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ABSTRACT: Estimation of structure predictability for a particular protein is difficult. Many methods estimate it in an a
posteriori system evaluating the final, native protein structure. The SPI scale is intended to estimate the structure predictability
of a particular amino acid sequence in an a priori system. A sequence-to-structure library was created based on the complete
Protein Data Bank. The tetrapeptide was selected as a unit representing a well-defined structural motif. The early-stage folding
structure (a model of which was presented elsewhere) was taken as the object for protein structure classification. Seven structural
forms were distinguished for structure classification. The degree of determinability was estimated for the sequence-to-structure
and structure-to-sequence relations particularly interesting for threading methods. A comparative analysis of the SPI and Q7
scales with the commonly used SOV andQ3 scales is presented. The complete contingency table, supplementary materials and
all the programs used are available on request.
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INTRODUCTION

One of the problems faced by CASP organizers is estimation of the degree of difficulty in predicting
the structure of a particular protein, in two aspects: the difficulty of the fold per se present in proteins,
and estimation of the goodness of prediction. The method presented in this paper is aimed to help solve
these problems.

The method presented here allows estimation of the structure predictability of a given protein’s sequence
in an a priori system without knowledge of the structure. Moreover, the criterion for estimation is the so-
called early-stage folding (in silico) structure. The background of this method was presented elsewhere
(geometry-based aspects [1,2] and theory of information-based [3]).

The model was verified using BPTI [4], ribonuclease [3], human hemoglobin α and β chains [5]
and lysozyme [6], taking them as examples to prove the method’s reliability. The early-stage folding
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structural forms represented reasonable motifs without any structural defects or imperfections. Energy
minimization procedure [3–6] and molecular dynamics simulation [6] delivered structural forms accept-
able as possible protein structures. To make the model of early-stage folding comprehensible, a summary
of the approach is presented in the Appendix.

MATERIALS AND METHODS

Data

The complete set of proteins deposited in Protein Data Bank #2003 [7] was taken for global comparative
analysis of the standard Q3, SOV and newly introduced Q7 and SPI. Ten proteins representing different
structural characteristics were selected for detailed analysis: 5RAT, 4PTI, 2EQL and 3HHB proteins
present in the PDB; 1NEB as an example of “new fold”; and 1H7M, 1KOY, 1M2E, 1NYN and 1O13 –
CASP5 targets [8] not present in the PDB #2003.

Structure classification

The structure classification is based on the probability profile presented in Fig. 1b. The basis and
explanation of this profile becomes clear after reading the Appendix. The ellipse path shown in Fig. 1a
was taken (for reasons presented in the Appendix) as the early-stage conformational sub-space. The
commonly observed distribution of φ, ψ angles moved to the ellipse path (according to the shortest-
distance criterion – Fig. 1a) created the probability distribution as shown in Fig. 1b. This figure shows
overlapped profiles of ten amino acids (profiles for all 20 amino acids were shown in [3]). The t-
variable (ellipse equation variable) takes its zero value at the point φ = 90 deg and ψ = −90 deg, and
then increases clock-wise along the ellipse Fig. 1c. Seven well-separated probability maxima can be
distinguished. Each of them was given a one-letter code as shown in Fig. 1b.

Fig. 1. Structure coding system. (a) φ, ψ distribution as it appears in real proteins. The ellipse path represents the limited
conformational sub-space. Arrows represent the procedure of moving φ, ψ angles toward the ellipse path. (b) Probability
profile of ten amino acids along the ellipse path. The t-parameter expresses the ellipse path. (c) Relation between t-parameter
value and position on ellipse path; t = 0 represents the point φ = 90 deg and ψ = −90 deg and then increases along the ellipse
path clock-wise.
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Structure codes

Each amino acid in the proteins was given a one-letter code (in bold in this paper) expressing the amino
acid (sequence), and a one-letter code (in italics) representing the structure.

Contingency table

The tetrapeptide was taken as the shortest unit representing a well-defined structural motif (for example,
β-turn, helix and others). All proteins present in the January 2003 release of PDB were analyzed according
to their structural classification (following the model presented in the Appendix). Each tetrapetide was
described by a four-letter string expressing sequence (bold) and a four-letter string expressing structure
(italics). Potentially, 160,000 different sequences for tetrapeptides can occur (columns). Taking seven
different structural forms for each amino acid in a tetrapeptide, 2401 structural forms can be distinguished
for a tetrapeptide (rows). For all cells, probability values of pt, pc and pr were calculated as follows:

pt
ij =

nij

N t
(1)

pc
ij =

nij

N c
j

(2)

pr
ij =

nij

N r
i

(3)

where i denotes a particular structure (row), j denotes a particular sequence (column), n ij is the number
of tetrapeptides belonging to the i-th structure and representing the j-th sequence,N t is the total number
of tetrapeptides, N r

i and N c
j denote the number of tetrapeptidess belonging to a particular i-th structure

and j-th sequence, respectively. The table expressing all probabilities (p t
ij , pc

ij , pr
ij) is available on

request (www interface in preparation). A detailed analysis of the contingency table is presented and
discussed also in [9]. The values expressing the probability of the particular tetrapeptide to represent a
particular structure, which can be found in each cell of the table, are utilized for the SPI and Q7 scales
presented below.

Estimation of structure-to-sequence attribution (Q7 coefficient)

The structures of proteins appear to represent easy, moderate and hard predictability [10]. Since
the structure is sequence-determined, the sequences will also be distinguished as easy, moderately and
hard to recognize as structure-determining. Parameter Q7 can be introduced to measure the degree
of structure determination: Q7, in analogy to Q3, is based on the fact that three structural forms are
distinguished (helix, beta, random coil) inQ3 calculation, while seven structural forms are distinguished
in the presented model (Fig. 1b). The relation between these two notations is given in Table 1.
Q3 measures structure predictability with three structural forms distinguished, and is calculated as

follows:

Q3 =
Nr3

N
∗ 100 (4)
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Table 1
The relation between standard three-state-secondary struc-
ture description and newly introduced early-stage structure
classification (seven states)

Q7 classification Interpretation Q3 classification
C Right-handed helix H
E,F Strand E
G Left-handed helix H

A,B,D Random coil C

whereN expresses the total number of amino acids in the polypeptide under consideration,N r3 expresses
the number of correctly predicted amino acids representing r structural form (r3 expresses one among
three structural forms: right-handed helix, β-structure, random coil).
Q7 can be calculated using exactly the same formula with seven structural forms distinguished:

Q7 =
Nr7

N
∗ 100 (5)

whereNr7 expresses one of seven structural forms distinguished according to the code system presented
in Fig. 1b.

Correct prediction of a residue’s structure (according to our model) means that the correct letter-coded
probability maximum was found for a particular amino acid in a sequence. The letter code represents
the early-stage folding (in silico) structural form identified by classifying the φ, ψ angle in a real protein
as belonging to a particular probability maximum on the ellipse path.

Early-stage structure prediction and Structure Predictability Index (SPI)

The data stored in the contingency table obtained according to the calculations presented above can
be used for early-stage structure prediction. Since the predictability for each fragment of the whole
sequence has been characterized as the potential structural form, the degree of difficulty of structure
prediction for a particular amino acid sequence can be also estimated. Examples of early-stage structure
prediction for an amino acid sequence are given in Fig. 2. The procedure of structure prediction and
SPI calculation was performed as follows: the sequence of each target protein (Fig. 2a) was read using
a sliding frame of four amino acid long, in four possible ways (overlapped reading). For each read
fragment of the target sequence, the ellipse-limited structure from the database was chosen using the
criterion of highest pc

ij value (Eq. (2), Fig. 2b). Each amino acid in the resulting structure obtained the
state with the highest number of tetrapeptide chains belonging to a particular sequence and representing
a particular structure (Fig. 2c). In addition, the mean value for all residues was calculated (SPI). SPI
(x100) reaches values from 14.29 to 100.00, where 14.29 means completely random prediction.

Comparison of different scales measuring accuracy of prediction

Q3 [11] and SOV [12,13] are usually used for structure predictability, particularly in CASP projects [14,
15]. The newly introduced indexes Q7 and SPI are compared with Q3 and SOV using the proteins
deposited in PDB #2003. The early-stage structure of each protein sequence was predicted using the
contingency table described above. Moreover, for each sequence the structure predictability index (SPI)
was calculated. Both native and predicted structures were characterized by calculating the Q3, Q7 and
SOV parameters and compared to the results obtained using SPI treated as the estimation coefficient. Q7
parameter was calculated for seven-state predictions, whereas Q3 and SOV parameters were calculated
for predictions transformed to standard three-state secondary structure description according to Table 1.
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Fig. 2. Example of early-stage structure prediction for amino acid sequence (5RAT). In row (a) amino acid sequence, in row (b)
the attributed structure for four different reading frames (coding system as in Fig. 1c) (gray color expresses identity), in row (c)
resulting structure compared to the native one (gray shading expresses identity). 4PTI, 2EQL, 3HHB, 1NEB, 1H7M, 1KOY,
1M2E, 1NYN, 1O13 are presented in Supplementary materials.

RESULTS

Contingency table

The contingency table for tetrapeptides representing the sequence-to-structure relation was presented
in [9]. A brief explanation needed to clarify the problem presented in this paper is as follows. The
total number of protein chains and the corresponding number of residues in PDB #2003 were found
to be 36,013 and 8,465,280, respectively. Thus the average length of protein chain was found to be
235aa. The total number of tetrapeptide sequences was calculated to be 160,000 (20 4). 146,940 different
tetrapetides happened to occur in real proteins. The total number of structures (as combinations of seven
distinguished probability maxima) was calculated to be 2401 (74), while in real proteins 2397 different
structures occurred in the introduced structure coding system. Finally, the 146,940 × 2397 contingency
table was analyzed for the mutual dependence or correlation between a particular tetrapeptide and its
structure. The total number of different tetrapeptides in the PDB #2003 was found to be 1,529,987. The
table representing the number of events expressing a particular tetrapeptide fragment sequence revealing
a particular letter-coded structural form was converted to a probability scale as described in Materials
and Methods.

The complete table (146,940 × 2397 cells) is treated as a library for linking the amino acid sequence
(tetrapeptide) with the possible early-stage folding (in silico) structural forms for both dependence of
structure on sequence and dependence of sequence on structure. Global analysis of the contingency table
shows that the maximum number of different structures attributed to the same tetrapeptide is 144. This
tetrapeptide appeared to be GSAA. The maximum number of different sequences was found (CCCC)
90,587 to be α-helix and 47,809 for β-structure (EEEE). Only four structures were not found in the
library: ABAB, ABBD, ABFB, and DBAB.

Assessment of structure prediction accuracy

Both standardQ3 and SOV parameters as well as newly introducedQ7 parameter were used to evaluate
the prediction results. Average prediction rates for Q3, SOV and Q7 were found 69.6, 58.3 and 63.9,
respectively. The frequency of each structure class in PDB #2003 compared with their average prediction
rates are presented in Fig. 3. The average prediction rate is expressed as the partial accuracy of early-stage
structure prediction for A, B, C , D, E, F and G.
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Fig. 3. The profile of seven structure classes distinguished on the basis of early-stage folding model (Fig. 1). Their frequencies
in PDB #2003 (a) and average prediction rates (b).

Class C , which represents right-handed α-helix, is obviously the most frequent and its average
prediction rate is the highest one. The class including left-handed α-helix (G) appeared to represent
a very good prediction rate, especially compared with its low frequency. For class G over the half of
residues seem to be predicted correctly. Despite the high frequency of β-structure (41.29 for E and
F altogether), the average prediction rate is still low. It confirms that β-structure prediction should go
beyond analysis of the local sequence-structure relation. An interesting fact is that prediction rates of
classes representing loops (A, B, D) are fairly high in comparison with their low frequencies in PDB.

Q7 calculation and Structural Predictability Index (SPI)

Q7 does not change the general features of structure interpretation, and provides more detailed
characteristics of α-helices (C and G for right- and left-handed, respectively), β-structure (two forms
distinguished in Q7 scale: E, F ) and random coil (three forms distinguished: A, B, D). The SPI
coefficient estimates difficulty in an a priori structure prediction. Since the structural predictability of
each tetrapeptide is known, the whole sequence can be estimated. SPI seems to be a good coefficient to
estimate the early-stage folding structural predictability of the amino acid sequence. It should be noted
that the SPI coefficient can be calculated for amino acid sequences without knowing the final native
structure. The results of comparative analysis of standard (Q3, SOV) and newly introduced (SPI, Q7)
parameters for the complete set of proteins deposited in PDB #2003 are given in Table 2 and Fig. 4. The
R2 coefficient was calculated for second-degree polynomial approximation for each pair of compared
methods (SPI versusQ3, SPI versusQ7 and SPI versus SOV). Its values, always above 0.8, suggest high
accordance between the compared parameters. Detailed results for selected proteins given in Materials
and Methods are shown in Fig. 2, Table 3 and supplementary materials.

Table 2
Second degree polynomial approximations and correlation coefficients (R2) for each pair
of compared parameters calculated for the complete set of proteins deposited in PDB #2003
(Fig. 4)

Compared parameters Approximation R2

SPI vs. Q3 Q3 = −0.0278 ∗ SPI2 + 6.710 ∗ SPI − 293.667 0.8464
SPI vs. Q7 Q7 = −0.0372 ∗ SPI2 + 8.575 ∗ SPI − 388.156 0.8527
SPI vs. SOV SOV = −0.0130 ∗ SPI2 + 4.560 ∗ SPI − 229.033 0.8031
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Fig. 4. Structure Predictability Index (SPI) in relation to the accuracy of structure prediction for the complete set of proteins
deposited in PDB #2003. (a) SPI versus Q3, (b) SPI versus Q7, and (c) SPI versus SOV. Solid lines represent second-degree
polynomial approximation for each pair of compared methods. The R2 coefficients and equations are given in Table 2.

DISCUSSION

The model presented in this paper attempts to solve few problems related to protein folding simulation.
Generally, two approaches can be proposed to simplify the multidimensional character of the problem:
(1) simplification of polypeptide structure and (2) limitation of the conformational space. The first
approach is quite frequently presented in many papers [16,17]. The second has been claimed to be
necessary [18,19]. The model of basins distinguished on the Ramachandran map was presented and
proposed as the solution of the hyper-dimensionality of the conformational space [20,21].

The presented model seems to link both approaches: the geometry is treated as the sequence of rigid
peptide bond planes, with the radius of curvature (shape of polypeptide chain) dependent on the dihedral
angle between peptide bond planes, with an elliptical limited conformational sub-space.

Models known in the literature concerning the problem of the sequence-to-structure relation discuss
the structure of proteins as it appears in the final native form of the protein [22–30]. The model introduced
in this paper represents an approach for the relation between sequence and structure in the early-stage
folding (in silico) structural form (the basis for the model is presented in detail in [1–3] and verified by
BPTI [4], ribonuclease [3], lysozyme [6] and hemoglobin [5] folding).

The tetrapeptide was selected as the unit because it represents the shortest chain that can represent
a well-defined structural form (helix, β-sheet, β-turn) [31,32]. The structure-coding system, which
treats all possible structural forms in a common, unified model, includes all irregular random forms in
the same scale together with regular conformations. This enabled us to distinguish quite unexpected
loop-creating sequences, which in the traditional three-category classification (helix, beta, coil) could get
lost. The traditional models do not distinguish different forms of random coiled fragments. The coding
system introduced here can very easily distinguish different unstructured forms. The high correlation
between the traditional and newly introduced models makes them good tools to use together for structure
classification.

Most of local structure prediction methods have focused on three-state secondary structure prediction.
Statistical [22,23], information theory [33,34], pattern recognition [35,36], neural networks [37,38] and
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Table 3
Different scales adopted to measure the accuracy of structure prediction of selected proteins

Protein Residues SPI Q7 QA QB QC QD QE QF QG Q3 Qhelix Qbeta Qcoil SOV SOVhelix SOVbeta SOVcoil

3HHB 141 99.2 97.1 100.0 – 99.1 72.7 100.0 100.0 100.0 97.1 99.1 100.0 76.9 95.7 97.8 100.0 73.1
5RAT 124 95.0 93.4 100.0 – 97.4 90.9 97.9 81.0 66.7 94.3 97.4 94.2 85.7 86.0 80.6 93.5 72.2
4PTI 58 95.0 87.5 – – 94.7 66.7 94.7 80.0 60.0 91.1 100.0 93.1 62.5 89.7 96.1 93.1 62.5
2EQL 129 79.2 56.7 0.0 0.0 84.1 25.0 33.3 23.1 50.0 62.2 84.8 37.8 37.5 56.0 71.7 38.7 37.5
1NEB 60 77.8 37.9 – – 92.9 20.0 25.0 0.0 40.0 44.8 92.9 26.5 40.0 38.6 63.4 29.4 35.0
1KOY 62 89.0 75.0 – 0.0 93.8 0.0 0.0 0.0 – 81.7 91.8 50.0 0.0 85.8 98.0 43.8 0.0
1M2E 135 82.7 53.4 0.0 0.0 79.4 0.0 36.8 7.7 66.7 60.2 80.0 43.1 16.7 45.5 48.0 46.6 16.7
1H7M 99 80.6 63.9 0.0 – 92.5 0.0 45.8 11.1 20.0 71.1 92.6 51.5 20.0 63.5 82.9 48.9 20.0
1O13 105 78.4 46.6 0.0 – 85.7 16.7 35.3 17.6 22.2 51.5 81.1 37.3 26.7 38.7 71.0 25.9 22.2
1NYN 111 73.4 48.6 0.0 0.0 77.1 0.0 35.3 10.0 60.0 54.1 73.7 29.5 50.0 44.6 55.3 31.7 41.7

QA, QB , QC , QD, QE , QF and QG express the partial accuracy of early-stage structure prediction for A, B, C, D, E, F
and G (on the basis of the coding system introduced in Fig. 1). Global measurement is expressed by Q7. Qhelix, Qbeta, Qcoil,
SOVhelix, SOVbeta and SOVcoil represent the partial accuracy of helix, β-sheet and random coil structural forms prediction.
The global estimation is expressed by both Q3 and SOV. SPI expresses the structure predictability of given sequence.

nearest-neighbour methods [39,40] have been developed. With the best methods, residues in a particular
sequence can be assigned to one of three structural categories (helix, strand, coil) with average success
rates of roughly 60–70% [41]. The application of multiply aligned sequences brings about a gain in
prediction accuracy of 6–8%, relative to the single case, insisting that the secondary structure must be
the same for all of the family members [11,12,28,42,43]. Our approach achieved almost 70% of the
average prediction rate in standard three-state description for a single amino acid sequence. It gives the
opportunity to improve the accuracy of prediction using sequence alignment as input. Simultaneously,
the extension of local structure description to seven classes slightly decreased the accuracy by 5.7%.
Interestingly, the prediction rate of classes not belonging to repetitive secondary structures as well as the
class representing left-handed helix are significant high in relation to their frequencies in PDB. However,
prediction rates of loops are still lower than those of repetitive secondary structures. There is an evidence,
that the utilization of a special loop library yields better accuracy in loops prediction [44]. A special loop
library according to our model will be created and applied for loop prediction in the future.

Only the most probable sequence-structure combinations were presented in this paper, although
some alternative structural forms can be constructed (lower probability in contingency table structural
attribution), allowing prediction of nonstandard structural motifs. The early-stage folding (in silico)
model verified here on the basis of the whole PDB seems to offer a tool for starting structure definition
(for further energy minimization, molecular dynamics simulation and other procedures).

A separate analysis for species-dependent contingency tables (human, mammalian, insect, bacteria,
etc.), for the particular biological activity of groups of proteins (trans-membrane, interacting with DNA,
particular enzymes, etc.) will be done in the near future, together with comparative analysis. The present
paper was focused on the practical usefulness of this approach.

Our approach also revealed that unordered structures represent high determinability. This may mean
that the folding pathway is initiated by turns and bends, which are the strategic points in the polypeptide,
probably followed by the second step in the folding process, which is the creation of highly ordered
structures.
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WL/222/P/L).
An example visualizing the relation between the φ, ψ distribution on the Ramachandran map (SER)

and the ellipse path is shown in Fig. 1App. The probability profile after moving all φ, ψ angles to the
ellipse path (shortest-distance criterion) is shown in Fig. 1(a). The details concerning the geometric basis
of the model can be found in [1,2,45]. The information entropy analysis is presented in [3]. The model
has been successfully applied to BPTI [4], ribonuclease [3], hemoglobin [5] and lysozyme [6] folding to
prove the model’s reliability.

APPENDIX

The polypeptide chain can be described by a representation other than φ, ψ angles. Two geometric
parameters seem to describe the polypeptide conformation: V-angle [deg] – dihedral angle between
two sequential peptide bond planes, and R [Å] – radius of curvature, which was found to depend on
the V-angle. The dependency between these two parameters appeared to accord with a second-degree
polynomial. The structures fitting this relation localized on the Ramachandran map revealed the part of
the map creating the conformational sub-space. This sub-space, which appeared to be ellipse-shaped,
represents the polypeptide chain structures depending only on the backbone conformation. This is why
it was assumed to represent the early-stage folding structures. The sub-space satisfies two important
conditions: (1) it links all structurally important areas (right-handed helix, C7eq energy minimum and
left-handed helix); and (2) the amount of information stored in amino acid sequence appeared to be
equilibrated with the amount of information necessary to predict the structure to the extend of early-stage
folding conformation.

Fig. 1 App. The φ, ψ angle of SER distribution as found in the complete PDB (January 2003 release). (a) All over the
Ramachandran map, black line distinguishes the ellipse-path, (b) After moving all φ, ψ angles toward the ellipse path. The
variable called t expresses the variable of the ellipse equation; zero value of t expresses the point φ = 90 deg, ψ = −90 deg
and then increases clock-wise along the ellipse.
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