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Abstract: Many drug candidates fail in clinical development due to their insufficient selectivity
that may cause undesired side effects. Therefore, modern drug discovery is routinely supported
by computational techniques, which can identify alternate molecular targets with a significant
potential for cross-reactivity. In particular, the development of highly selective kinase inhibitors
is complicated by the strong conservation of the ATP-binding site across the kinase family. In
this paper, we describe X-ReactKIN, a new machine learning approach that extends the modeling
and virtual screening of individual protein kinases to a system level in order to construct a cross-
reactivity virtual profile for the human kinome. To maximize the coverage of the kinome,
X-ReactKIN relies solely on the predicted target structures and employs state-of-the-art modeling
techniques. Benchmark tests carried out against available selectivity data from high-throughput
kinase profiling experiments demonstrate that, for almost 70% of the inhibitors, their alternate
molecular targets can be effectively identified in the human kinome with a high (>0.5) sensitivity
at the expense of a relatively low false positive rate (<0.5). Furthermore, in a case study, we
demonstrate how X-ReactKIN can support the development of selective inhibitors by optimizing
the selection of kinase targets for small-scale counter-screen experiments. The constructed
cross-reactivity profiles for the human kinome are freely available to the academic community
at http://cssb.biology.gatech.edu/kinomelhm/.
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Introduction
The human kinome, one of the largest families in the

human proteome, comprises >500 genes.1 The pivotal
function of kinases is the signal transduction through a
reversible phosphorylation of tyrosine, threonine and serine
residues in other proteins.2,3 The strong implication of kinase

activity in numerous disease states such as cancer,4 diabetes,5

inflammation,6 multiple sclerosis,7 cardiovascular disease8

and neurological dysfunctions9 makes them very important
drug targets. Consequently, there is a growing interest in the
development of novel compounds with kinase inhibition as
their mode of action;10-12 this has resulted in over a hundred
kinase crystal structures complexed with low-molecular-
weight inhibitors reported in the public domain.13

Many therapeutic strategies have been developed to
modulate kinase activity.14 The most prevalent is kinase
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inhibition by targeting the catalytic site of kinases with ATP-
competitive inhibitors.15 The ATP-binding site provides a
compelling environment for binding a diverse range of
organic molecules devised to compete with ATP, mostly by
mimicking the binding interactions of the adenosine moiety.16

Indeed, ATP-binding pockets are the primary target sites for
the majority of the currently available kinase inhibitors.17

However, the structural and chemical features of the ATP-
binding site as well as the catalytic mechanism are highly
conserved across the kinase family, which significantly
complicates the development of kinase inhibitors with
sufficient target selectivity.

To address this significant issue, a number of computa-
tional techniques have been developed to support experi-
mental efforts directed toward the development of selective
kinase inhibitors. Most employ various classification schemas
for the kinase space with the underlying assumption that
kinases belonging to a common category have higher
potential to bind similar compounds, which may give rise
to undesired cross-reactivity effects. The most straightforward
approach to the classification of kinases is based on the global
sequence or/and structure similarity. A comprehensive survey
carried out for all available kinase sequences classified them
into 30 distinct families, with 19 of them covering nearly
98% of all sequences and representing seven general

structural folds.18 Nevertheless, it has been demonstrated that
a high probability of being inhibited by the same groups of
compounds requires very high sequence identity thresholds,
typically more than 50-60%.19-21 However, the average
pairwise global sequence identity in the human kinome is
∼25%; those kinase pairs with a sequence identity of
50-60% and less might or might not have similar pharma-
cological profiles.

In that regard, alternative approaches are required. A new
method was proposed to classify the medicinally relevant
kinase space based on structure-activity relationship, SAR,
profiles.22 Results obtained for 38 crystal structures of protein
kinases and available small molecule inhibition data showed
that the SAR-based dendograms differ significantly from the
sequence-based clustering for distantly homologous targets.
Another approach exploits structure comparison of kinases
based on a feature-similarity matrix.23 This new metric is
well correlated with a pharmacological distance generated
by comparing affinity fingerprints constructed from experi-
mental cross-reactivity profiles. An interesting study reported
recently employs the QSAR analysis of residue contributions
to the kinase inhibition profile.24 Using various experimental
data sets, binding profiles are constructed based on the
properties of 29 residues in the active site, which can be
applied to predict binding similarities for untested kinases.
Other chemical/structure-based classifications of ATP-bind-
ing sites in protein kinases are based on target family
landscapes constructed using molecular interaction field
analysis,25 exposed physicochemical properties of the active
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sites calculated by Cavbase,26 geometric hashing algorithms27

and binding site signatures created from “hot spot” residues.28

These techniques have been shown to be relatively successful
in the identification of protein kinase binding sites known
experimentally to bind the same compound; however, they
require high-resolution crystallographic structures of the
target kinase proteins, preferably complexed with inhibitors.
As a consequence, the covered kinase space remains
incomplete because it is limited by the availability of
experimentally solved crystal structures; this corresponds to
only about 20% of the human kinome.

This gap can be bridged by protein structure prediction,
particularly comparative modeling.29,30 Current state-of-the-
art protein structure prediction approaches have reached the
level where they can construct protein models whose quality
is often comparable to that of low-resolution experimentally
determined structures.31 Nevertheless, theoretically predicted
protein structures may still have significant structural inac-
curacies in their ligand binding regions;32,33 this requires
appropriate computational techniques that are different from
those applicable to the crystal structures and that can
accommodate structural distortions without significant loss
in accuracy.

In our previous study, we described the results of the first
proteome-scale structure modeling and virtual screening of
the entire human kinome.34 Using a template-based modeling
procedure,35,36 we constructed structural models for all kinase
domains in humans. Subsequently, we applied a structure/

evolution-based approach37 to precisely detect target sites.
These were then subjected to large-scale virtual screening
against a large collection of commercially available com-
pounds using a novel hierarchical approach that combines
ligand- and structure-based filters.38,39 Retrospective bench-
marks against several commonly used ligand libraries
demonstrate that predicted molecular interactions between
kinases and small ligands substantially overlap with available
experimental data. In this paper, we attempt to extend the
modeling and virtual screening of individual protein kinases
to the system level in order to construct a cross-reactivity
virtual profile for the entire human kinome. To achieve this
goal, we develop X-ReactKIN, a machine learning approach
that estimates the potential for cross-reactivity from sequence,
structure and binding properties of the ATP-binding sites in
protein kinases. We validate the results against available
selectivity data from high-throughput kinase profiling experi-
ments. Finally, we demonstrate how X-ReactKIN can support
the development of selective inhibitors by suggesting alter-
nate targets for small-scale counter-screen experiments. The
constructed cross-reactivity profiles for the human kinome
are freely available to the academic community via a user-
friendly web interface that can be accessed from http://
cssb.biology.gatech.edu/kinomelhm/.

Methods
X-ReactKIN Overview. Here, we use the concept of kinase

family virtual profiling and compute the complete map of
putative cross-interactions within the human kinome. We
develop X-ReactKIN, a machine learning approach that
combines sequence, structure and ligand binding similarities
of the ATP-binding sites in protein kinases to estimate the
potential for cross-interactions. We note that these similarities
are calculated using modeled protein structures and virtual
screening ranking. We train a naı̈ve Bayes classifier on the
available inhibitor selectivity data to calculate a new
probabilistic cross-reactivity score, called a CR-score. Based
on the estimated similarities expressed by the CR-score
values, we construct a cross-reactivity virtual profile that
corresponds to the matrix of pairwise interactions within the
complete human kinase family. Below, we describe the
scoring functions used to construct the cross-reactivity
probabilistic score, the details of the data sets and machine
learning implementation including training and validation
protocols.

Sequence-Based Score. For each kinase domain in the
human proteome, we constructed its structural model using
a state-of-the-art template-based structure prediction ap-
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proach. This procedure, described in detail in ref 34, involves
the identification of evolutionary related templates in the
PDB40 using the PROSPECTOR_3 threading algorithm,36

followed by structure refinement/assembly by TASSER, a
coarse-grained procedure guided by tertiary restraints ex-
tracted from the template structures.35 Subsequently, modeled
kinase structures were taken as targets for the prediction of
ATP-binding sites by FINDSITE, a structure/evolution-based
method that identifies ligand-binding sites based on binding
site similarity among superimposed groups of functionally
and structurally related template structures.37 The sequence-
based score corresponds to the sequence identity (fraction
of identical residues) of binding residues between two protein
kinases calculated using FINDSITE identified residues and
structure alignments generated by TM-align.41

Structure-Based Score. In addition to the sequence-based
scoring function, we also use a more structure-oriented
measure of binding site similarity. Here, we employ a
modified version of a PocketMatch score, PM-score, devel-
oped to provide a normalized similarity metric for binding
site comparisons.42 PocketMatch applies a geometric hashing
algorithm to CR atoms and side-chain geometrical centers
of ligand binding residues extracted from the crystal struc-
tures of protein-ligand complexes. Each binding site is
represented by a set of 90 predefined distance bins, whose
populations capture its shape and chemical features. The
original PocketMatch approach uses residues, one or more
of whose atoms are within a distance of 4 Å from the
crystallographic ligand position.42 In our modified imple-
mentation, we use the consensus binding residues identified
by FINDSITE in modeled kinase structures to populate the
hash bins and calculate the PM-score.

Ligand-Based Score. Next, we introduce a new measure
of binding site similarity that uses virtual screening ranks to
calculate a chemical correlation. In the previous study, we
carried out a large-scale virtual screening experiment for the
complete human kinome.34 Here, we use this data to calculate
the correlation between compound ranks obtained for two
binding pockets. The chemical correlation corresponds to the
Kendall τ rank correlation coefficient43 calculated for the
average top ranked set of 10,000 ZINC compounds44 ranked
for individual target sites of the entire human kinome by

structure-based virtual screening using Q-DockLHM.39,45

Details on the docking/screening protocol are given in ref
34. Retrospective benchmarks carried out against several
ligand libraries demonstrate that this collection of compounds
is likely to be significantly enriched in ATP-competitive
kinase inhibitors.34 A high Kendall τ indicates that the
pockets not only exhibit specific binding affinity toward
similar compounds but also do not bind similar ligands. This
new measure based on the similarity of virtual screening
ranks complements sequence- and structure-based similarities
between binding pockets.

Bioassay Data. We use three publicly available bioassay
data sets to train and validate X-ReactKIN: 28 commercially
available compounds examined against a panel of 20 protein
kinases (bioassay #1),46 38 kinase inhibitors assessed across
a panel of 317 kinases representing >60% of the predicted
human kinome (bioassay #2)47 and 20 kinase inhibitors
including 16 approved drugs or those in clinical development
screened against a panel of 119 protein kinases (bioassay
#3).48 Bioassay #1 reports inhibitor potency as a percentage
of kinase activity with respect to that in control incubations
at an ATP concentration of 0.1 mM. Bioassays #2 and #3
use ATP site-dependent competition binding with each
compound screened against the kinase targets at a single
concentration of 10 µM and the binding efficacy reported in
terms of quantitative dissociation constants, Kd. First, primary
kinase targets (one per compound) are selected based on the
strongest inhibition (bioassay #1) or the lowest dissociation
constant (bioassays #2 and #3). Then, for each compound,
we define alternate targets as kinases whose activity was
inhibited to e25% of the control for bioassay #1 and those
with Kde10 µM for bioassays #2 and #3. Remaining kinases
are classified as nontargets. In this study, we use only
compounds with at least one alternate kinase target. The list
of compounds, primary target kinases and the number of
alternate targets as well as nontargets is provided in SI Table
1 in the Supporting Information.
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Activity-Based SAR Profiles. In addition to the bioassay
data described above, we compare the virtual profiles
constructed by X-ReactKIN to the experimentally derived
activity-based SAR similarities on an orthogonal data set of
577 diverse compounds screened across a panel of 203
protein kinases.21 Here, we use similarity scores expressed
by a Tanimoto coefficient calculated for binding affinity
fingerprints generated using an affinity threshold of 10%.
Similarly to the CR-score values, kinase SAR similarity
scores also range from 0 (dissimilar) to 1 (identical). For
each kinase target, we assess the quality of X-ReactKIN virtual
profiles calculated against the remaining kinases using the
Pearson correlation coefficient between the SAR similarities
and the CR-score values.

Machine Learning. In X-ReactKIN, we use a naı̈ve Bayes
classifier to combine individual scoring functions: sequence-,
structure- and ligand-based into a single probabilistic score.
A classical naı̈ve Bayes classification is based on estimating
P(X|Y), the probability or probability density of a qualitative
attribute X given class Y. In our classifier, the real-value
attributes are modeled by a Gaussian distribution, i.e. the
classifier first estimates a normal distribution for each class
by computing the mean and standard deviation of the training
data in that class, which is then used to estimate P(X|Y)
during classification.49 For a given pair of protein kinases,
the probabilistic score from the classifier, called a CR-score,
estimates the chances of the cross-reactivity from sequence,
structure and binding similarities. X-ReactKIN was validated
using the following leave-one-out procedure: In each round,
one inhibitor and its close analogues are removed from the
data set that consists of the bioassay data described above
and the classifier is trained on the remaining compounds.
Here, we define a close analogue as a compound that has a
Tanimoto coefficient calculated using SMILES strings
g0.7.50 Then, for the excluded inhibitor and its primary
target, the kinase proteins are ranked by the predicted CR-
score, with the top-ranked kinases assumed to be alternate
targets. We assess the accuracy of the off-target identification
by a receiver operating characteristic (ROC) analysis with
the CR-score used as a variable parameter. In addition to
the standard ROC curves, we also calculate their distribution-
free confidence bounds.51

Virtual Map of Kinase Cross-Reactivity. Finally, X-
ReactKIN was retrained on all bioassay data and the complete
map of putative cross-interactions within the human kinome
was calculated. Moreover, we constructed a statistical model
by fitting the distribution of the random CR-score values to

a normal inverse Gaussian distribution52 in order to calculate
the associated p-values. The fitting procedure was done in
R53 using the ghyp package. The virtual cross-reactivity map
is visualized using matrix2png,54 with the kinase proteins
grouped according to the subfamily classification and
clustered by sequence identity using CLUTO.55

Results
X-ReactKIN Validation. Here, we use the available

selectivity data from high-throughput kinase profiling experi-
ments to train and validate X-ReactKIN in the off-target
prediction. As described in the Methods section, for each
kinase inhibitor and the corresponding primary target, the
remaining kinases are assessed with respect to the estimated
potential for cross-reactivity, i.e. ability to bind similar
compounds. The results of leave-one-out validation are
presented as a ROC plot in Figure 1. Encouragingly, in all
cases the performance of X-ReactKIN is better than random,
with a true positive rate >0.5 and a false positive rate <0.5
for almost 70% of the benchmark inhibitors. Particularly the
results obtained for bioassay #2 are very promising since
this panel of kinases covers >60% of the human kinome.47

In addition, individual ROC plots for six selected compounds
that include approved drugs such as Gleevec (imatinib),
Iressa (gefitinib), Nexavar (sorafenib), Sprycel (dasatinib)

(49) Witten, I. H.; Frank, E. Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed.; Morgan Kaufmann Publishers:
San Francisco, 2005.

(50) Willett, P.; Barnard, J. M.; Downs, G. M. Chemical Similarity
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Gaussian Generator. Commun. Stat.sSimul. Comput. 1989, 18
(2), 703–10.

(53) The R Development Core Team R: A language and enVironment
for statistical computing; R Foundation for Statistical Computing:
Vienna, Austria, 2008.

(54) Pavlidis, P.; Noble, W. S. Matrix2png: a utility for visualizing
matrix data. Bioinformatics 2003, 19 (2), 295–6.

(55) KarypisG. CLUTO: A Clustering Toolkit, version 2.1.1; 2003.

Figure 1. ROC plot for the prediction of kinase inhibitor
cross-reactivity using X-ReactKIN. Compounds from
bioassays #1, #2 and #3 are shown as dark gray
circles, black triangles and light gray squares, respec-
tively.
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and Tarceva (erlotinib) are presented in Figure 2. In all cases,
the cross-validated performance of X-ReactKIN is significantly
better than random, with tight confidence bounds particularly
for dasatinib (Figure 2A), erlotinib (Figure 2B), motesanib
(Figure 2E) and sorafenib (Figure 2F). The calculated cutoff
points (displayed in Figure 2), which maximize the sensitivity
and specificity, show that most of the cross-interacting
kinases are identified at the expense of a relatively low false
positive rate; the true (false) positive rate is 0.75 (0.25), 0.51
(0.18), 0.60 (0.34), 0.63 (0.27), 0.80 (0.18) and 0.53 (0.11)
for dasatinib, erlotinib, gefitinib, imatinib, motesanib and
sorafenib, respectively.

Human Kinome Cross-Reactivity Profile. Encouraged
by the satisfactory performance of X-ReactKIN in benchmark
tests, we retrained the model on all bioassay data and
constructed a complete map of putative cross-reactions within
the entire human kinome. The details on the trained classifier
used in X-ReactKIN are provided in SI Table 2 in the
Supporting Information. In Figure 3, for the human kinome,
we compare the cross-interaction potential expressed by a
sequence-based classification (Figure 3A) to the CR-score
based classification (Figure 3B). In both Figures 3A and 3B,
the kinases are clustered using sequence identity and the
resulting dendograms are shown on the top of each plot.
Comparing the sequence identity score to the CR-score, we
observe many off-diagonal interactions pointed out by high
CR-values (Figure 3B, blue spots). These nontrivial similari-
ties, which are clearly the most interesting, indicate the

possibility to bind similar compounds by remotely related
protein kinases that belong to different groups. In particular,
many potential cross-interactions are observed between
kinases that belong to AGC (containing PKA, PKC and PKG
protein kinases), CAMK (calcium/calmodulin-dependent
protein kinases) and STE (the homologues of yeast Sterile
kinases) groups. We note that, whereas the average pairwise
sequence identity within these groups is relatively high, 38%,
34% and 36%, respectively, the intergroup sequence identity
is notably lower, 29%, 26% and 26% for AGC/CAMK,
AGC/STE and CAMK/STE, respectively. Even lower aver-
age sequence identity is seen between the TK (tyrosine
kinases) group and those kinases that belong to AGC (23%),
CAMK (24%) and CMGC (22%). The functional similarities
indicated by the high CR-score values between these kinase
proteins are undetectable on the basis of the sequence
similarity alone. We have also constructed a statistical model
for the CR-score distribution in order to assign statistical
significance values. Here, we use a normal inverse Gaussian
distribution, which fits well to the data; this is shown as
histograms as well as a quantile-quantile plot in SI Figure 1
in the Supporting Information.

Comparison to SAR Profiles. For a subset of 203 protein
kinases, activity-based SAR similarities have been previously
reported.21 These similarities were calculated directly from
the experimental data obtained by screening the target kinases
against a diverse set of >500 compounds, intended to

Figure 2. Individual ROC plots for selected inhibitors: (A) dasatinib, (B) erlotinib, (C) gefitinib, (D) imatinib, (E)
motesanib and (F) sorafenib. In each graph, the solid black line, the gray area and the dashed line show the ROC
curve for the CR-score, its 95% confidence bounds and the accuracy of a random classifier, respectively. The cutoff
point that maximizes the sensitivity and specificity is represented by a black triangle. Chemical structures of the
inhibitors are also displayed.
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represent kinase inhibitor chemical space. This large-scale
kinase profiling provides an orthogonal data set to validate
the potential for cross-reactivity predicted by X-ReactKIN.
The results are presented in Figure 4. The direct comparison
of the similarity between pairs of kinases according to the
SAR profiles and the CR-score values is shown in Figure
4A. In both cases, the joint inhibition of many of these kinase
pairs is observed within the TK subfamily. Moreover, good
agreement between both approaches is seen for the STE
subfamily, for which many predicted cross-interactions with

kinases that belong to other, particularly AGC and CAMK,
groups are confirmed experimentally. The distribution of the
Pearson correlation coefficients between SAR similarities and
CR-score values calculated for 203 kinase targets is presented
in Figure 4B. This distribution is clearly shifted toward high
(>0.5) values, which indicate a good overlap between
experimental SAR and virtual CR-score profiles for the
majority of kinase targets. The average Pearson correlation
coefficient calculated across this data set is 0.53 ( 0.14. The
qualitative agreement between the activity-based SAR simi-

Figure 3. Classification of the human kinome by X-ReactKIN: (A) sequence similarity matrix and (B) cross-reactivity
matrix. In both plots, kinase proteins are grouped according to the subfamily classification displayed on both axes.
Within each group, kinase members are clustered using sequence identity and the resulting dendograms are shown
on the top of each graph. Color scale expressing the sequence similarity (A) as well as the potential cross-reactivity
(B) is displayed on the right.

Figure 4. Comparison of the X-ReactKIN virtual profiles to the SAR similarities on a set of 203 protein kinases. (A)
Similarity between pairs of kinases ordered according to the Sugen phylogenetic tree (available at http://kinase.com).
Upper right and lower left triangles represent the CR-score values and SAR similarities, respectively. The color scale
expressing both similarities is displayed in the right corner. (B) Histogram of the distribution of the Pearson correlation
coefficients between SAR similarities and CR-score values calculated for 203 kinase targets. Inset: Correlation
between SAR similarities and CR-score values for the leukocyte-specific protein tyrosine kinase, Lck.
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larities and the CR-score profiles provides significant valida-
tion of the X-ReactKIN approach.

Below, in a case study, we present a simple application
of the human kinome cross-reactivity virtual profile con-
structed by X-ReactKIN to demonstrate how it can be used
to optimize the selection of kinase targets for small-scale
selectivity counter-screens in kinase inhibitor development.

Case Study: Inhibitors of Lck. 2-Aminopyrimidine
carbamates are a new class of compounds with potent and
selective inhibition of the leukocyte-specific protein tyrosine
kinase, Lck. Structure-activity relationship studies and
extensive pharmacological tests carried out for a series of
substituted 2-aminopyrimidine carbamates identified 2,6-
dimethylphenyl-2-((3,5-bis(methyloxy)-4-((3-(4-methyl-1-
piperazinyl)propyl)oxy) phenyl)amino)-4-pyrimidinyl(2,4-
bis(methyloxy)phenyl)carbamate as a potent inhibitor of Lck,
with an IC50 of 0.6 nM (compound 43 in the original paper).56

Subsequently, a counter-screen against 15 other kinases that
belong to TK, CMGC and AGC groups was carried out in
order to characterize the selectivity profile of this compound.
Here, we compare the experimental inhibition data to the in
silico profile of Lck and demonstrate that the map of putative
cross-interactions within the human kinome constructed by
X-ReactKIN can be used to suggest alternate kinase targets
for the selectivity counter-screens. Figure 5 shows the
selectivity profile for the pyrimidine carbamate inhibitor.
Experimentally, this inhibitor was found to be highly
selective with regard to the nonbinding of JAK3 (Kin. Dom.
2), MET, JNK3, PKCt, IGF1R and CDK2 (Figure 5A). With
the exception of JAK3 (Kin. Dom. 2), the CR-score values
(p-values) between Lck and these kinases are statistically
insignificant: 0.483 (3.46 × 10-2), 0.126 (7.03 × 10-1), 0.182
(4.36 × 10-1), 0.267 (1.96 × 10-1), 0.229 (2.81 × 10-1)
and 0.162 (5.23 × 10-1), respectively (Figure 5B). For
another 8 kinase targets, the experimental IC50 values are in
the range of 100 nM to 1 µM; here the CR-scores are higher
(∼0.3, p-values ∼0.1 or better), with p-values <0.05 for BTK
(1.39 × 10-2) and JAK2 (Kin. Dom. 2, 4.07 × 10-2). No
selectivity was shown against SRC kinase, for which the CR-
score (p-value) is 0.961 (1.55 × 10-3).

Furthermore, the map of putative cross-interactions reveals
other similarities between e.g. FGFR1 and TIE2 (CR-score
) 0.856, p-value ) 2.92 × 10-3), JAK2 (Kin. Dom. 2) and
TIE2 (CR-score ) 0.663, p-value ) 9.96 × 10-3), BTK and
ZAP70 (CR-score ) 0.544, p-value ) 2.23 × 10-2), JNK3

and p38a (CR-score ) 0.532, p-value ) 2.43 × 10-2) or
JAK3 (Kin. Dom. 2) and SYK (CR-score ) 0.603, p-value
) 1.49 × 10-2), which indicate a high probability of
inhibition by similar compounds. In fact, the joint inhibition
of many of these kinase pairs has been already confirmed
experimentally. We note that none of this information was
used for the construction of the CR-score matrix; indeed we
were unaware of the experimental results until after the
predictions were made and we did a literature search. For
example, an oral kinase inhibitor ACTB-1003 with multiple
modes of action, targeting cancer mutations via FGFR1
inhibition (IC50 ) 6 nM) and angiogenesis through inhibition
of VEGFR2 (2 nM) and TIE2 (4 nM), has been recently
reported.57 Several inhibitors (compounds 10, 11, 12, 13 and
14 in the original paper) were found to nonselectively inhibit
JAK2 (TIE2) with the percent of enzyme activity at 1 µM
concentration of 6 (35), 5 (0), 0 (1), 30 (1) and 27 (7),
respectively.58 Moreover, compound 7 in the original paper
was found to be the most selective against JAK2 and TIE2
(3% and 26%) across a panel of 59 recombinant serine/

(56) Martin, M. W.; Newcomb, J.; Nunes, J. J.; McGowan, D. C.;
Armistead, D. M.; Boucher, C.; Buchanan, J. L.; Buckner, W.;
Chai, L.; Elbaum, D.; Epstein, L. F.; Faust, T.; Flynn, S.; Gallant,
P.; Gore, A.; Gu, Y.; Hsieh, F.; Huang, X.; Lee, J. H.; Metz, D.;
Middleton, S.; Mohn, D.; Morgenstern, K.; Morrison, M. J.;
Novak, P. M.; Oliveira-dos-Santos, A.; Powers, D.; Rose, P.;
Schneider, S.; Sell, S.; Tudor, Y.; Turci, S. M.; Welcher, A. A.;
White, R. D.; Zack, D.; Zhao, H.; Zhu, L.; Zhu, X.; Ghiron, C.;
Amouzegh, P.; Ermann, M.; Jenkins, J.; Johnston, D.; Napier,
S.; Power, E. Novel 2-aminopyrimidine carbamates as potent and
orally active inhibitors of Lck: synthesis, SAR, and in vivo
antiinflammatory activity. J. Med. Chem. 2006, 49 (16), 4981–
91.

(57) Patel, K.; Fattaey, A.; Burd, A. ACTB-1003: An oral kinase
inhibitor targeting cancer mutations (FGFR), angiogenesis
(VEGFR2, TEK), and induction of apoptosis (RSK and p70S6K).
J. Clin. Oncol. (Meeting Abstr.) 2010, 28 (15_suppl), e13665.

Figure 5. Selectivity profile for the pyrimidine carbamate
inhibitor reported in ref 56: (A) experimental inhibition
constant values in µM with the IC50 e1 µM (>1 µM) in
turquoise (yellow); (B) pairwise CR-score matrix for the
tested kinases, CR-score scale is given at the bottom;
(C) chemical structure of the inhibitor. In panel B,
kinase pairs with a pairwise sequence identity of >60%
are marked with an X.
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threonine and tyrosine kinases. Many JNK3 inhibitors are
known to also inhibit p38a; e.g. two compounds with a
nanomolar activity against JNK3 (IC50 of 7 and 1 nM) have
been reported as potent p38a inhibitors as well, with the IC50

of 0.2 and 4 nM, respectively.59 Finally, in Vitro enzymatic
assays of the novel JAK3 inhibitor R348 showed potent
inhibition of JAK3- and SYK-dependent pathways.60

Lck was also included in the large-scale assessment of
the chemical coverage of the kinome space using activity-
based SAR profiles.21 In Figure 4B (inset), we compare the
experimentally derived SAR similarities to the CR-score
values calculated against the remaining 202 protein kinases
used as targets in the high-throughput binding assay. Here,
the Pearson correlation coefficient between the SAR similari-
ties and the CR-score values is 0.73. This high correlation
additionally confirms the good agreement between the
potential for cross-reactivity predicted by X-ReactKIN and the
experimentally observed joint inhibition of protein kinases.

Of course, a high probability of inhibition by the same
groups of compounds does not preclude a successful design
of selective inhibitors. Rather, it should support the counter-
screen selectivity experiments by optimizing the selection
of possible off-targets, whose binding sites have the highest
potential for cross-reactivity.

Discussion
Many drug candidates fail in clinical development due to

their poor pharmacokinetic characteristics and because of
intolerable adverse effects, which may sometimes originate
in their insufficient selectivity.61 The physicochemical simi-
larity between highly conserved ATP-binding sites in protein
kinases, one of the most important drug targets, has rendered
the challenge of designing selective inhibitors difficult.
Nevertheless, the discovery of selective kinase inhibitors
demonstrates that there is enough conformational and chemi-
cal diversity in and around the active site that can be explored
to design compounds with sufficient selectivity.14,15 Thus,
particularly in the early stages of drug development, the
knowledge of alternate kinase targets with significant po-
tential for cross-reactivity is critical. One common strategy
in inhibitor design involves differential lead optimization to

increase the selectivity toward a particular drug target; such
efforts are typically oriented toward the development of
highly specific inhibitors acting on single protein kinases.
Later on, with the approval of multitarget inhibitors, such
as imatinib, sunitinib or lapatinib, an alternate strategy has
emerged, where drug-resistance can be overcome by simul-
taneously targeting multiple kinase pathways.62 Multikinase
inhibitors with highly tuned selectivity profiles are currently
of particular interest in pharmaceutical research.63 The
functional classification of the entire human kinome is of
paramount importance in the development of both highly
selective as well as selectively unselective novel inhibitors.

Due to the sparse and nonuniformly distributed structural
data,64 cross-interactions are still poorly defined at the
kinome level. To maximize the coverage of kinase functional
space, we developed X-ReactKIN, a Chemical Systems
Biology approach for in silico cross-reactivity profiling that
does not require high-resolution structural data. X-ReactKIN

employs a state-of-the-art protein structure prediction algo-
rithm followed by the recently developed ligand homology
modeling (LHM) approach to model kinase-drug interac-
tions.34 Subsequently, the modeling of individual kinase
members is now extended to construct a cross-reactivity
virtual profile for the entire human kinome. This proteome-
wide analysis represents a significant improvement over other
methods, which are generally confined to high-resolution
structures solved by protein crystallography.

In addition to the traditional sequence and structure
similarity measures, our method also uses a novel type of
binding site comparison by means of virtual screening ranks.
A high correlation between ligand rankings for two binding
sites, referred to as a chemical correlation, indicates that these
sites not only exhibit specific binding affinity toward similar
molecules but also do not bind similar compounds. Here,
the accuracy of ligand docking and ranking is essential.
Particularly, using predicted receptor structures requires
reliable docking techniques capable of dealing with structural
inaccuracies in protein models. It has been demonstrated that
even moderate structural distortions of the modeled binding
pockets drastically interfere with the ability of the all-atom
docking approaches to identify correct docking geometries
and to rank ligands.39,65 Our virtual screening protocol that
provides compound ranking for the estimation of the chemi-
cal correlation employs evolution-based ligand docking38

followed by low-resolution binding pose refinement.39,45

(58) Okram, B.; Nagle, A.; Adrian, F. J.; Lee, C.; Ren, P.; Wang, X.;
Sim, T.; Xie, Y.; Xia, G.; Spraggon, G.; Warmuth, M.; Liu, Y.;
Gray, N. S. A general strategy for creating “inactive-conformation”
abl inhibitors. Chem. Biol. 2006, 13 (7), 779–86.

(59) Scapin, G.; Patel, S. B.; Lisnock, J.; Becker, J. W.; LoGrasso,
P. V. The structure of JNK3 in complex with small molecule
inhibitors: structural basis for potency and selectivity. Chem. Biol.
2003, 10 (8), 705–12.

(60) Deuse, T.; Velotta, J. B.; Hoyt, G.; Govaert, J. A.; Taylor, V.;
Masuda, E.; Herlaar, E.; Park, G.; Carroll, D.; Pelletier, M. P.;
Robbins, R. C.; Schrepfer, S. Novel immunosuppression: R348,
a JAK3- and Syk-inhibitor attenuates acute cardiac allograft
rejection. Transplantation 2008, 85 (6), 885–92.

(61) Bleicher, K. H.; Bohm, H. J.; Muller, K.; Alanine, A. I. Hit and
lead generation: beyond high-throughput screening. Nat. ReV.
Drug DiscoVery 2003, 2 (5), 369–78.

(62) Petrelli, A.; Giordano, S. From single- to multi-target drugs in
cancer therapy: when aspecificity becomes an advantage. Curr.
Med. Chem. 2008, 15 (5), 422–32.

(63) Morphy, R. Selectively nonselective kinase inhibition: striking
the right balance. J. Med. Chem. 2010, 53 (4), 1413–37.

(64) Marsden, B. D.; Knapp, S. Doing more than just the structure-
structural genomics in kinase drug discovery. Curr. Opin. Chem.
Biol. 2008, 12 (1), 40–5.

(65) Verdonk, M. L.; Mortenson, P. N.; Hall, R. J.; Hartshorn, M. J.;
Murray, C. W. Protein-Ligand Docking against Non-Native
Protein Conformers. J. Chem. Inf. Model. 2008, 48 (11), 2214–
25.
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Such a docking/ranking procedure is well suited for virtual
screening applications using modeled receptor structures
since it exhibits significant tolerance to receptor structure
deformation.39

Modern drug discovery is routinely supported by compu-
tational techniques, such as virtual screening, which prioritize
drug candidates and increase the hit rate by restricting
screening libraries to compounds that likely exhibit the
desired bioactivity. At the system level, the functional
classification of the human kinome expands our understand-
ing of the structural, chemical and pharmacological aspects
of the kinase space and provides a practical strategy that
should prove useful for the design of more selective
therapeutics.

Note
The cross-reactivity virtual profile of the human kinase space is

available at http://cssb.biology.gatech.edu/kinomelhm/.
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