclusion of protein flexibility in ligand docking against
non-native receptor structures typically does not the improve root-
mean-square deviation, RMSD of the binding pocket residues from
the native structure (Davis and Baker, 2009). A slightly different
approach, MOBILE, includes information about bioactive molecules
as spatial knowledge-based restraints in the iterative refinement of
protein models constructed using close homology (Evers et al.,
2003). The issue is what happens when no closely related homolo-
gous structures are solved for the protein target of interest.

In this study, we describe a new template-based approach to
the local refinement of ligand-binding regions in protein models
that exploits the information provided by remotely related tem-
plates. We begin with an analysis of the plasticity of ligand-binding
regions in distant homologues which provides an estimate of what
would be the upper bound for the template-based refinement
accuracy using only weakly related binding pockets. This also pro-
vides interesting insights into how structurally degenerate are
similar/identical binding geometries in nature. Building on the
resulting insights, we propose a new ligand-binding site refine-
ment procedure that consists of the following: first, a large ensem-
ble of multiple receptor conformations is generated. Then, a fitness
function is applied to rank the structurally diverse set of con-
structed binding site geometries. This function comprises four
scoring terms, whose parameters are derived from weakly related
templates identified by threading (Jones and Hadley, 2000). The
individual terms provide geometrical restraints on the Ca positions
and Ca–Ca distances, account for a specific chemical environment
within a binding site and optimize the interactions with putative
ligands. The scoring functions are used to train a Support Vector
Regression model to rank multiple receptor conformations. Here,
for a large benchmark set, we apply this model to refine ligand-
binding regions in proteins that are weakly homologous to their
closest template whose structure is known and show that the
SVR-based ranking selects fairly good binding site geometries.
The Binding Site Refinement (BSR) approach presented in this
paper is available to the scientific community as a web server that
can be accessed at http://cssb.biology.gatech.edu/BSR/.
2. Materials and methods

2.1. Dataset

Protein–ligand complexes used in this study were taken from
the Protein-Small-Molecule Database (PSMDB) (Wallach and Lilien,
2009), a non-redundant repository of small molecule complexes
for protein–ligand interaction studies. We selected proteins up to
200 residues in length, for which at least three weakly homologous
(<35% sequence identity) template structures can be identified by
threading (Skolnick and Kihara, 2001; Skolnick et al., 2004; Zhou
and Zhou, 2004, 2005). Furthermore, we excluded those proteins
that bind very small (<6 heavy atoms) as well as very big (>100
heavy atoms) ligands. The total number of complexes in the data-
set is 904. Finally, we used only those targets for which the binding
site center of mass can be predicted by FINDSITE within a distance
of 6 Å. Since the accuracy of binding site prediction depends on the
quality of the target structure, the number of proteins used for
binding site refinement ranges from 662 for crystal structures to
440 for the most distorted models with an average RMSD (root-
mean-square deviation) from the crystal structure of 9 Å; see addi-
tional details below. The PDB identifiers for the dataset proteins
are provided in Supplementary materials, SI Table 1. Moreover,
the entire dataset as well as the modeling results are available
from http://cssb.biology.gatech.edu/BSR/.

2.2. All-atom RMSD of similar binding pockets

Due to significant sequence variability in remotely related pro-
teins, the RMSD is typically calculated over Ca atoms. Here, we de-
velop a simple method to calculate the heavy atom RMSD of
similar, but not identical pockets extracted from weakly homolo-
gous template complexes. Residue equivalences are obtained from
global structure alignments by fr-TMalign (Pandit and Skolnick,
2008; Zhang and Skolnick, 2005a), whereas the equivalent atoms
in residue side chains are calculated by SMSD (Small Molecule Sub-
graph Detector) (Rahman et al., 2009). SMSD is a graph-based algo-
rithm developed to identify the exact atom–bond equivalence
between the query and target organic molecules in chemical sim-
ilarity searches. Here, we apply SMSD to match the heavy atoms of
different residue side chains. The all-atom RMSD calculated over
the atoms matched for all binding residue pairs within a common
pocket is denoted as RMSDres. For a given pocket, ligand-binding
residues can be divided into three groups, depending on the
conservation of their binding patterns in evolutionarily related
proteins. Strongly, moderately and weakly conserved binding res-
idues are defined based on the fraction of templates that have a
residue in an equivalent position in contact with a ligand: >0.75,
0.50–0.75, and 0.25–0.50, respectively. RMSDres values calculated
over strongly, moderately and weakly conserved binding residues
are denoted as RMSDres

0:75, RMSDres
0:50 and RMSDres

0:25, respectively. In
the RMSD calculations for the ligand-binding regions, we can also
include the coordinates of bound ligands. Again, we use SMSD to
establish the atom equivalences in ligand structures; the combined
RMSD calculated over the heavy atoms of both protein residues
and ligands is denoted as RMSDres+lig.

2.3. Protein structure modeling

For each protein, we have constructed several models with
different accuracy in terms of their RMSD and TM-score (Zhang
and Skolnick, 2004b) from the native structure. In addition to the

http://cssb.biology.gatech.edu/bsr/
http://cssb.biology.gatech.edu/bsr/


560 M. Brylinski et al. / Journal of Structural Biology 173 (2011) 558–569
crystal structures, we use three sets of uniformly distorted struc-
tures with an average RMSD of 3, 6 and 9 Å from native. The dis-
torted structures were generated starting from the crystal
structures by a simple Monte Carlo procedure that deforms protein
structures to a desired deviation from native (Bindewald and
Skolnick, 2005). Furthermore, we have constructed weakly homol-
ogous protein models using a state-of-the-art template-based
structure prediction algorithm. First, for each target protein,
weakly homologous template structures (<35% sequence identity
to the target) were identified in a non-redundant PDB library by
our meta-threading procedure that employs the SP3 (Zhou and
Zhou, 2005), SPARKS2 (Zhou and Zhou, 2004) and PROSPECTOR_3
(Skolnick and Kihara, 2001; Skolnick et al., 2004) algorithms. Sub-
sequently, full-length models were assembled and refined by
chunk-TASSER (Zhou and Skolnick, 2007). Finally, all-atom models
from the top-ranked chunk-TASSER structure were constructed by
Pulchra (Rotkiewicz and Skolnick, 2008).

2.4. Binding site identification

Ligand-binding residues are identified in the target structures
using FINDSITE, a structure/evolution-based approach to binding
site prediction and molecular function inference (Brylinski and
Skolnick, 2008a, 2009a; Skolnick and Brylinski, 2009). FINDSITE
detects common ligand-binding sites in a set of evolutionarily re-
lated proteins. Here, we used only those templates that were iden-
tified by meta-threading with a Z-score of P4 reported by at least
one threading method. All templates have <35% sequence identity
to the target. FINDSITE typically identifies multiple ligand-binding
sites and ranks them by the fraction of templates that have binding
sites in similar locations. As the targets for local refinement, we
used the best of top five binding sites predicted within 6 Å from
the geometrical center of a bound ligand in the native crystal
structures.

2.5. Compound ranking

In addition to the binding site location, FINDSITE also provides
information on the chemical identity of molecules that likely
occupy the predicted pockets. This is done by simple ligand-based
virtual screening using consensus molecular fingerprints and a
modified Tanimoto coefficient calculated using the template-
bound ligands (Brylinski and Skolnick, 2009b; Tanimoto, 1958;
Xue et al., 2003). Compound selection is assessed based on the rank
assigned to the native ligand in a random library. As background
compounds, we used a non-redundant subset of 68,109 molecules
selected from the ZINC8 library (Irwin and Shoichet, 2005). The
non-redundant subset, compiled using the SUBSET 1.0 program
(Voigt et al., 2001) and a Tanimoto coefficient threshold of 0.7, is
available from http://cssb.biology.gatech.edu/findsite/ (ZINC8
non-redundant, Tanimoto < 0.7).

2.6. Binding site refinement

Binding site refinement consists of two steps: first, for a given
target protein structure, an ensemble of 50 non-redundant all-
atom conformations is generated. Then, the conformations are
ranked using an empirical fitness function that employs both geo-
metric as well as chemical scoring terms. The construction of a
conformational ensemble, the development of the scoring function
and the ranking procedure are described in the following sections.

2.7. Construction of the conformational ensemble

For each target protein structure, we generated an ensemble of
multiple conformations as follows: Starting from the initial, unre-
fined structure (crystal structure, 3, 6, 9 Å RMSD from the native
structure or chunk-TASSER model), 50 nearby conformations with
a Ca RMSD of 2 Å to the initial structure were generated using a
Monte Carlo sampling procedure described above (Bindewald and
Skolnick, 2005). Subsequently, these conformations are subject to
a clustering procedure in order to compile a set of 10 diverse struc-
tures. We used a k-way clustering method by repeated bisections
with global optimization implemented in the clustering package
CLUTO 2.1.2 (Karypis, 2003). Next, Modeller 9v8 (Sali and Blundell,
1993) was used to generate 2000 conformations using Ca restraints
extracted from these 10 structures. This procedure improves the
structural diversity and results in a set of structurally distinct mod-
els compared to a standard procedure for the ensemble generation
from a single structure using self-restraints. In addition, we provide
Modeller with a set of auxiliary distance restraints imposed on the
predicted binding residues. These restraints are included as
Ca–Ca average distances calculated from the ligand-bound tem-
plate structures using target-template structural alignments gener-
ated by fr-TMalign (Pandit and Skolnick, 2008; Zhang and Skolnick,
2005a). Finally, the number of conformations in the ensemble was
reduced to 50 by a clustering procedure using CLUTO (Karypis,
2003). Here, we cluster the ensemble conformations using the pair-
wise all-atom RMSD of the ligand-binding regions to compile a non-
redundant set of 50 pocket geometries.
2.8. Geometrical restraints

A fitness function was developed to rank the conformations in
the non-redundant ensemble constructed for each protein target
structure. This section describes the geometric-based function
components.

The first scoring component is a weighted RMSD (Damm and
Carlson, 2006) term calculated using the average Ca positions of
the residues in the threading templates in equivalent positions to
the binding residues reported by FINDSITE. The average positions
are calculated upon the global structure alignment by fr-TMalign
(Pandit and Skolnick, 2008; Zhang and Skolnick, 2005a) of the tem-
plates onto the input target structure (which may be a model or an
experimental structure):

wRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

wid
2
i

vuut ð1Þ

where n is the number of binding residues, d is the deviation of a
binding residue Ca atom from its average position and w is a weight
factor that corresponds to the ligand-binding probability calculated
by FINDSITE (Brylinski and Skolnick, 2008a). The binding probabil-
ity is the fraction of templates that have a residue in an equivalent
position in contact with the ligand. Here, we only use residues with
a binding probability of P0.25.

Next, we use single Gaussian restraints imposed on the binding
residue Ca–Ca distances (Sali and Blundell, 1993):

RestrCa—Ca ¼ 1
n

Xn

i¼1

0:5
r � hri

r

� �2

� ln
1

r
ffiffiffiffiffiffiffi
2p
p ð2Þ

where n is the number of binding residue pairs i–j separated in se-
quence by at least four other residues, r is the distance between Ca
atoms of residues i and j in the ensemble conformation, hri is the
average distance between residues equivalent to i and j in the
threading templates and r is its standard deviation. Both geometric
restraint terms are strongly shape-dependent; wRMSD also depends
on the global position in the target structure with respect to the
center of mass.

http://cssb.biology.gatech.edu/findsite/
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2.9. Chemical restraints

In addition to the geometrical restraints that enforce the native-
like conformation of the backbone Ca atoms, we use chemical re-
straints to facilitate the correct orientation of the residue side chains
within the binding pocket. Since only weakly homologous template
structures are used in this study, we derive the chemical constraints
for the functional groups of the side chains rather than their heavy
atoms. Here, we use eight different chemical groups present in ami-
no acid side chains: aromatic rings, hydroxyl, thiol, carboxyl, ali-
phatic carbon atoms, amine, amide and guanidine. The definition
of chemical groups is provided in Supplementary Material, SI Table 2.
First, all functional groups are detected in the superimposed set of
threading templates identified by FINDSITE to share a common
binding site. Next, the centers of mass of the chemical groups of par-
ticular type are used to calculate its probability density function
using a standard kernel density approximation technique:

f̂ j
hðx; y; zÞ ¼

1
nh

Xn

i¼1

Kgauss
h ð3Þ

where n is the number of functional groups of type j in the side
chains of the template residues, Kgauss

h is a three-dimensional Gauss-
ian kernel and h is a smoothing parameter (bandwidth) that needs
to be optimized. The bandwidth optimization is described in the fol-
lowing section.

The three-dimensional Gaussian kernel function with a band-
width h is given by:

Kgauss
h ¼ 1

2p
exp

x2 þ y2 þ z2

2h2

� �
ð4Þ

The final score is calculated over all chemical groups in the
binding residues of a target structure candidate in the ensemble:

KDE ¼ 1
n

Xn

i¼1

f̂ i;j
h ð5Þ

where n is the number of chemical groups in the binding residues of
the target pocket and j is the type of a functional group i. For the
center of mass of each functional group i in a structure candidate,
the probability is calculated using Eq. (3). The KDE score is the aver-
age probability over all chemical groups.

The second scoring function that contributes to the chemical re-
straints is a pocket-specific potential calculated against the repre-
sentative set of compounds that contain the anchor functional
groups. The pocket-specific potential is a knowledge-based poten-
tial derived from evolutionarily related ligand-bound threading
templates that is primarily used in ligand docking and scoring, as
described in (Brylinski and Skolnick, 2008b, 2010). The set of an-
chor-containing ligands is a non-redundant collection of com-
pounds extracted from the holo template structures bearing the
common molecular substructures that are highly conserved across
the evolutionarily related family. Their detailed description is pro-
vided in (Brylinski and Skolnick, 2009b). Briefly, small organic
compounds are extracted from the template structures and clus-
tered using the SIMCOMP chemical matching algorithm (Hattori
et al., 2003). For each cluster, a representative compound is se-
lected and decomposed into functional groups. Here we use a set
of 17 functional groups described in (Brylinski and Skolnick,
2008b). The conservation of each functional group in the anchor-
containing molecule corresponds to the fraction of cluster com-
pounds that have a similar functional group matched by SIMCOMP.
Typically, the positions of the anchor functional groups tend to be
strongly conserved across the set of template-bound ligands with
very high conservation of their chemical properties.
For a given target binding pocket and an anchor-containing
compound A, the pocket-specific potential is calculated over all
binding residues and functional groups present in A:

EA
specific ¼

1
n

Xn

i¼1

Xm

j¼1

wj

X17

k¼1

ukCPi;k
specific ð6Þ

where n is the number of binding residues, m is the number of func-
tional groups in the anchor compound A, wj is the fraction of similar
compounds extracted from those threading templates that have a
functional group in the equivalent position, uk is the fraction of
compounds in which the functional group in equivalent position
is of type k, and CPi;k

specific is the pocket-specific contact potential
between the residue i and a functional group of type k. The low-
resolution contacts between the geometric centers of the residue
side chains and functional groups are calculated using cutoff
distances optimized to mimic all-atom contacts (Brylinski and
Skolnick, 2008b).

Finally, for a given binding site conformation, the specific pro-
tein–ligand interactions are calculated using all identified an-
chor-containing compounds:

PSP ¼
Xn

i¼1

wiE
i
specific ð7Þ

where n is the total number of the anchor molecules, wi is the frac-
tion of threading templates that bind a ligand similar to i (a member
of its cluster) and Ei

specific is the pocket-specific potential calculated
against the anchor compound i.

2.10. Kernel bandwidth optimization

In our method, the chemical environment formed by a binding
site is approximated by a kernel density estimation using a set of
similar sites extracted from weakly related template structures.
The free parameter of a kernel, the bandwidth, is optimized using
an objective function that maximizes the probability difference be-
tween finding a functional group of a particular type in locations
occupied by similar functional groups in evolutionarily related
pockets and those locations that are occupied by chemically differ-
ent functional groups:

DKDE ¼ 1
n

Xn

i¼1

KDEi � 1
n� 1

Xn�1

j–i

KDEi

 !
ð8Þ

where n is the number of different chemical groups and KDE is the
average kernel density for a given chemical group of type i and j,
where j – i.

The grid search for the optimal bandwidth was carried out for
the crystal structures of the target proteins. The kernel densities
for all chemical groups were calculated from the set of superim-
posed threading templates. The KDE scores (Eq. (5)) were calcu-
lated for the crystal side chain geometries of the binding residues
and the bandwidth varying from 1 to 5 Å. The bandwidth value
that maximizes DKDE was used in further calculations.

2.11. Binding site ranking by machine learning

The scoring function designed to select native-like binding site
geometries from the conformational ensemble consists of four
terms: wRMSD, RestrCa–Ca, KDE and PSP. Since these component
scores have different units and value ranges, we constructed a sim-
ple SVM-based regression model to combine them into a single fit-
ness function. To avoid the memorization of the dataset, we used a
2-fold cross-validation protocol. The complete dataset of the target
complexes was randomly divided into two subsets with <40% se-
quence identity between any two proteins that belong to different
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subsets (see SI Table 1). Subsequently, each subset was used to
train the model and the predictions were made for the remaining
targets, excluded from the training procedure. We used libSVM
2.9 (Chang and Lin, 2001) to build a standard, epsilon-SVR model
with the radial basis function. As described above, for each target
protein, an ensemble of 2000 conformations was generated. These
were subsequently partitioned into 50 clusters. The constructed
SVR model employs a set of 11 features calculated for each cluster.
wRMSD, RestrCa–Ca, KDE and PSP are included as the average value
for each cluster and the standard deviation. In addition, we use
the cluster fraction and the average all-atom RMSD within the
cluster as well as its standard deviation. The optimal values for
the model parameters, a cost function (c), a gamma parameter of
the kernel (g) and an epsilon in the loss function (p) were deter-
mined by an exhaustive grid search using 10 samples of 5000 val-
ues each, that were randomly withdrawn from the dataset. The
determined set of parameters was consistent across the random
samples; c = 8.0, g = 1.0 and p = 0.5 minimize the MSE (mean
squared error) of the estimator to an average value of 0.573.

3. Results and discussion

3.1. Plasticity of weakly homologous binding sites

For any prediction approach, it is important to know what is the
regime that it can be successfully applied to and to estimate what
is the upper bound for its accuracy. Here, we discuss what would
be the theoretical limit for the accuracy of template-based binding
site refinement using the structural information extracted from
weakly related template structures. Essentially, this limit can be
estimated from the analysis of the plasticity of similar binding sites
found in distantly related proteins.

In protein structure prediction, the requirement of a RMSD close
to 0 Å is clearly not physical since crystal structures of the same
protein solved by different groups or in different conditions show
a deviation in the backbone coordinates of �0.5 Å (Chothia and
Lesk, 1986). Moreover, the differences in side chain positions typ-
ically depend on their solvent-exposed surface area and vary from
1.0 to 1.5 Å RMSD (Levitt et al., 1997). Modeled protein structures,
particularly those that are weakly homologous to their templates,
are considered to be correctly predicted when their Ca RMSD is be-
low 4–6 Å (Kryshtafovych et al., 2005; Moult et al., 2009, 2007). To
address the issue of the maximum accuracy for template-based
binding site refinement, we calculated the average heavy atom
RMSDres of the common ligand-binding regions between the target
crystal structures and their weakly homologous (<35% sequence
identity) templates. For different side chains found in the corre-
sponding positions in the template structures, the atom equiva-
lences were obtained by a graph-based chemical matching
algorithm, commonly used in Cheminformatics (Rahman et al.,
Fig. 1. Histogram of the average RMSD for similar binding sites extracted from weakly r
ligand heavy atoms (RMSDres+lig). (B) RMSDres for strongly (0.75), moderately (0.50) and
2009). The distribution of RMSDres/RMSDres+lig values is presented
in Fig. 1A. The average plasticity of weakly homologous ligand-
binding regions, expressed as the mean RMSDres, is 2.6 Å with a
standard deviation of 1.0 Å. When the ligand atoms are also in-
cluded, the mean RMSDres+lig is 3.4 ± 1.1 Å. Furthermore, we find
that the conformation of residues whose binding pattern is
strongly conserved in evolutionarily related proteins, is also con-
served. This is shown in Fig. 1B; here, the mean RMSDres

0:75,
RMSDres

0:50 and RMSDres
0:25 is 2.0, 2.6 and 3.0 Å, respectively. Below,

we examine the performance of our template-based approach to
binding site refinement and demonstrate that it appears to be
fairly close to the theoretical upper limit for this type of method.

3.2. Accuracy of binding site prediction and virtual screening

The set of protein models was used by FINDSITE for binding site
prediction and ligand virtual screening. FINDSITE employs structure
alignments of the threading templates generated by fr-TMalign to
transfer template-bound ligands to the target (Brylinski and
Skolnick, 2008a). Subsequently, a clustering procedure applied to
the center of mass of the transferred ligands identifies putative li-
gand-binding locations on the target protein surface. The accuracy
of binding site prediction can be assessed by the distance between
the predicted pocket center and the center of mass of a bound ligand
in the crystal structure of the complex. In this study, we use only
those targets for which the pocket center can be predicted within a
distance of 6 Å. As we mentioned before, the number of such targets
is different when the crystal structures, distorted models and
chunk-TASSER models are used by FINDSITE. The structural distor-
tions may slightly shift the alignments generated by fr-TMalign
and move the predicted binding pocket center beyond the threshold
of 6 Å. We exclude such cases because the geometrical and chemical
restraints derived for less accurately predicted pockets do not
sufficiently overlap with the true ligand-binding regions.

The number of protein targets used for binding site refinement
is given in Table 1. Using crystal structures, structures distorted to
a 3, 6 and 9 Å RMSD from native, and chunk-TASSER models, the
fraction of targets whose pocket center is predicted within a dis-
tance of 6 Å is 73%, 70%, 60%, 49% and 62%, respectively. We focus
on this subset as monitoring improvement from models whose
RMSD from native is close to random would yield meaningless re-
sults. It is only in the regime where the models at least loosely
resemble the binding site of the native structure can one assess if
the improvements are meaningful. On average, 14–15 residues
per target were identified as ligand binding, with the best pockets
assigned with rank 1 in �80% of the cases. Local geometries of li-
gand-binding regions in chunk-TASSER models tend to be more de-
formed than those in the distorted protein structures with a 3 Å
RMSD, 6 Å RMSD and 9 Å RMSD. The explanation to this is simple;
the distorted structures were constructed starting from the crystal
elated proteins. (A) RMSD calculated over protein (RMSDres) as well as protein and
weakly (0.25) conserved binding residues.



Table 1
Dataset of protein models used in this study for binding site refinement.

Structural form Number of proteins TM-score Binding pocket
RMSDa (Å)

Number of binding
residues

Pockets at
rank 1b (%)

Crystal 662 1.00 ± 0.00 0.00 ± 0.00 14 78.7
3 Å RMSD 632 0.76 ± 0.04 1.93 ± 0.70 15 81.0
6 Å RMSD 544 0.61 ± 0.06 2.81 ± 1.20 15 81.7
9 Å RMSD 440 0.53 ± 0.06 3.15 ± 1.27 15 77.3
Chunk-TASSER 557 0.74 ± 0.12 3.25 ± 1.23 14 77.8

a All-atom RMSD.
b Percentage of targets for which the best pocket is at rank 1.
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all-atom structures and the native protein conformations were de-
formed to a desired RMSD. Structure prediction by chunk-TASSER
is carried out as low-resolution simulations, using Ca atoms and
side chain centers of mass only. In the last step, all-atom models
are rebuilt from their Ca coordinates by Pulchra. Therefore, despite
a better mean TM-score, for models at 6 and 9 Å RMSD, the all-
atom RMSD values calculated over the rebuilt conformations of
binding residues are higher than the distorted ones. The accuracy
of binding site prediction by FINDSITE is presented in Fig. 2A. Using
crystal structures, structures distorted to 3, 6 and 9 Å RMSD, and
chunk-TASSER models, the average binding site accuracy is 2.78,
2.96, 3.20, 3.46 and 3.02 Å, respectively. The high accuracy of bind-
ing site prediction was accompanied by a highly effective ligand
ranking using consensus molecular fingerprints constructed using
ligands extracted from the threading templates. Fig. 2B shows that
the native ligand is ranked within the top 1% of the screening li-
Fig. 2. Accuracy of ligand-binding site prediction by FINDSITE (A) and ligand-based
virtual screening (B). A – The cumulative fraction of proteins with a distance
between the center of mass of a ligand in the native complex and the center of the
best of top five predicted binding sites displayed on the x-axis. B – The cumulative
fraction of proteins, whose native ligand was ranked within the fraction of the
screening library displayed on the x-axis.
brary of 68,109 non-redundant compounds in 65–70% of the cases
on average. As we will demonstrate in the following sections, both
the pocket prediction accuracy as well as the effective ligand rank-
ing are very important for successful refinement of ligand-binding
regions in protein models.

3.3. Kernel bandwidth optimization

The approximate positions of the binding residue side chains
are calculated using a kernel density estimation technique, also
known as a Parzen window method (Parzen, 1962). This informa-
tion is subsequently incorporated as chemical restraints into the
fitness function developed for ligand-binding site refinement.
There is one free parameter of the kernel function, a bandwidth,
which needs to be optimized. Many methods have been developed
to support the selection of the correct bandwidth for kernel density
estimation (Turlach, 1993; Jones et al., 1996). Here, we employ an
empirical bandwidth optimization. Namely, we try to maximize
the probability of finding a chemical group of a particular type in
locations occupied by similar groups in threading templates that
have similar binding sites and minimize the corresponding proba-
bility of finding it in locations occupied by chemically different
functional groups. In binding site refinement, we will search for
the target binding site conformation that fits the chemical group
densities calculated from the template binding sites. Here, we keep
the target binding site geometry fixed in its crystal form and
change the kernel bandwidth, h, to obtain the maximum overlap
with the superposed evolutionarily related pockets. The results in
terms of DKDE (defined in Eq. (8)) are presented in Fig. 3. The opti-
mal bandwidth length for the Gaussian kernel used in the chemical
density estimation is 1 Å. Smaller values cause undersmoothing
and result in a noisy function. Larger values of h clearly smudge
the structure data. In further binding site refinement simulations,
a bandwidth of 1 Å is used.

3.4. Binding site ranking by SVR

Support Vector Machines (SVM) is a supervised machine learn-
ing technique used for classification and regression (Cortes and
Vapnik, 1995; Drucker et al., 1997). In this study, we developed a
regression model (SVR) to estimate the heavy atom RMSD from
native for a given binding site conformation. The performance of
our SVR model is assessed using 2-fold cross-validation. As a set
of features, we use the geometrical and chemical restraint informa-
tion extracted from ligand-binding sites in weakly homologous
template structures. In Fig. 4, we assess the accuracy of the regres-
sion model in terms of the correlation between the observed and
predicted RMSD from native for a non-redundant set of binding
site geometries extracted from the ensemble of target conforma-
tions. In most of the cases, a positive correlation is found. Using
the crystal structures, the Pearson’s correlation coefficient (CC) of
>0.5 (>0.3) between the observed and predicted RMSD is observed
for 70% (88%) of the target binding sites. For protein models



Fig. 3. Optimization of the kernel bandwidth on the target crystal structures. DKDE is defined in Eq. (8). Boxes end at the quartiles Q1 and Q3; a horizontal line in a box is the
median. ‘‘Whiskers’’ point at the farthest points that are within 3/2 times the interquartile range.

Fig. 4. Cumulative fraction of targets with a Pearson’s correlation coefficient
calculated between the true binding site RMSD and that predicted by machine
learning plotted on the x-axis. For each target, the correlation coefficient is
calculated over the ensemble of 50 representative conformations.

Fig. 5. Average (A) binding site heavy atom RMSD at a given rank and (B) best
RMSD for conformations 6 the specified rank for the ensemble conformations
constructed from structures initially distorted to 3, 6 and 9 Å Ca RMSD as well as
from chunk-TASSER models. Binding site conformations are ranked by SVR.
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constructed by chunk-TASSER, a CC of >0.5 (>0.3) is found in 47%
(70%) of the cases, respectively.

As we describe in Section 2, for each target structure, an ensem-
ble of 2000 conformations generated using Modeller is subject to
the clustering procedure to construct a non-redundant set of 50
conformations. The binding sites extracted form these structures
are ranked by the RMSD to native predicted by the SVR model.
The average as well as the best RMSD for conformations6 speci-
fied rank is presented in Fig. 5. Clearly, the binding site ranking
by the expected RMSD calculated by machine learning using geo-
metrical and chemical restraints is very effective not only for the
crystal structures but also for the distorted and modeled protein
conformations. Fig. 5A shows that the average RMSD to native cal-
culated over the heavy atoms of the binding residues is the lowest
for the top-ranked pockets. Similarly, the best geometries are typ-
ically assigned with high (best = rank 1) ranks; there is only a min-
or improvement if lower ranks are considered. This is shown in
Fig. 5B, where the best RMSD values for at or above ranks lower
than 10 are rather constant.

Next, we analyze what are the features of the predicted binding
sites that make the local refinement successful. Two factors affect
the final outcome: the accuracy of the pocket location prediction
and the similarity of template-bound ligands to a ligand that binds
to the target pocket in the crystal structure. Fig. 6 shows how these



Fig. 6. Dependence of the binding site refinement outcome on the accuracy of pocket detection and virtual screening for chunk-TASSER models. Heat maps in A, B and C show
the average all-atom RMSD calculated for the top-ranked, the better of top two and the best of top three binding site conformations ranked by SVR, respectively. The accuracy
of pocket detection is expressed as the distance from the real binding pocket center, which is 6 value displayed on the x axis, whereas the performance of virtual screening is
measured by a native ligand rank, which is 6 the value displayed on the y axis. Lean-to plots in A show (A1) the average virtual screening rank ± SEM for pockets predicted
within a distance displayed on the x axis and (A2) the average binding pocket distance ± SEM for native ligands ranked higher than the value displayed on the y axis.
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factors affect the results considering the top-ranked pocket, the
better of top 2 and the best top 3 pockets. We find that the quality
of the geometrical restraints used as a part of the fitness function
correlates well with the predicted pocket distance. The closer
the predicted pocket center is to the real one, the better are the
restraints and the more accurate is the refined geometry of the
binding regions; this is shown in Fig. 6. Moreover, if the anchor-
containing molecules are chemically similar to the native ligand,
one can expect their local chemical environment to be also similar.
The similarity of template-bound ligands to the native molecule
can be assessed by the native ligand rank in the random library
that is calculated using molecular fingerprints constructed from
the template ligands. Fig. 6 also demonstrates that a better rank
of the native ligand typically results in more accurately refined lo-
cal geometries of the binding regions. Both features, the predicted
pocket location and the rank of a native ligand, are also well corre-
lated with each other. This is shown in Fig. 6A (lean-to plots A1 and
A2). In the case of very accurately predicted pockets, the majority
of native ligands are at very low (better) ranks; this results in the
vertical green stripes in Fig. 6A–C that correspond to the all-atom
RMSD of 6 2.8 Å for binding pockets predicted within 6 2, 62.5
and 63 Å, respectively. Similarly, correctly ranked native ligands
tend to be predicted closer to the real pocket center than those
at higher ranks (Fig. 6, A2). In Table 2, the average performance
using the top five ranked ligand-binding sites is shown for all
Table 2
All-atom RMSD in Å from the native structure calculated for top-ranked binding sites
of chunk-TASSER models.

Set of binding pockets Binding pocket ranka

1 2 3 4 5

All binding pockets
(557 targets)

3.24 3.14 3.09 3.05 3.02

Pocket center 63 Å, ligand rank 6 1%
(232 targets)

3.09 2.99 2.94 2.89 2.86

a Ranking by SVR in 2-fold cross-validation, the best RMSD of top n pockets is
reported.
chunk-TASSER models as well as for the subset of models for which
the binding site was predicted within 3 Å and the native ligand was
ranked within the top 1% of the screening library. The dataset
coverage remains relatively high; both criteria are satisfied for
roughly half of the targets. Considering the top (the best of top five)
binding sites, the average RMSD from the native pocket geometry
drops to �3.1 Å (�2.9 Å). Focusing on the comparison to the
original chunk-TASSER models, we observe a 0.1 (0.3) Å average
improvement over that in the original predicted structure (see
Table 1).

In addition, we analyze the accuracy of refined binding sites in
terms of all-atom RMSD calculated separately for strongly, moder-
ately and weakly conserved binding residues. As explained in Sec-
tion 2, the conservation of a binding residue corresponds to the
fraction of templates that have a residue in equivalent position in
contact with a ligand. Table 3 shows that particularly strongly,
but also moderately, conserved residues are modeled to a higher
accuracy than the weakly conserved ones. Indeed the top (best of
5) models have a RMSD of 2.6 (2.2) Å for the strongly structural
conserved binding residues. These results are consistent with the
analysis of the plasticity of ligand-binding regions in weakly re-
lated pockets, which reveals that highly conserved residues tend
to adopt similar conformations.

3.5. Example: immunophilin FKBP12

FK506-binding proteins, FKBPs, are peptidyl–prolyl cis–trans
isomerases that catalyze the interconversion of peptidylprolyl
imide bonds in peptides and other proteins (Galat, 1993). Here,
we describe the application of the Binding Site Refinement ap-
proach to immunophilin FKBP12, whose crystal structure in com-
plex with a high affinity pipecolate ligand, FKB-001, is available
in the PDB (ID: 1j4r) (Dubowchik et al., 2001). The pipecolate or
proline ring of FKBP12 ligands is located inside a largely hydropho-
bic pocket and forms interactions with several residues including
Y26, V55, I56 and W59 (Fig. 7A). In the predicted structure of
FKBP12, the binding pocket is modeled to an accuracy of 3.11 Å
RMSD from the native structure, with significant deviations from



Table 3
All-atom RMSD in Å from the native structure calculated over strongly, moderately and weakly conserved binding residues for the top-ranked binding sites of chunk-TASSER
models.

Binding residue conservationa Binding pocket rankb

1 2 3 4 5

Strong 2.58 ± 1.13 2.39 ± 1.10 2.30 ± 1.10 2.25 ± 1.08 2.20 ± 1.07
Moderate 2.97 ± 1.18 2.82 ± 1.16 2.75 ± 1.17 2.70 ± 1.16 2.66 ± 1.16
Weak 3.41 ± 1.45 3.25 ± 1.45 3.18 ± 1.45 3.14 ± 1.45 3.09 ± 1.44

a Strong: p P 0.75, moderate: 0.50 6 p < 0.75, weak: 0.25 6 p < 0.50, where p corresponds to the fraction of templates that have a residue in equivalent position in contact
with a ligand.

b Ranking by SVR in 2-fold cross-validation, the best RMSD of top n pockets is reported. Conservation here refers to the set of residues that are structurally conserved and
bind to similar ligand positions.

Fig. 7. Binding site refinement for immunophilin FKBP12. (A) Binding pose of the FKB-001 ligand in the crystal structure of FKBP12 (PDB ID: 1j4r). FKB-001 is colored by atom
type with the pipecolate moiety represented by thick sticks. (B) Binding pocket conformation in the structure modeled by chunk-TASSER (orange, solid) superposed onto the
crystal structure (green, transparent). (C) Correlation between the observed and predicted RMSD from native for a non-redundant set of 50 binding site geometries
constructed for FKBP12. Conformations at ranks 1, 2 and 3 are colored in green, red and blue, respectively. (D, E and F) Top-ranked conformations (ranks 1, 2 and 3,
respectively) modeled by the BSR approach (red, solid) superimposed onto the crystal structure (green, transparent). (G, H and I) Ligands extracted from weakly related
templates (PDB IDs: 2itk, 1pin and 2pvl, respectively) that contain conserved proline and pipecolate moieties (thick sticks colored by atom type) upon superposition of the
template onto the target crystal structure. The anchor region is solid whereas the remaining part of the molecule is transparent. Thick (thin) lines indicate the ligand binding
pose in the model (crystal structure). Selected interacting residues are shown in green.
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the crystallographic positions of side-chains, particularly for Y26,
F36, F48, F46 and W59 (Fig. 7B). Such distortions may cause a con-
siderable deterioration in the performance of many ligand docking
approaches. In Fig. 7C, we assess the accuracy of the SVR model in
terms of the correlation between the observed and predicted RMSD
from native for a non-redundant set of 50 binding site geometries
constructed for FKBP12. Here, the Pearson’s correlation coefficient
is 0.76, with the best binding site conformation (2.24 Å RMSD) at
rank 3. The all-atom RMSD for the conformations at ranks 1 and
2 is 2.65 Å and 2.63 Å, respectively. These top-ranked pocket
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geometries modeled by BSR are shown in Fig. 7D–F. Compared to
the chunk-TASSER model (Fig. 7B), the side-chain orientations of
many key residues, e.g. F36, F46, F48 and W59, are significantly im-
proved. Many high affinity FKBP12 ligands are pipecolyl and prolyl
ketoamides (Armistead et al., 1995). Interestingly, proline and
pipecolate moieties were identified as highly conserved anchor
substructures in several weakly homologous templates detected
by threading. Moreover, their binding mode is strongly conserved
across a set of distantly related proteins; this is shown in
Fig. 7G–I for peptidyl–prolyl cis–trans isomerase NIMA-interacting
1 (PDB IDs: 2itk and 1pin) and chaperone surA (PDB ID: 2pv1),
whose sequence identity (TM-score) to FKBP12 is 15% (0.56) and
18% (0.49), respectively where we apply FINDSITE/FINDSITELHM

to identify the putative ligand binding pose and conserved anchor
region geometries. As we discuss above, correctly predicted bind-
ing ligands are very important for successful refinement of binding
pockets in protein models.
4. Concluding remarks

In this work, we present a new method for the template-based
refinement of ligand-binding regions in weakly homologous
protein models. Low-resolution information about the interactions
between evolutionarily related proteins and their ligands is con-
verted into a set of geometrical and chemical restraints. The use
of sensitive sequence-profile driven threading (Jones and Hadley,
2000) to identify template complexes is critical in that it efficiently
eliminates structurally similar, yet functionally unrelated, proteins.
It has already been shown that threading greatly reduces the false
positive rate in the detection of template structures for functional
annotation (Brylinski and Skolnick, 2009a). The presented method
performs satisfactorily even when no closely related templates are
used. Thus, it can be included in the large-scale structure modeling
of complete proteomes, where the typical coverage of the gene
products by weakly related structures from the PDB (Berman
et al., 2000) is 50–70% (O’Toole et al., 2003; Xie and Bourne,
2005; Zhang and Skolnick, 2004a, 2005b).

Machine learning that uses the developed scoring functions is
demonstrated to efficiently rank the diverse conformations of the
ligand-binding regions. This is of practical use in ligand docking
and screening against an ensemble of receptor models, a com-
monly used technique that accounts for the receptor flexibility
(Teodoro and Kavraki, 2003). Using the method developed in this
study, the number of possible geometries of the binding pockets
could be dramatically reduced to the most probable ones. This
would reduce the computational expense of the ensemble docking
approaches. Recent benchmarks show that using multiple homol-
ogy models in virtual screening can significantly improve the
enrichment in bioactive compounds (Fan et al., 2009).

A key feature of this model is that it employs low-resolution re-
straints in the form of the approximate Ca positions and Ca–Ca dis-
tances as well as functional groups instead of the heavy atoms to
describe the local chemical environment and interactions with small
molecules. Such a description allows for the accommodation of
structural variations observed in corresponding ligand-binding re-
gions in distantly related homologues (Liang et al., 1998; Panjkovich
and Daura, 2010; Pils et al., 2005; Weisel et al., 2009). On the other
hand, such variations roughly concur with the maximum accuracy,
estimated to be �2.6 Å RMSD for the heavy atoms, which is in good
agreement with the previous studies (Mendes et al., 2001; Wilson
et al., 1993). As in protein structure prediction, where low-resolution
template-based approaches are able to construct approximate back-
bone geometries that require further all-atom refinement, e.g. using
physics-based force fields (Fan and Mark, 2004; Kmiecik et al., 2007;
Wroblewska et al., 2008), the roughly correct geometries of the
ligand-binding regions modeled in this study from weakly related
templates may require additional refinement at the atomic level
(Huang et al., 2006; Pencheva et al., 2008). Alternatively, approxi-
mately correct side-chain orientations predicted to �2.9 Å RMSD
from native should be of sufficient accuracy for low-resolution
ligand docking that tolerates to some extent the structural distor-
tions of ligand-binding regions (Bindewald and Skolnick, 2005;
Brylinski and Skolnick, 2008b, 2010; Vakser, 1996; Wojciechowski
and Skolnick, 2002). Considering the significant coverage of proteo-
mes by remotely related templates, the binding site refinement
described in this study should be of practical use in structure-based
drug design applied at the proteome level.
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