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The growing interest in the identification of kinase inhibitors, promising therapeutics in the treatment of
many diseases, has created a demand for the structural characterization of the entire human kinome. At the
outset of the drug development process, the lead-finding stage, approaches that enrich the screening library
with bioactive compounds are needed. Here, protein structure based methods can play an important role,
but despite structural genomics efforts, it is unlikely that the three-dimensional structures of the entire kinome
will be available soon. Therefore, at the proteome level, structure-based approaches must rely on predicted
models, with a key issue being their utility in virtual ligand screening. In this study, we employ the recently
developed FINDSITE/Q-Dock ligand homology modeling approach, which is well-suited for proteome-
scale applications using predicted structures, to provide extensive structural and functional characterization
of the human kinome. Specifically, we construct structure models for the human kinome; these are
subsequently subject to virtual screening against a library of more than 2 million compounds. To rank the
compounds, we employ a hierarchical approach that combines ligand- and structure-based filters. Modeling
accuracy is carefully validated using available experimental data with particularly encouraging results found
for the ability to identify, without prior knowledge, specific kinase inhibitors. More generally, the modeling
procedure results in a large number of predicted molecular interactions between kinases and small ligands
that should be of practical use in the development of novel inhibitors. The data set is freely available to the
academic community via a user-friendly Web interface at http://cssb.biology.gatech.edu/kinomelhm/ as well
as at the ZINC Web site (http://zinc.docking.org/applications/2010Apr/Brylinski-2010.tar.gz).

1. INTRODUCTION

One of the largest enzyme families, the protein kinase
family, comprises about ∼2% of the human proteome.1 Each
member of this family contains a highly conserved kinase
catalytic domain responsible for the reversible phosphory-
lation of protein substrates, a major regulatory process in
both prokaryotic and eukaryotic organisms.2,3 The transfer
of the γ-phosphate of ATP to serine, threonine, and tyrosine
residues in many enzymes and receptors turns them on and
off; thus, the dysfunction of kinase activity is implicated in
various pathological conditions. The regulation of kinase
activity has been recognized by the pharmaceutical industry
as an important therapeutic strategy in the treatment of many
diseases including cancer, Alzheimer’s disease, diabetes,
inflammation, multiple sclerosis, and cardiovascular disease.4-8

Currently, an estimated one-third of drug discovery programs
focus on protein kinases,9 with already approved drugs such
as imatinib10 (Gleevec, Novartis), gefitinib11 (Iressa, Astra-
Zeneca), lapatinib12 (Tykerb/Tyverb, GlaxoSmithKline), or
sunitinib13 (Sutent, Pfizer). These are just a few of the more
than 100 successfully developed compounds with kinase
inhibition as their mode of action.14

To speed up the development of new biopharmaceuticals,
computational techniques for the identification of lead
compounds are widely used.15 In particular, virtual screening,

a technique that shows great promise for lead discovery, is
becoming an integral part of modern drug design pipelines.16,17

Due to advances in computer technology resulting in
constantly increasing computational power, virtual libraries
comprising millions of compounds can be rapidly evaluated
in silico prior to experimental screens and at a fraction of
the cost. Virtual screening approaches, historically divided
into ligand- and structure-based algorithms,18 prioritize drug
candidates by estimating the probability of binding to the
target receptor. Among many methods developed to date,
docking-based techniques are valuable tools for lead iden-
tification.19 These algorithms rank compounds by predicting
the binding mode for a query molecule in the binding pocket
of the target protein;20-22 this is followed by the prediction
of binding affinity from molecular interactions.23-25 Recent
successful applications of structure-based virtual screening
to kinase targets include the identification of potent inhibitors
for death-associated protein kinases (DAPKs),26 protein
kinase B (PKB/AKT),27 Janus kinase 2 (JAK2),28 Met
tyrosine kinase (RTK Met),29 and Aurora kinase A (AurA).30

Notwithstanding the practical value of virtual screening
by ligand docking for lead identification, there are significant
flaws in current methods. Most salient is the fact that the
predicted binding affinity is strongly correlated with the
molecular weight of the ligand, independent of whether
the ligand really binds to its target.31,32 Furthermore, to
achieve satisfactory performance, many commonly used
docking algorithms require the X-ray structure of their* Corresponding author e-mail: skolnick@gatech.edu.
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receptor target, preferably in the ligand-bound conformational
state.33 Such high-resolution structural information is avail-
able only for a fraction of the druggable proteome. At 90%
sequence identity, Figure 1 shows that the coverage of the
human kinome by protein crystal structures from the PDB34

is ∼20%. On the other hand, the popularity of kinase
inhibitors as novel therapeutics has significantly increased.
Since 1995, when one of five published papers on inhibitor
development was related to kinases, the interest in kinase
inhibitors has grown significantly; in 2008, approximately
one-third of publications reporting on inhibitor development
can be linked to protein kinases (Figure 1, inset). This evident
trend in pharmaceutical research creates a great demand for
the structural data that would cover the entire human kinome.
The gap between the availability of protein sequences and
structures can be filled by protein structure prediction,
particularly comparative modeling.35,36 For a target sequence,
given a set of evolutionarily related protein structures, state-
of-the-art template-based algorithms can construct a model
whose quality is often comparable to that of a low-resolution
experimentally determined structure.37 However, despite
having the correct global topology, theoretically predicted
protein structures may still have significant structural inac-
curacies in their ligand binding regions. It has been dem-
onstrated that even moderate structural errors in the backbone
and side chain coordinates interfere with traditional ligand
docking approaches and cause a critical deterioration in the
ability to accurately reproduce binding poses.32,33

On that account, the use of protein models as target
receptors for ligand docking in structure-based drug develop-
ment requires appropriate computational techniques that may
be different from those designed to operate on the crystal
structures. The recently developed FINDSITE/Q-Dock ligand
homology modeling (LHM) methodology is one such ap-
proach that has been demonstrated to exhibit the desired
tolerance to receptor structure deformation.38,39 Conceptually
similar to protein comparative modeling, LHM extends
template-based techniques to the modeling of protein-ligand
interactions and provides a detailed functional annotation of
the target proteins. As schematically depicted in Figure 2,

following protein structural characterization, the functional
characterization can be considered as a three-stage process.
First, functional relationships between proteins are detected
by sensitive methods such as sequence profile-driven
threading40,41 in order to identify essential features associated
with ligand binding, i.e., functionally important residues,
common molecular substructures in binding ligands, and the
structural conservation of their binding modes.39 These
insights are subsequently exploited during the initial docking
of ligands by a similarity-based approach.39,42 Finally, drug
candidates placed into the target binding pockets are subject
to a refinement procedure to optimize the interactions with
the protein and to rank the predicted poses.38,43 To deal with
the problem of structural deformations when protein models
are used as the target structures, low-resolution ranking and
scoring techniques have been developed.44-46

In this study, we present the results of the large-scale
structure modeling and virtual screening of the entire human
kinome. All-atom structural models of all kinase domains
in humans have been constructed by a state-of-the-art protein
structure prediction approach.40,41,47,48 Next, ATP-binding
pockets were identified and used as the target sites in ligand-
based virtual screening against a large (>2 × 106) collection
of commercially available druglike compounds49 followed
by ligand docking/refinement applied to the top 1 × 104

molecules for each kinase. Ligand homology modeling38,39

produced >1 × 109 molecular fingerprint based similarity
assessments of drug-kinase pairs and >5 × 106 three-
dimensional models of drug-kinase complexes. The latter
were subsequently evaluated by various scoring functions,
and finally, the ranked lists of compounds were compiled
for each human kinase. Modeling accuracy is validated for
protein structure prediction, binding residues identification,
and ligand docking using available experimental data.
Compound ranking is assessed in retrospective benchmarks
against several commonly used ligand libraries, including
BindingDB,50 MDL Drug Data Report,51 and the Directory
of Useful Decoys.52 Furthermore, in a case study, we discuss

Figure 1. Availability of the ligand-bound and ligand-free crystal
structures for the human kinome. Inset: Histogram of the number
of abstracts published since 1995 selected from the PubMed using
the following queries: (“inhibitor”[Text Word]) AND (“YEAR/01/
01”[Publication Date]: “YEAR/12/31”[Publication Date]) and ((“in-
hibitor”[Text Word]) AND (“kinase”[Text Word])) AND (“YEAR/
01/01”[Publication Date]: “YEAR/12/31”[Publication Date]). Figure 2. Hierarchical approach to structural and functional

characterization of proteins using homology modeling techniques.
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the possible application of machine learning on virtual
screening data to support the development of isoform-specific
protein kinase inhibitors.

The full set of modeled protein structures, docked ligand
conformations, and compound rankings is freely available to
the academic community via a user-friendly Web interface that
can be accessed from http://cssb.biology.gatech.edu/kinomelhm/
as well as from the ZINC Web site (http://zinc.docking.org/
applications/2010Apr/Brylinski-2010.tar.gz).

2. MATERIALS AND METHODS

2.1. Kinase Structure Modeling. The sequences of all
kinase domains identified in the human genome were taken
from ref 1. This repository contains 516 putative protein
kinase genes; 409 of these are grouped into eight major
kinase families (AGC, CAMK, CK1, CMGC, RGC, STE,
TK, and TKL), 82 are classified as “others”, and 25 are
considered atypical. Protein structure modeling was carried
out as follows: First, for each kinase domain structure
templates were selected from a nonredundant template library
by our threading algorithm PROSPECTOR_3,40,41 which was
designed to detect close as well as remote homologous
templates. Subsequently, threading templates were submitted
to TASSER,47,48 a coarse-grained structure assembly/refine-
ment procedure guided by tertiary restraints extracted from
the template structures. All-atom models were constructed
from CR coordinates obtained from the TASSER simulations
by PULCHRA.53 Finally, the kinase structures were energy
minimized in the CHARMM22 force field54 using the Jackal
modeling package.55 Modeled kinase structures were then
taken as targets for the prediction of ATP-binding sites by
FINDSITE,56,57 a threading-based method that identifies
ligand binding sites based on binding site similarity among
superimposed groups of functionally and structurally related
template structures. The ATP-binding pockets were used as
the target sites to dock ligands.

2.2. Ligand Docking and Ranking. The ligand docking
procedure consisted of initial ligand placement by FIND-
SITELHM 39 followed by low-resolution refinement by Q-
DockLHM 38 and all-atom refinement using AMMOS.58 FIND-
SITELHM is a fast ligand homology modeling approach that
docks flexible ligands by a simple superpositioning procedure.
It uses a collection of template-bound ligands extracted from
binding sites predicted by FINDSITE to derive the common
molecule substructures, viz., the anchor functional groups.
Subsequently, the consensus binding poses of the anchor
substructures are used for target ligand superposition, where
the flexibility of a ligand is accounted for by the superposition
of multiple low-energy conformations generated by BAL-
LOON.59 The conformation that can be superimposed onto the
reference coordinates with the lowest root-mean-square-devia-
tion (rmsd) structure to the predicted anchor pose is selected
as the final model. Initial binding poses generated by FIND-
SITELHM were submitted to low-resolution refinement by
Q-DockLHM. Q-DockLHM is a direct extension of Q-Dock44 that
additionally includes harmonic rmsd restraints imposed on the
predicted anchor-binding pose. The lowest-energy conformation
generated during the replica exchange Monte Carlo sampling
was selected as the final docking result. Ligand poses provided
by Q-DockLHM were transformed into the all-atom representation
and further refined by molecular mechanics optimization using

AMMOS.58 AMMOS uses the AMMP molecular simulation
package60 to carry out automatic refinement of the protein-ligand
complexes. We used the sp4 force field in all simulations;
protein atoms within a 12 Å sphere around the ligand were
allowed to be flexible (AMMOS Case 4).

To provide compound ranking in virtual screening, we
applied the following scoring functions: ligand-based mo-
lecular fingerprints implemented in FINDSITE,56,61 anchor
substructure coverage, where the anchor substructures were
identified by FINDSITELHM,39 structure-based scoring by the
total energy and the pocket-specific component from Q-
DockLHM’s force field,38 and the total docked energy provided
by AMMOS.58

2.3. Data Sets. 2.3.1. ZINC. Each protein kinase was
screened against 2 095 759 compounds from the ZINC7
library.49 In the first step, a fast ligand-based screening was
appliedusingmolecularfingerprintsprovidedbyFINDSITE,56,57

as described above. Subsequently, for each target, the top
10 000 compounds (0.5% of the library) were selected based
on the modified Tanimoto score39,62,63 and submitted to
molecular docking by FINDSITELHM followed by Q-Dock-
LHM and AMMOS. Finally, the compounds were reranked
by the structure-based scoring functions.

2.3.2. PDB. Protein structure modeling, binding residue
prediction, and docking accuracy were assessed for 326
kinase crystal structures taken from ref 64. The data set
consists of 57 different human kinases with a ligand bound
in the ATP-binding site (278 unique protein-ligand pairs)
and 48 ligand-free forms.

Kinase structure modeling accuracy was assessed by the
global CR rmsd and the TM-score.65 Local structural
distortions of the binding pockets were evaluated by their
CR and all-atom rmsd calculated over the binding residues
identified by LPC.66 The accuracy of ATP-binding site
detection by FINDSITE was expressed as the distance of
the predicted site from the ligand geometric center in the
crystal structures and Matthew’s correlation coefficient
(MCC) calculated for the binding residues:

where TP, TN, FP, and FN denote respectively true positives
(correctly predicted binding residues), true negatives (resi-
dues correctly predicted not to bind a ligand), false positives
(overpredicted binding residues), and false negatives (missing
binding residues).

To evaluate docking accuracy, we use the fraction of
correctly predicted binding residues as well as the fraction
of recovered native specific protein-ligand contacts.38 In
theoretical protein models, the local geometry of the binding
pocket frequently deviates from the experimental structure.
Therefore, ligand poses transferred from the crystal structures
upon the superposition of the binding residues roughly
estimate the upper bound for ligand docking accuracy against
protein models. Ligands randomly placed into the ATP-
binding pockets within a distance of 7 Å (docking sphere)
from the predicted pocket center delineate the lower bound
of docking accuracy.

2.3.3. BindingDB. Ranking accuracy in virtual screening
was assessed for 362 known active compounds selected from

MCC ) TP · TN - FP · FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(1)
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BindingDB.50 The top 10 000 compounds from virtual
screening against the ZINC7 library were used as background
compounds. For each known kinase inhibitor, we assess the
improvement of ranking by structure-based scoring using
Q-DockLHM and AMMOS over the fingerprint-based scoring
by FINDSITE.

2.3.4. KEGG. The rank of ATP for each kinase target was
calculated versus 12 158 background molecules from the
KEGG compound library.67

2.3.5. DUD. The Directory of Useful Decoys52 was
designed for benchmarking virtual screening approaches and
contains 40 protein targets, 2950 active compounds, and 36
decoy molecules per one active compound with similar
physical properties. Seven targets from DUD belong to the
human kinase family: CDK2, EGFR, FGFR1, KDR, p38a,
PDGFRb, and SRC. Here, we use these targets to provide a
comparative assessment of the screening protocols used in
this study and in state-of-the-art virtual screening using
DOCK.68 The energy-based ligand rankings by DOCK3.5
applied to the crystal structures of the target kinases were
taken from ref 52. In addition, we carried out docking
simulations using DOCK6 against the crystal as well as
modeled kinase structures. Target receptor structures were
prepared by Chimera69 using the default set of parameters.
Ligand preparation including the Gasteiger-Marsili partial
charge assignment, and the calculation of hydrogen positions
were done using OpenBabel.70 Binding poses generated by
flexible ligand docking simulations using a default “anchor
and grow” protocol were ranked by the total grid score. The
results provided by DOCK3.5/6 were compared to ligand
rankings obtained by low-resolution docking/scoring by
Q-DockLHM 38,44 (knowledge-based potential) and FIND-
SITELHM 39 (anchor coverage) using modeled structures.
Furthermore, we applied data fusion to combine the results
from virtual screening using the pocket-specific potential
(Q-DockLHM) and the anchor coverage (FINDSITELHM). Here,
we use the SUM rule that is expected to be less sensitive to
noisy input than both extreme rules71 and is preferred when
fusion is by rank.72 For a given library compound k, a
combined score (CS) is calculated from

where n is the number of ranked lists (in our case, n ) 2:
Q-DockLHM and FINDSITELHM) and ri denotes the rank
position of the library compound k in the ith ranked list.

The performance of DOCK3.5/6 and Q-DockLHM/FIND-
SITELHM in virtual screening for kinase inhibitors is assessed
by EF10 (enrichment factor calculated for the top 10% of
the ranked screening library),39,73 BEDROC20 (Boltzmann-
enhanced discrimination of ROC),73 AUAC (area under the
accumulation curve),73 and ACT-50% (the top fraction of
ranked library that contains 50% of the active compounds).
Random ligand ranking yields EF10, BEDROC20, AUAC,
and ACT-50% of 1.0, 0.1, 0.5, and 0.5, respectively.

2.3.6. MDDR. MDL Drug Data Report provides compre-
hensive information on bioactive compounds compiled from
published and unpublished sources.51 Here, 562 protein
kinase C (PKC) inhibitors were selected from MDDR (MDL
activity index: 78374) and used in virtual screening against
nine isoenzymes of PKC: R, �, γ, δ, ε, η, θ, ι, and �. For

each PKC isoform, 10 000 compounds randomly selected
from the ZINC7 database49 were used as the background
library.

2.3.7. PKC. In addition to the assessment of the ligand
ranking capability for protein kinase C, we also investigated
the possibility of the prediction of inhibitor specificity toward
different isoenzymes of PKC by a machine learning ap-
proach. Here, we use 10 inhibitors collected from the
literature, for which half-maximal inhibition constants (IC50)
values toward PKC isoforms were determined experimen-
tally: corallidictyal,74 GF-109203X,75 Gö-6976,76 JTT-010,77

K252a,78 midostaurin,79 rottlerin,80 ruboxistaurin,81 stauro-
sporine,82 and UCN-01.83 A simple three-state classification
model was constructed. For each PKC isoenzyme, the
inhibitors were divided into three classes based on the IC50

values: class I, good binders (IC50 < 100 nM); class II, weak
binders (100 nM < IC50 < 1 µM); and class III, nonbinders
(IC50 > 1 µM). The Supporting Vector Machine (SVM, nu-
SVC type with a polynomial kernel)84 was trained on the
following features: docking scores (raw score and the Z-score
from virtual screening), i.e., fingerprint-based (FINDSITE),
final docked energy (Q-DockLHM), and pocket specific
component (Q-DockLHM); and the chemicophysical properties
of the inhibitors, i.e., molecular weight (MW), octanol/water
partition coefficient (log P), and topological polar surface
area (PSA). The molecular properties were calculated by
OpenBabel.70 The classification model was validated using
the following leave-one-out procedure: in each round, one
inhibitor was removed from the data set, the SVM model
was trained on the inhibition data for the remaining
compounds, and the excluded inhibitor was assigned a
binding class for each PKC isoenzyme. The accuracy is
assessed in terms of the fraction of correct assignments.
Finally, the SVM model was trained on all experimental data
and the prediction was made for PKC isoenzyme-inhibitor
pairs for which no inhibition constants are reported in the
literature.

3. RESULTS

3.1. Modeled Structures for the Human Kinome. Tem-
plate-based modeling is one of the most frequently used
techniques in protein structure prediction and has the
capability of providing reliable models in the presence of
evolutionarily related template structures.35,36 In this study,
we constructed structure models for all kinase sequences
identified in the human kinome by our protein structure
prediction protocol: threading by PROSPECTOR_340,41

followed by structure assembly/refinement using TASSER.47,48

Figure 3 presents the global CR root-mean-square deviation
(rmsd), TM-score,65 and binding pocket rmsd from the crystal
structure for the set of 57 ligand-bound and 48 ligand-free
human kinases64 that have experimentally determined struc-
tures in the PDB. The global structures of kinase domains
have an average CR rmsd (TM-score) from the holo and apo
crystal structures of 2.75 Å (0.92) and 3.13 Å (0.90),
respectively. The lower rmsd and higher TM-score values
calculated for holo vs apo structures reflect the fact that most
of the template structures in the PDB are in the ligand-bound
functional state (see Figure 1) and the force field used by
TASSER for structure refinement favors conformations that
are typically more compact and contain more interresidue

CSk ) ∑
i)1

n

ri (2)
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contacts than the open conformational states. Figure 3C
shows the local deviations from the experimental structure
for ATP-binding pockets; the accuracy of these regions is
critical for ligand docking and ranking. The average CR (all-
atom) rmsd calculated over the binding residues is 1.27 Å
(2.36 Å). Despite progress in the prediction of residue
rotamers,85-87 side chain modeling still needs further
improvement. Nevertheless, these values concur with the
estimated plasticity of the binding sites that have the
capability to bind the same ligand (or class of ligands) in
the kinase family88 and proteins in general.39 In contrast to
many ligand-docking algorithms that require highly accurate
experimental structures, the local distortions of ligand binding
regions are tolerated to some extent by docking approaches
that use a lower resolution description.38,44-46

3.2. ATP-Binding Pocket Prediction by FINDSITE. To
dock ligands into the modeled kinase structures, we used
binding pockets predicted by FINDSITE, a threading-based
binding site prediction/protein functional inference/ligand
screening algorithm that detects common ligand binding sites
in a set of evolutionarily related proteins.56,57 The average
number of binding sites predicted by FINDSITE for a kinase
target is 32. Here, we use only the top-ranked pockets with
the majority of low-ranked sites likely involved in nonspecific
ligand binding. The results of ATP-binding pocket prediction
carried out for 57 different human kinases and 278 ligands
are shown in Figure 4. Considering a cutoff distance of 4 Å
as the hit criterion, the success rates for all complexes and
for a nonredundant set with respect to the protein sequences
are 86.7% and 94.7%, respectively. In most of the cases,
the predicted distance is less than 2.5 Å. This very high
accuracy of binding site prediction results in high Matthew’s
correlation coefficients (MCCs) calculated for the binding
residues; for most of the complexes, the MCC is >0.80
(Figure 4, inset). Two major factors account for the
exceptional efficiency of ATP-binding site detection: the
kinase structures have been modeled by TASSER to very
high accuracy and most of the currently available kinase
inhibitors, whose complexes are present in the PDB,34 target
ATP-binding sites.64,89

3.3. Ligand Binding Pose Prediction. Low-resolution
docking techniques are frequently used to dock ligands
into the distorted binding sites of the modeled receptor
structures.38,44-46 In Figure 5, we assess the accuracy of
ligand docking into the ATP-binding sites of modeled

kinase structures for 278 unique protein-ligand pairs
using FINDSITELHM, Q-DockLHM, and an all-atom refine-
ment procedure, AMMOS.58 The upper bound for docking

Figure 3. Accuracy of kinase structure modeling using TASSER.
Global CR rmsd (A) and TM-score (B) are calculated versus ligand-
bound (holo) and ligand-free (apo) structural forms of the target
proteins. Local CR and all-atom rmsd calculated over the binding
residues are shown in (C). Figure 4. ATP-binding pocket detection by FINDSITE. The results

are presented as the cumulative fraction of kinase targets with a
distance between the center of mass of an inhibitor in the crystal
complex and the center of the predicted binding sites, less than or
equal to the distance displayed on the x axis. Open circles show
the results for a nonredundant (nr) data set with respect to the target
proteins. The gray area corresponds to randomly selected patches
on the protein surface. Inset: Matthew’s correlation coefficient
calculated for the predicted binding residues.

Figure 5. Docking accuracy of the ligand homology modeling
approach applied to the human kinome. Fractions of binding
residues (A) and specific protein-ligand contacts (B) predicted by
FINDSITELHM, Q-DockLHM, and AMMOS are compared to the
ligand poses directly transferred from the crystal structures as well
as to ligands randomly placed into the binding pockets.
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accuracy is estimated by transferring ligands from the
crystal structures into the modeled structures upon the
local superposition of the binding residues. The fraction
of correctly predicted binding residues (Figure 5A) is the
highest for Q-DockLHM and is very close to the estimated
upper bound. All-atom refinement by AMMOS recovers
fewer binding residues, and is comparable in performance
to FINDSITELHM. The fraction of correctly predicted
specific protein-ligand contacts (essential for effective
ligand ranking) provides a more detailed assessment of
the docking accuracy. Previous benchmark simulations
demonstrated that ligand homology modeling by FIND-
SITELHM followed by an anchor-constrained low-resolution
refinement by Q-DockLHM outperforms other approaches
in ligand binding pose prediction against modeled receptor
structures.38 Figure 5B shows that FINDSITELHM provides
an approximately correct binding pose, which is subse-

quently improved by low-resolution refinement using
Q-DockLHM. This procedure recovers significantly more
specific protein-ligand contacts than all-atom refinement
using AMMOS. It is noteworthy that all programs used
for ligand docking perform significantly better than
random ligand placement in terms of the recovered binding
residues as well as the specific protein-ligand contacts.

The success of a refinement procedure depends on the
quality of the force field used. The latter can be assessed by
the correlation between the native-likeness, e.g., rmsd
from the crystal ligand binding pose and the energy score,
and the location of the energy minimum; the lowest energy
pose should correspond to a conformation close to native.
Here, for four representative examples, we evaluate the
quality of the Q-DockLHM’s force field that impacts refine-
ment outcome. In Figure 6A for cyclin-dependent kinase 2,
CDK2, and in Figure 6B for proto-oncogene serine/threonine

Figure 6. Low-resolution docking/refinement by ligand homology modeling using protein models as the target receptors. (A) CDK2, 1oiq;
(B) PIM1, 1yxx; (C) FGFR2, 1oec; and (D) CDK2, 2btr. Left, middle: Inhibitor binding poses predicted by FINDSITELHM and Q-DockLHM

(solid sticks, colored by atom type) are compared to the crystal structures (transparent sticks). Protein models (binding residues colored in
red) are superposed onto the crystal structures of the target kinases (binding residues colored in orange). Right: correlation of the Q-Dock
energy score and rmsd from the crystal binding pose for the ligand conformations sampled using replica exchange Monte Carlo (REMC).
The red line highlights low-energy conformations for the broad range of rmsd values.

1844 J. Chem. Inf. Model., Vol. 50, No. 10, 2010 BRYLINSKI AND SKOLNICK



protein kinase, PIM1, we show that when the docking energy
score is well correlated with rmsd and the energy minimum
is located close to the ligand binding pose in the crystal
structure, not surprisingly, low-resolution refinement im-
proves docking results: the fraction of specific contacts
increases from 0.65 (using FINDSITELHM) to 0.70 (using
Q-DockLHM) and from 0.45 to 0.60, respectively. On the other
hand, in some cases, the energy score is not correlated with
the native-likeness of the ligand poses; this results in minor
(from 0.41 to 0.50 of the fraction of specific native contacts
that are recovered for tyrosine kinase FGFR2, Figure 6C)
or no improvement by Q-DockLHM over FINDSITELHM (0.40
for both methods for CDK2, Figure 6D). Nevertheless,
significantly better ligand binding poses are generated by
Q-DockLHM for most of the modeled complexes, which is
critical for ligand ranking. As shown in Figure 5B, the
fraction of complexes with 0.40, 0.50, 0.60, and 0.70 of the
specific native contacts recovered by low-resolution, Q-
DockLHM, refinement is 0.83, 0.72, 0.56, and 0.30, respectively.

We next consider some specific examples:
3.4. Staurosporine Binding Mode in Modeled Kinase

Structures. A natural product of Streptomyces staurosporeus,
staurosporine (STU), was first described as an inhibitor of
protein kinase C.82 Later on, STU was demonstrated to have
nanomolar potency toward a variety of other protein
kinases.90,91 STU nonselectively inhibits protein kinases by
competitively binding to the ATP-binding site. Highly
conserved across the protein kinase family, the position of
STU in the ATP-binding pocket (see Figure 7) is stabilized
by predominantly hydrophobic interactions and hydrogen
bonds.92,93 The inhibitor mimics several aspects of adenosine
binding: the lactam ring of STU occupies a similar position
to the amino group of ATP and the sugar moiety of STU
binds to the region occupied by the ribose of ATP, pointing
out of the binding site. Despite the structural distortions of
ATP-binding sites in modeled kinase structures (see Figure
3C), similar binding modes of STU and ATP were recovered
by the low-resolution docking using Q-DockLHM. This is

shown in Figure 8 for nine protein kinases whose crystal
structures are not available in the PDB.34 High accuracy of
STU docking into the ATP-binding sites of homology models
has been reported previously for eight protein kinases.88

Furthermore, it is noteworthy that structure-based virtual
screening against protein models using the pocket-specific
potential as a scoring function assigned very high Z-scores
and corresponding ranks to both compounds (Figure 8). This
high ranking efficiency is encouraging since staurosporine,
as a potent and promiscuous kinase inhibitor, represents a
prototypical ATP-competitive lead compound.94

3.5. Ligand Ranking. The goal of virtual screening is to
rapidly assess a large library of compounds in order to
identify those molecules that most likely bind to a drug target.
To estimate the reliability of ligand ranking, known active
molecules are typically included in the screening library; high
ranks assigned to these compounds by a virtual screening
approach indicate that the top fraction of the ranked library
is significantly enriched in biologically active compounds.
Here, we assess the accuracy of ligand- and structure-based
virtual screening for a set of 362 known kinase inhibitors
selected from the BindingDB.50 We note that only com-
pounds that are not present in the PDB34 are used in this
analysis. The results in terms of the ranks assigned to known
active molecules in the screening library of the top 10 000
ranked compounds of the ZINC7 library are presented in
Figure 9. First, we assess the improvement in ligand ranking
of structure-based over ligand-based virtual screening. For
most of the compounds, docking-based scores provide better
(lower) ranks than the fingerprint-based scoring using FIND-
SITE, with the low-resolution scoring by Q-DockLHM provid-
ing the most effective ligand ranking. The number of
compounds assigned with ranks <100 (the top 1% of the
library) is 3, 68, and 2 for FINDSITE, Q-DockLHM, and
AMMOS, respectively. Q-DockLHM assigned ranks lower
than 1000 (the top 10% of the library) to almost twice as
many known inhibitors as AMMOS and 4 times more
inhibitors than FINDSITE. Separately, we assess the ranking

Figure 7. Crystal structures of several protein kinases complexed with staurosporine (STU) and ATP. (A) CDK2 (STU, 1aq1; ATP, 1b38);
(B) GSK3B (STU, 1q3d; ADP, 1j1c); (C) LCK (STU, 1qpd; ANP, 1qpc); (D) PIM1 (STU, 1yhs; AMP, 1yxu); (E) PDK1 (STU; 1oky;
ATP, 1h1w); (F) MAPKAPK2 (STU, 1nxk; ADP, 1ny3). STU, the set ATP/ADP/AMP/ANP, and selected binding residues are colored in
green, red, and blue, respectively.
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of ATP that binds to all kinases (Figure 9, inset). For 95%
of the protein kinases, ATP was ranked by Q-DockLHM within
the top 1% of the screening library. Strong evolutionary
relationships between protein kinases are easily detected by
sequence profile-driven threading; this results in similar sets
of templates identified for individual members. Hence, the
ranks assigned to ATP by FINDSITE using the molecular
fingerprints extracted from template-bound ligands are
invariant across the kinase family. The improved ranking
provided by Q-DockLHM over FINDSITE provides a very

strong justification for the more CPU-expensive Q-DockLHM-
based ligand docking. We note that the top 10 000 com-
pounds selected by FINDSITE from the ZINC7 database49

have been reranked by Q-DockLHM and AMMOS for all 516
kinases identified in the human proteome.

3.6. Performance on the DUD Data Set. The Directory
of Useful Decoys (DUD) provides a large unbiased bench-
mark set to test the performance of virtual screening
approaches.52 In contrast to many other data sets, the decoy
compounds included in DUD are physically similar to active
compounds, yet they have a different topology from their
active counterparts. This important feature helps avoid the
artificial enrichment often seen in virtual screening studies;95

hence DUD is frequently used in the assessment of the
performance of virtual screening approaches.96-100 In Table
1, we compare the performance of the ligand homology
modeling approach (FINDSITELHM/Q-DockLHM) used in this
study to DOCK3.5/6, the all-atom docking/screening tool on
a set of seven protein kinases from DUD. First, we note that,
for receptor crystal structures, DOCK6 provides higher
enrichment with respect to the previous version, DOCK3.5.
In benchmarks against modeled structures, considering single
scoring functions, FINDSITELHM performs better on average
than DOCK6, Q-DockLHM, and AMMOS with an average
EF10, BEDROC20, AUAC, and ACT-50% (the top fraction
of ranked library that contains 50% of the active compounds)
of 1.905, 0.133, 0.625, and 0.285, respectively. Moreover,
the performance of FINDSITELHM for protein models is close
to or depending on the metric used exceeds the performance
of DOCK6 applied to the crystal structures: 1.955, 0.173,
0.383, and 0.779. The two docking algorithms, DOCK6 and

Figure 8. Modeled structures of protein kinases bound to staurosporine (STU) and ATP. (A) CDC2, (B) Erk1, (C) FGR, (D) LYN, (E)
PKACa, (F) PKCa, (G) PKCg, (H) PKG1, and (I) smMLCK. STU, ATP, and selected binding residues are colored in green, red, and blue,
respectively. ATP and STU ranks and Z-scores from virtual screening using Q-DockLHM against modeled kinase structures are given.

Figure 9. Performance of virtual screening on the BindingDB data
set. Active compounds are sorted by increasing rank reported by
FINDSITE fingerprints (ligand-based screening), Q-DockLHM (struc-
ture-based screening, low resolution), and AMMOS (structure-based
screening, high resolution). Inset: ATP ranks for all protein kinases;
for FINDSITE, the ranks in the KEGG compound library are used.
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Q-DockLHM, perform quite comparably against modeled
structures; DOCK6 outperforms Q-DockLHM with respect to
EF10 and BEDROC20; however, the average AUAC and
ACT-50% are notably better for Q-DockLHM. Poor AUAC
and ACT-50% measures calculated for ligands ranked by
DOCK6 suggest that active compounds are not equally well
distributed across the screening library and low ranks are
assigned to a significant fraction of known inhibitors. In
addition, we find that high-resolution refinement and scoring
using AMMOS applied to ligand poses generated by Q-
DockLHM does not improve ligand ranking. The combined
approach, data fusion using the SUM rule applied to ligand
rankings from FINDSITELHM and Q-DockLHM, performs
significantly better than the other approaches used in this
study and yields an average EF10, BEDROC20, AUAC, and
ACT-50% of 2.378, 0.162, 0.624, and 0.316, respectively.
The most important conclusion emerging from this study is
that ligand homology modeling by FINDSITELHM/
Q-DockLHM using predicted protein structures is a competitive
alternative to classical structure-based virtual screening with
better or at least comparable efficacy in ligand ranking to
approaches that require solved protein crystal structures with
bound ligands.

3.7. Virtual Screening for Isoform-Specific PKC
Inhibitors. An early event in signal transduction pathways,
the activation of the protein kinase C family (PKC), leads
to many biological responses that regulate major cellular
functions.101 Different PKC isoenzymes are considered to
be promising targets in the treatment of many diseases,
including diabetes, multiple sclerosis, cardiovascular disease,
cancer, and Alzheimer’s.5,6,8 Based on their structure and
regulation mechanisms, the isoforms of protein kinase C can

be divided into three categories: conventional calcium-
dependent PKCs (R, �I, �II, and γ) that are activated by both
phospholipids and diacylglycerol (DAG), novel PKCs (δ, ε,
η, and θ) that require phospholipids and DAG for activation
but do not require Ca2+, and atypical PKCs (ι/λ and �) that
are unresponsive to both activators.102,103 Most of the
compounds inhibit PKC isoforms nonselectively; to exploit
the distinct function of different PKC isoenzymes, isoen-
zyme-specific inhibitors are highly desired. Here, in a
benchmark scenario, we demonstrate how virtual screening
data can be used to support the development of isoform-
specific PKC inhibitors.

In the first step, we carried out the retrospective evaluation
of the virtual screening for the PKC inhibitors using 562
active compounds from the MDDR database51 and 10 000
random decoys from the ZINC7 library.49 We note that
MDDR does not specify the selectivity of PKC inhibitors
toward different isoenzymes. Therefore, the results in terms
of the enrichment behavior plots are presented in Figure 10
for each isoform of the PKC. This example shows that the
compound ranking using an all-atom scoring function such
as the one used by AMMOS58 is ineffective when modeled
protein structures are used as the target receptors. It has been
already demonstrated in more representative benchmarks that
all-atom approaches for ligand docking and ranking are
highly sensitive to structural distortions in ligand binding
regions.38,39,44 Molecular fingerprints provided by FINDSITE
perform better than random ligand selection with 4.8% and
24.0% of the known inhibitors recovered in the top 1% and
10% of the screening library, respectively. Since PKC
isoforms are closely related to each other, the ranks of library
compounds by FINDSITE are identical for all isoenzymes;

Table 1. Performance of Ligand Homology Modeling on Seven Protein Kinases from the DUD Data Set Compared to the Results Obtained
Using DOCKa

CDK2 EGFR FGFR1 KDR p38a PDGFRb SRC average ( SD

DOCK3.5 BEDROC20 0.189 0.200 0.003 0.085 0.115 0.009 0.026 0.090 ( 0.082
crystal structures EF10 2.200 2.545 0.085 1.081 1.992 0.197 0.323 1.203 ( 1.038

AUAC 0.549 0.565 0.201 0.402 0.532 0.323 0.448 0.431 ( 0.134
ACT-50% 0.340 0.274 0.885 0.682 0.463 0.742 0.494 0.554 ( 0.223

DOCK6 BEDROC20 0.250 0.236 0.107 0.198 0.106 0.161 0.150 0.173 ( 0.058
crystal structures EF10 2.600 2.590 1.453 1.892 1.289 1.987 1.871 1.955 ( 0.504

AUAC 0.459 0.441 0.346 0.393 0.314 0.355 0.371 0.383 ( 0.052
ACT-50% 0.586 0.717 0.847 0.760 0.868 0.861 0.812 0.779 ( 0.101

DOCK6 BEDROC20 0.104 0.255 0.003 0.119 0.070 0.306 0.090 0.135 ( 0.107
protein models EF10 1.000 2.568 0.085 1.351 0.898 2.930 1.161 1.428 ( 0.992

AUAC 0.341 0.433 0.196 0.399 0.236 0.404 0.290 0.328 ( 0.091
ACT-50% 0.781 0.725 0.863 0.711 0.923 0.832 0.911 0.821 ( 0.085

AMMOS BEDROC20 0.049 0.014 0.058 0.038 0.069 0.072 0.033 0.048 ( 0.021
protein models EF10 1.400 0.158 0.932 0.405 1.055 1.338 0.581 0.838 ( 0.472

AUAC 0.671 0.466 0.611 0.422 0.510 0.475 0.518 0.525 ( 0.087
ACT-50% 0.299 0.537 0.350 0.590 0.501 0.527 0.427 0.462 ( 0.107

Q-DOCKLHM BEDROC20 0.163 0.062 0.105 0.076 0.088 0.099 0.020 0.088 ( 0.044
protein models EF10 2.400 0.968 1.610 1.081 1.289 1.210 0.194 1.250 ( 0.668

AUAC 0.665 0.553 0.613 0.533 0.526 0.577 0.466 0.562 ( 0.064
ACT-50% 0.225 0.418 0.364 0.423 0.477 0.438 0.529 0.411 ( 0.097

FINDSITELHM BEDROC20 0.155 0.067 0.175 0.146 0.125 0.113 0.151 0.133 ( 0.035
protein models EF10 2.000 1.014 2.712 2.027 1.797 1.656 2.129 1.905 ( 0.515

AUAC 0.690 0.525 0.686 0.563 0.595 0.618 0.700 0.625 ( 0.069
ACT-50% 0.204 0.442 0.186 0.372 0.249 0.317 0.228 0.285 ( 0.095

data fusion BEDROC20 0.321 0.107 0.210 0.114 0.127 0.161 0.096 0.162 ( 0.080
protein models EF10 4.400 1.689 2.966 1.486 1.875 2.229 2.000 2.378 ( 1.010

AUAC 0.724 0.552 0.698 0.565 0.584 0.627 0.619 0.624 ( 0.066
ACT-50% 0.155 0.420 0.184 0.420 0.391 0.314 0.328 0.316 ( 0.109

a Ranking capability is assessed by the enrichment factor (EF10), Boltzmann-enhanced discrimination of ROC (BEDROC20), the area under
the accumulation curve (AUAC), and the top fraction of the ranked library that contains 50% of the active compounds (ACT-50%).
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similar behavior is seen when FINDSITE is applied to the
prediction of ATP binding (see Figure 9, inset), as FINDSITE
emphasizes the conserved binding features across a protein
family; here, we are interested in their differences. A quite
similar performance is observed for structure-based virtual
screening by the total energy reported by Q-DockLHM (which
includes both generic and protein specific components, see
Methods, section 2.2). Here, the percentage of active
compounds recovered in the top 1% (10%) of the library
varies from 2.8% (12.6%) for PKC-γ to 10.1% (27.6%) for
PKC-ι. Undoubtedly, the best performance is obtained using
the pocket-specific component of the Q-DockLHM’s force field
as a scoring function to rank ligands. The fraction of known
PKC inhibitors ranked within the top 1% and 10% of the
library varies from 11.7% (PKC-R) to 13.9% (PKC-ι) and
from 34.9% (PKC-R) to 42.3% (PKC-ε), respectively.
Furthermore, using the pocket-specific scoring function,
ligand ranking is very stable across different isoforms of the
PKC.

Next, we employed a simple machine learning model to
demonstrate that virtual screening data can be used for the
prediction of the inhibitor specificity toward different PKC
isoenzymes. Leave-one-out cross validation (Table 2, in
italics) shows that for 7 out of 10 inhibitors (GF-109203X,
Gö-6976, K252a, midostaurin, rottlerin, staurosporine, and

UCN-01) the three-state binding assignment of good binders,
weak binders, and nonbinders (see Materials and Methods)
was better than random (random accuracy is 33.3%). The
highest benchmark accuracy (60%) is observed for the
indolocarbazole Gö-6976, which is the first discovered PKC
inhibitor that was shown in vivo to discriminate between
Ca2+-dependent and Ca2+-independent PKC isoenzymes.76

In the validation of our model, Gö-6976 is predicted to inhibit
R and � isoforms with high affinity of <100 nM (experi-
mental IC50 values are 2.3 and 6.2 nM, respectively). PKC
isoenzymes δ and ε are false positives, i.e., predicted to be
inhibited, while the experimental data show no inhibition.
Gö-6976 is correctly assigned as a nonactive compound
against the isoform �. The activity of three other Ca2+-
independent PKC isoenzymes, η, θ, and ι, is also predicted
to be unaffected by Gö-6976; this is in good agreement with
its class-selective inhibition profile. Another interesting
example is rottlerin, which was predicted as a weak inhibitor/
noninhibitor for most PKC isoforms. In the recent study of
protein kinases and inhibitors, rottlerin failed to show any
PKCinhibitoryactivityagainst theRandδPKCisotypes,104,105

which is consistent with our results. Considering the rela-
tively high prediction accuracy, we used all experimental
data to predict IC50 values for PKC isoenzyme-inhibitor

Figure 10. Virtual screening for protein kinase C inhibitors. The enrichment behavior for FINDSITE (molecular fingerprints), Q-DockLHM

(total energy score and the pocket-specific component), and AMMOS (all-atom scoring) is compared to a random ligand selection for
different isoenzymes of PKC.
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pairs for which no inhibition constants are reported in the
literature (Table 3, in italics).

Finally, we apply the SVM model to assign the selectivity
toward PKC isoenzymes to 562 known inhibitors from
MDDR. Since no information on the selectivity profile is
provided by MDDR, we indirectly validate the results using
the Google search engine. The results are shown in Figure
11. Most of the compounds were predicted by the SVM to
inhibit the conventional PKC isoforms with an IC50 < 100
nM, whereas relatively few inhibitors were predicted to be
atypical PKC specific (Figure 11A,B). This trend is in good
qualitative agreement with the number of hits reported by

Google (Figure 11C). The highest number of hits was
obtained using “protein kinase C alpha inhibitors” as the
query phrase. Significantly fewer hits are reported for the
novel and particularly for the atypical PKC isoenzymes.

This simple study on the isoform selectivity of PKC
inhibitors demonstrates that virtual screening using protein
models can provide useful information for the development
of biopharmaceuticals with desired specificity. Despite
showing a classification accuracy that is better than random,
there is still the possibility of further improvements. How-
ever, these would require an alternate approach that focuses

Table 2. Benchmarking Results for the Prediction of the Inhibitor Selectivity toward Protein Kinase C Isoenzymesa,b

a Experimental and benchmark values of IC50 are shown in normal font and italics, respectively. Correct and incorrect classifications are
highlighted in green and red, respectively. b No inh, no inhibition.

Table 3. Prediction of the Inhibitor Selectivity toward Protein Kinase C Isoenzymes by Machine Learning on Virtual Screening Dataa,b

IC50 values for PKC isoenzymes

inhibitor R � γ δ ε η θ ι �

corallidictyal 30 µM >1 µM >1 µM >1 µM 89 µM >300 µM >1 µM >1 µM >300 µM
GF-109203X 8.4 nM 18 nM <100 nM 210 nM 132 nM <100 nM <100 nM 100 nM-1 µM 5.8 µM
Gö-6976 2.3 nM 6.2 nM >1 µM No inh No inh >1 µM >1 µM >1 µM No inh
JTT-010 86 nM 4 nM 110 nM 54 nM 490 nM 100 nM-1 µM <100 nM >1 µM 1.7 µM
K252a 40 nM <100 nM 400 nM 925 nM 4.5 µM 490 nM 100 nM-1 µM >1 µM 4.2 µM
midostaurin 24 nM 17 nM 18 nM 360 nM 4.5 µM 60 nM <100 nM >1 µM >10 µM
rottlerin 30 µM 42 µM 40 µM 6 µM 100 µM 82 µM >1 µM 100 nM-1 µM 100 µM
ruboxistaurin 360 nM 4.7 nM 300 nM 250 nM 600 nM 52 nM 100 nM-1 µM 100 nM-1 µM >10 µM
staurosporine 8.7 nM 11 nM 11 nM 4.3 nM 7.4 nM 100 nM-1 µM <100 nM <100 nM 1.7 µM
UCN-01 29 nM 34 nM 30 nM 590 nM 530 nM <100 nM <100 nM >1 µM No inh

a Experimental and predicted values of IC50 are shown in normal font and italics, respectively. b No inh, no inhibition.
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on the variability across homologues rather than on their
conserved features.

3.8. Simulation Times. Computational procedures were
carried out on an IBM cluster with 2.0 GHz AMD Opteron
processors and deploying Linux OS. Figure 12 shows
docking times for the programs used in this study. FIND-
SITELHM is the least CPU-expensive procedure with an
average docking time of less than 2 min per compound.
Q-DockLHM requires ∼8 min to dock a ligand on average.

High-resolution refinement by AMMOS typically uses less
than 5 min of CPU time.

4. DISCUSSION

The increasing interest in kinase inhibitors as novel
therapeutics has created a demand for the structural charac-
terization of the human kinase family. Targeting the entire
family rather than individual members gives better prospects
for developing compounds with improved selectivity106,107

or, in some cases, inhibitors that are “selectively unselective”,
i.e., that modulate activity of multiple kinase targets associ-
ated with the self-same pathological process.88,108 Despite
progress in protein crystallography and structural genomics
efforts that doubled the rate of experimental structure
determination,109 the structural coverage of the kinase family
remains poor and unequally distributed.110 Propitiously, the
presence of a sufficient number of template structures in the
PDB34 and the high structural conservation of kinase domains
make the members of the kinome family perfect targets for
template-based structure modeling. A wide range of highly
accurate protein models would not only contribute directly
to the structure-based drug design,111 but also contribute to
the initial experimental structure determination of new
kinases by molecular replacement techniques.112

In this study, we constructed reliable three-dimensional
models for all kinase sequences identified in the human
proteome for use in structure-based drug design. Structure
modeling was followed by a detailed functional characteriza-
tion, starting from the identification of ATP-binding pockets
that are the primary target sites for most of the currently
available kinase inhibitors.64,89,113 Highly accurate protein
models and the availability of ligand-bound template struc-
tures resulted in precisely annotated binding residues, which
constitute a practical data set to guide further mutational

Figure 11. Prediction of PKC isoenzyme selectivity of known PKC inhibitors from MDDR. (A) Three-state binding assignment of good
binders (IC50 < 100 nM), weak binders (100 nM < IC50 < 1 µM), and nonbinders (IC50 >1 µM) by machine learning. (B) Number of MDDR
compounds predicted to inhibit different PKC isoforms with IC50 < 100 nM. (C) Number of hits returned by the Google search engine
(http://www.googlefight.com/) using different PKC isoenzyme inhibitors as the query phrases.

Figure 12. Docking times for FINDSITELHM, Q-DockLHM, and
AMMOS. Boxes end at the quartiles Q1 and Q3; a horizontal line
in a box is the median. “Whiskers” point at the farthest points that
are within 3/2 times the interquartile range. Outliers and suspected
outliers are presented as solid and open circles, respectively.
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studies. Next, for each kinase family member, we applied
fast fingerprint-based virtual screening to rank a collection
of >2 × 106 compounds from the ZINC database.49 By
selecting the top 10 000 molecules for each kinase, a kinase-
focused library of ∼30 000 unique compounds was compiled.
This collection, representing reasonable chemical coverage
of kinase inhibitor space, should improve the efficiency of
drug development. In high-throughput screens, large com-
binatorial libraries are frequently supplemented with the
target-oriented libraries.114,115 Recent screening experiments
on 41 kinases demonstrated that the overall hit enrichment
is significantly higher for a target class focused library
compared to generic druglike compounds.116 Our kinase-
focused, 30 000-compound library compiled from the top
virtual screening hits may be of practical use for the selection
of compounds for high-throughput screens by providing
scaffolds with high kinase inhibitory potential.

Docking benchmarks carried out for modeled kinase
structures demonstrate that ligand homology modeling often
produces approximately correct binding poses, which recover
most of the native protein-ligand contacts. These results,
nota bene nontrivial, since the distorted binding sites in
protein models represent a considerable challenge for many
ligand-docking algorithms, are in good agreement with our
previous studies.38,39 We note that over 5 million distinct
models of three-dimensional protein-drug complexes have
been constructed; these can be used for rapid binding affinity
assessment by any structure-based scoring function.

Our retrospective virtual screening analyses validate the
modeled kinase structures as valuable targets in structure-
based drug development. Here, we applied a hierarchical
virtual screening approach. First, a large collection of
compounds was assessed by a fast fingerprint-based ap-
proach. Subsequently, the top-ranked fraction of the screen-
ing library was submitted to more CPU-expensive ligand
homology modeling followed by low-resolution docking/
refinement. In the end, lead candidates were reranked using
structure-based scoring functions. Such a workflow is very
common in modern virtual screening protocols that typically
consist of a cascade of different filter approaches.117 The
least computationally expensive ligand-based techniques
applied at the outset of in silico screening allow for a rapid
assessment of large compound libraries, with the top fraction
of the ranked library enriched with active compounds.39,56,100

These prefiltered subsets are subject to structure-based virtual
screening by flexible ligand docking. Predicted binding
modes in the target receptor pockets are reranked according
to the energy of binding estimated from molecular interac-
tions. Finally, the top fraction of the library, typically
containing hundreds to thousands molecules, is submitted
for experimental validation. Following a protocol of con-
secutive hierarchical filters, lead candidates that show IC50

values in the micro- to nanomolar range have been success-
fully identified for, e.g., the human aldose reductase118 and
the human carbonic anhydrase.119 Our approach to virtual
screening that combines ligand homology modeling and low-
resolution docking can be applied to theoretically modeled
receptor structures and yields accuracy at least comparable
to structure-based virtual screening against high-quality X-ray
structures using state-of-the-art docking algorithms.

5. CONCLUSIONS

Considering the accelerated pace of genome sequencing
and the much slower rate of experimental protein structure
determination, it is unlikely that three-dimensional structures
will be soon available for all potential drug targets. Therefore,
modern drug development at the proteome level must rely
on modeled structures provided by state-of-the-art protein
structure prediction techniques. In this study, we show that
hierarchical virtual screening combining fast fingerprint-
based filtering with structure-based ligand homology model-
ing emerges as a powerful compound prioritization technique
applicable to the early stages of proteome-scale drug design
projects. By applying this approach to all kinase domains in
humans, we have provided the scientific community with a
very extensive structural and functional characterization of
the human kinome to support the discovery of novel kinase
inhibitors.

NOTE

The full set of modeled protein structures, docked ligand
conformations, and compound rankings is available at http://
cssb.biology.gatech.edu/kinomelhm/ and http://zinc.docking.
org/applications/2010Apr/Brylinski-2010.tar.gz.
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