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ABSTRACT A probability calculus was used to
simulate the early stages of protein folding in ab
initio structure prediction. The probabilities of par-
ticular � and � angles for each of 20 amino acids as
they occur in crystal forms of proteins were used to
calculate the amount of information necessary for
the occurrence of given � and � angles to be pre-
dicted. It was found that the amount of information
needed to predict � and � angles with 5° precision is
much higher than the amount of information actu-
ally carried by individual amino acids in the polypep-
tide chain. To handle this problem, a limited confor-
mational space for the preliminary search for
optimal polypeptide structure is proposed based on
a simplified geometrical model of the polypeptide
chain and on the probability calculus. These two
models, geometric and probabilistic, based on differ-
ent sources, yield a common conclusion concerning
how a limited conformational space can represent
an early stage of polypeptide chain-folding simula-
tion. The ribonuclease molecule was used to test the
limited conformational space as a tool for modeling
early-stage folding. Proteins 2004;55:115–127.
© 2004 Wiley-Liss, Inc.
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INTRODUCTION

Homology-based protein modeling uses the nearest simi-
lar protein structure for prediction. In ab initio methods
the early-stage structures are the crucial step in protein
structure prediction. Despite many years of struggle with
this problem, the results are still not satisfactory. A call for
new approaches appeared in the final report of CASP
2000.1

The rapid growth of databases in the postgenomic era
allows researchers to use probability calculation in protein
structure prediction studies.2 The hidden Markov model
has been applied in developing a tool for massive post-
genomic databases to analyze as many structures as
possible, particularly in the context of nucleic acid se-
quences on the one hand and the biological activity of
proteins on the other.3

The probability-based GOR algorithm4 was designed to
predict the allowed secondary structure state in a given
sequence context.

Information theory was applied recently in a work5

intended to verify the role of the local folding code and to
identify specific amino acids critical in the formation of
local structure. The authors of the model suggested that
short amino acid (3–7 aa) sequences would cover the
necessary amount of information defining the structure of
short polypeptide fragments.

This article introduces a measurable scale [expressed in
information entropy units (bits)] of structure predictability
for each amino acid. The scale is based on the distribution
of �, � angles found for a particular amino acid as it
appears in proteins of known structure. Analysis of this
scale reveals the need to limit the conformational space
(conformational subspace) to simulate early-stage protein
folding. The results show that a simplified geometrical
model based on the notion of the conformational subspace
accords with the entropy-based analysis. The subspace
appeared as the conformational space limited to the ellipse
path.6 It offers a way forward in attempts to predict
protein folding.

MATERIALS AND METHODS
Amino Acid-Dependent �, � Angle Distribution

The �, � angle distribution in the proteins was analyzed
by taking two sets of protein structures, one formed of all
the proteins in the PDB,7 and the second formed of
nonredundant proteins. A set of nonredundant protein
sequences was selected by using the BLAST8 algorithm.
From the set accessible on the BLAST ftp server (version
2002.10.02), only those with the highest nonredundancy (p
value 1-E-7) were chosen. This subset was narrowed down
to a group of structures with known three-dimensional
(3D) structures (solved with experimental techniques)
deposited in the PDB. The �, � angles were divided into 20
groups for each amino acid separately. The probability of
�i and �j occurrence for a particular amino acid is denoted
pij.
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Amino Acid Frequency

Both databases (complete PDB and nonredundant sub-
base) were also used to measure the frequency of occur-
rence of a particular amino acid. The probability of a
particular amino acid’s occurrence in the analyzed pro-
teins is denoted pf.

�, � Angle Distribution for Ellipse Presentation

Proteins representing different structures were se-
lected: mostly helical protein (�- and �-chains of hemoglo-
bin: 3HHB), mostly �-structure (light and heavy chains of
Fab fragment of IgG: 2FB4), and structurally mixed
proteins belonging to the serpine family (uncleaved ovalbu-
min: 1OVA; cleaved bovine antithrombin: 1ATT; cleaved
human �-1-antichymotrypsin: 2ACH; human antithrom-
bin chain I: 1AZX; human antithrombin chain L: 2ANT;
�-1-antitrypsin: 7API) to show the relation between the �,
� angle distribution on the Ramachandran map and the
ellipse path (Fig. 1).

Energy Distribution

Maps representing the energy distribution all over the
Ramachandran map were calculated by using the ECEPP
force field.9 The structures were created on a 5° grid for �
and � angles. Energy minimization was performed for
each grid point for the molecule ACE-X-MNE (X repre-
sents the amino acid under consideration), with the � and
� angles constrained at the appropriate grid point, whereas
the rest of the molecule was allowed to change its struc-
ture.

The energy distribution was transformed to the probabil-
ity scale by a two-step procedure: 1) the energy distribu-
tion was standardized (0–1 scale) with the energy integral
equal to 1 and 2) the values were transformed to the
reverse form in the opposite relation: the higher the energy

for a particular grid point, the lower the probability for this
structure to occur.

Structural Entropy Scale

All types of maps (energy-based and both versions of the
�, � angle distribution-based map) were transformed to
the normalized probability scale.

The Shannon definition10 treating the amount of infor-
mation (in bits) as probability-dependent was adopted to
measure the amount of information carried by a particular
amino acid:

SI�pf� � � log2pf[bit] (1)

The Shannon entropy10 expressing the mean level of
uncertainty in � � prediction (using n degree step) can be
calculated as follows:

Sk � �
i � 1

360/n �
j � 1

360/n

� pijlog2�pij� [bit] (2)

where: Sk is informational entropy, pij is the probability for
the k-th amino acid to represent the i-th � and j-th �
dihedral angles (the ij-th grid point), n is step size.

Sk can evaluate the level of uncertainty in �, � selection
for a particular amino acid. The higher the Sk for the
amino acid, the more difficult it is to predict its structure
expressed by �, � angles (for an assumed precision).

Limitation of the Conformational Space

The conformational space was limited to an ellipse path
on the Ramachandran map based on a previously de-
scribed model6 (presented in abbreviated form in the
Appendix).

Ribonuclease as a Test Protein

Ribonuclease (5RAT according to PDB identification)
was taken to test the usefulness of the model. The �, �
angles were calculated for each amino acid in the polypep-
tide chain as they appear in the native form of the protein.
The criterion of the shortest distance between the ob-
served �, � angles and those belonging to the ellipse was
used to find the �e, �e angles.

The ellipse-derived structure for ribonuclease was cre-
ated by using the ECEPP/3 program. The Omega dihedral
angles were taken as 180° for all amino acids. The side-
chain structures were formed according to ECEPP/3 stan-
dards and were free to rotate during the energy minimiza-
tion procedure.

Energy Minimization Procedure

The energy minimization procedure was performed by
using the ECEPP/3 program for the ellipse-derived struc-
ture of ribonuclease.11 The �, � angles were calculated for
postminimization structures. The unconstrained minimi-
zation solver with analytical gradient12 was used. The
values of absolute and relative function convergence toler-
ances were set at 1 � 10�3 and 1 � 10�5, respectively. The
energy minimization procedure was conducted both with
and without properly defined disulfide bonds. The coordi-
nates and values of the backbone dihedral angles were

Fig. 1. �, � angle distribution as it appears in proteins (selection
presented in Methods) versus the ellipse path (black line).
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saved for analysis at 10-step intervals. The energy minimi-
zation procedure for ribonuclease was done on an SGI
Origin 2000 in the computing center of TASK in Gdansk.

Structure Comparison

The structures (native, elliptical, and postenergy minimi-
zation) were compared by using different criteria:

1. The distances between the geometric center of the
molecule and the sequential C� atoms in the polypep-
tide chain were calculated. This plot revealed a rough
degree of similarity. The polypeptide fragments distin-
guished according to the profile were also characterized
by using root-mean-square deviation (RMSD) calcula-
tion. The RMSD values for selected fragments were
calculated after overlapping the fragments taken from
native and ellipse-derived structural forms. The RMSD
value was calculated per one amino acid in the polypep-
tide fragment

2. The number of native nonbonding interactions was
calculated for all structural forms, assuming a cutoff
distance equal to 12 Å.

3. The box large enough to contain the whole molecule was
also calculated for each structural form of the protein
molecule. The box size was calculated as follows: the
longest C�-C� distance was taken as the Dz measure
(distance along z axis), the longest C�-C� distance in
the xy plane was taken as the Dy measure (distance
along y axis), and the difference between the highest
and lowest values of x was taken as the measure for the
Dx box edge.

RESULTS
Structural Entropy Scales

The Sk values (according to Eq. 2) calculated for each
amino acid were used to produce the amino acid-depen-
dent Sk scale (Table I) incorporating both approaches
(energy and two �, � distribution bases). The Sk values
estimate the predictability of the structure for a particular
amino acid. The higher the Sk, the higher the level of
uncertainty. Obviously, PRO and GLY are placed at the
opposite terminal positions in the ordered chain of Sk

values in both approaches. Table I also illustrates predict-
ability versus step size.

Keeping in mind that one amino acid (assuming equal
probability of a particular amino acid’s occurrence, p 	
1/20) holds SI(p) 	 4.32 bits (according to Eq. 1), one can
easily judge that the Sk values (according to Eq. 2)
shown in Table I, expressing the mean amount of
information necessary to predict the �, � angles, are
much higher than that. The same calculation for lower
precision (10 � 10° grid) proves that decreasing the
precision does not solve the problem, indicating that a
significant increase of the grid step—much too big to be
satisfactory—is necessary.

The individual frequency of a particular amino acid’s
occurrence in proteins differentiates the level of informa-
tion delivered by this amino acid. The information scale
based on that frequency is shown in Table II and Figure 2.
The Sk values are still above the individual amino acid-
dependent information level: SI(pf).

TABLE I. Probability- and Energy-Based Structural Entropy (bit)

AA

Probability-Based

5° 10° Energy-Based

PDB Nonredundant PDB Nonredundant 5° 10°

PRO 7.92 8.33 6.02 6.51 9.16 7.11
ALA 8.88 8.86 6.98 7.00 11.82 9.52
ILE 8.93 8.78 7.00 6.91 10.98 8.67
LEU 8.98 8.86 7.07 7.04 11.71 9.51
VAL 9.03 8.89 7.09 7.06 11.23 9.09
MET 9.07 8.86 7.18 7.12 11.42 9.12
GLU 9.11 9.05 7.19 7.22 11.67 9.43
TRP 9.31 9.10 7.40 7.38 11.74 9.46
GLN 9.33 9.16 7.42 7.36 11.60 9.28
ARG 9.36 9.29 7.45 7.47 11.61 9.31
PHE 9.47 9.37 7.54 7.52 11.52 9.20
LYS 9.53 9.45 7.61 7.62 11.47 9.17
THR 9.67 9.49 7.88 7.66 11.24 8.94
TYR 9.56 9.33 7.63 7.53 11.47 9.18
ASP 9.81 9.68 7.90 7.81 11.63 9.29
HIS 9.82 9.67 7.91 7.92 11.80 9.46
SER 9.86 9.69 7.94 7.81 11.89 9.58
CYS 9.96 9.71 8.04 7.94 11.73 9.47
ASN 10.05 9.90 8.13 8.11 11.65 9.28
GLY 10.72 10.60 8.80 8.87 12.12 9.79

Sk (structural entropy [bit]) expressing the potential predictability of amino acids based on the �, �
angle distribution (for complete set of proteins in PDB and selected nonredundant subset) and
energy-based distribution (after transformation to the probability scale) for 5° and 10° step
precision.
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The Ellipse Path

A previously introduced model was based on a geometri-
cal representation of the polypeptide chain according to
two parameters: the V-angle, expressing the dihedral

angle between two sequential peptide bond planes and the
R-radius of curvature related to the V-angle (details in Ref.
6 and in Appendix). It showed that the ellipse path can
characterize the polypeptide chain structure, assuming

Fig. 2. Plot representing the amount of information (bits) necessary for 10° step prediction in relation to the
amount of information carried by an individual amino acid. Œ, SE (1°); �, SE (5°); ■, SE (10°); E, SI (pf) carried
by amino acid; �, difference between SI(pf) and SE (10°).

TABLE II. Information: Carried by Amino Acid and Necessary to Predict Particular
Phi, Psi Angle

AA

Amount of information held by
amino acid

Insufficiency/excess SE (10°) SE (5°) SE (1°)Complete PDB Nonredundant

GLY 3.727 3.805 �2.013 5.740 6.630 7.806
ASP 4.121 4.117 �0.895 5.016 5.950 7.073
LEU 3.549 3.492 �0.888 4.437 5.380 6.438
LYS 3.937 3.908 �0.827 4.764 5.710 6.789
ALA 3.661 3.662 �0.801 4.462 5.419 6.409
SER 4.060 4.095 �0.797 4.857 5.785 6.975
ASN 4.494 4.545 �0.692 5.186 6.126 7.267
GLU 3.905 3.833 �0.645 4.550 5.498 6.520
THR 4.107 4.196 �0.472 4.579 5.502 6.720
ARG 4.362 4.249 �0.288 4.650 5.600 6.677
VAL 3.868 3.886 �0.240 4.108 5.057 6.233
GLN 4.684 4.663 0.017 4.667 5.607 6.676
ILE 4.203 4.151 0.088 4.115 5.064 6.208
PHE 4.679 4.713 0.151 4.528 5.466 6.617
TYR 4.836 4.941 0.262 4.574 5.498 6.685
PRO 4.451 4.442 0.389 4.062 4.958 6.124
HIS 5.461 5.477 0.593 4.868 5.805 6.965
CYS 5.597 5.544 0.805 4.792 5.720 6.937
MET 5.636 5.614 1.152 4.484 5.425 6.494
TRP 6.091 6.236 1.579 4.512 5.444 6.581

SE (structural entropy [bit]) calculated according to Eq. 2 for the conformational subspace limited to the ellipse
path probability distribution at 1° (column 5), 5° (column 6) and 10° grid step size (column 7) precision. SI, the
amount of information (bits) carried by a particular amino acid calculated (according to Eq. 1) on the basis of
individual frequency of occurrence in the whole PDB (column 2) and nonredundant subset (column 3). The
insufficiency/excess of information versus the 10° stepsize ellipse path probability distribution (column 4) is the
result of subtracting the values from columns 2 and 5.
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that only peptide bond plane orientation determines the
structure of the polypeptide backbone. This model does not
incorporate side-chain–side-chain interaction. Figure 1
shows the ellipse path found to be the optimal path for the
early search for polypeptide chain structure versus experi-
mentally measured distributions of �, � angles as they
appeared in selected proteins (see Methods). The standard
�, � distributions usually presented in protein crystallo-
graphic data show this specific elliptical distribution.

The relation between the �, � angle distribution charac-
teristic for a particular amino acid and the ellipse path is
also shown in Figure 3 for selected amino acids (the
criteria for selection are given later in this article).

A search of the whole conformational space may be re-
placed by one limited to the ellipse path subspace. The
effectiveness of such a limited subspace can be proved as
follows. The probability distribution along the ellipse path
can be calculated after moving all points (�, � angles on the
Ramachandran map) to the closest point on the ellipse
(shortest distance criterion). The probability distribution
along the ellipse path is shown in Figure 4. The x axis of the
profiles presented in Figure 4 expresses the t parameter of

the ellipse equation. The starting point (t 	 0) is � 	 90° and
� 	 �90°. The clockwise movement along the ellipse path is
represented by the increase in t values (1° step). The right-
handed helical region is reached for t values in the range of
90–120°, and �-structural forms are represented by t values
in the range of 180–220°. Left-handed helical forms are
represented by t values close to 270° and above.

Two profiles are presented: the probability-based � �
distribution (black line: complete set of proteins in PDB)
and the energy-based distribution: transformed to the
probability scale (gray line) calculation.

Table II presents the SE values (SE denotes the Sk

values calculated for the ellipse path)—the sum of all the t
values (see Eq. 2 in Appendix and Eq. 2)—for the set of
structures (with 1°, 5°, and 10° precision for the t parame-
ter) limited to the ellipse path versus the amount of
information stored in a particular amino acid according to
its frequency of occurrence in the proteins (Fig. 2).

Energy- and Probability-Based Profiles

The energy-derived and probability-derived profiles dif-
fer (Fig. 4). The main differences are related to the two

Fig. 3. 3D representation of probability distribution calculated for 5° grid size. The black fields distinguish
the ellipse path to show the amino acid-dependent relation of the �, � angle distribution versus the ellipse path
for VAL, ALA, ASN, and GLY, respectively.
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Fig. 4. Amino acid-dependent probability profiles as they appear after moving all �, � angles to the nearest point on the ellipse path in order of
increasing SE. The t parameter (ellipse equation, Eq. 2 App.) equal to 0° represents the starting point at � 	 90° and � 	 �90°, then going clockwise
along the ellipse by 1° steps. Black line, probability distribution-based profile; gray line, energy distribution-based profile.
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Figure 4. (Continued.)
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most significant energy minima: �-helical and �-struc-
tural. It is obvious that these two energy minima cannot be
observed for dipeptides, where no hydrogen bonds signifi-
cant for these two structures are available. However, there
are some exceptions, including ASN and GLY, where these
two profiles (energy- and �, � angle distribution-based) are
quite similar.

The ellipse path probability distribution profiles charac-
terize amino acids in respect to their preferred structural
differentiation. There are amino acids with an almost
“binomial” distribution, with two forms well dominating
(VAL). There are amino acids with quite a differentiated
profile of very low predictability, such as GLY and ASN. To
illustrate these differences, these amino acids are pre-
sented in 3D diagrams in Figure 3.

The quantitative relations between the SE for different
degrees of precision (1°, 5°, and 10°) and the information
stored in a particular amino acid are shown in Table II and
Figure 2.

Particularly interesting are the profiles in the region of t
values between 95° (�R helical area) and 180° (�-structural
area). This fragment represents the area on the Ramachan-
dran map with significantly lower occupation (see Fig. 1).
The differentiation of SE values is caused mostly by the
differences in this area (excluding PRO and GLY for
obvious reasons). TYR and ASP even show an additional
small maximum in this fragment of the ellipse. The
�-structure region is also represented in different forms.
One maximum is observed in the case of VAL. Some other
amino acids show the �-structural probability maximum
differentiated by splitting into two local maxima (e.g.,
ALA) (see also Fig. 3).

The relation between the amount of information coded
by an amino acid and the SE value for the 10° step reveals
that almost half (n 	 9) of the amino acids have excess
information, the structure of which can be predicted (Table
II; Fig. 3.). The others (n 	 11) represent lower levels of
information and their predictability is much less. The
highest unpredictability is attributed to GLY.

Structural Analysis of Ribonuclease as a Model
Test
�, � dihedral angle changes

�, � angle distributions exposing the range of dihedral
angle change are presented for all discussed structural
forms: for the native form of ribonuclease [Fig. 5(A)], for
the ellipse-derived structure [Fig. 5(B)], for the postenergy
minimization form with SS-bonds present [Fig. 5(C)], and
for the postenergy minimization structure with SS-bonds
absent [Fig. 5(D)].

Spatial distribution of C� atoms versus the
geometrical center

The profile of the size of vectors linking the geometrical
center with sequential C� atoms gives insight into the 3D
relative displacements versus native-form protein.13 The
structural similarity may be disclosed by overlapping of
lines representing two compared structures.

The overlapped fragment of Dcenter-C� profiles reveals
identical fragments. Parallel orientation of profiles repre-

sents similar structural forms in the two compared molecules
oriented in space differently. The generally higher values of
the vector length in respect to native structure are obviously
due to the extension of the structure that is always associated
with the transformation from the native to ellipse path-
delimited structure. Dissimilar fragments of the profile show
different structural forms in the protein molecule.

The profiles for all analyzed structures of ribonuclease
are presented in Figure 6. Four fragments can be distin-
guished. The fragment containing amino acids 46–80 was
distinguished because of the similarity of profiles in all
structural forms. This fragment, individually overlapped,
gives an RMSD value 
 1 Å. Two N-terminal fragments,
1–17 aa and 18–45 aa, were selected as representing
parallel orientation of Dcenter-C� profiles, with low RMSD
values also. The C-terminal fragment (81–124 aa) is
represented by quite different forms of Dcenter-C� profiles
and described by a rather high RMSD value.

Visual Analysis

Figure 5 visualizes structural changes in ribonuclease in
different conditions. The color notation differentiates par-
ticular polypeptide fragments and distinguishes them
according to their similarity as measured by the Dcenter-C�

vector profiles (Fig. 6.). The same color notation is used for
�, � angle distributions and RMSD fragments (Fig. 5).

The �, � angle distribution in the postenergy minimiza-
tion procedure with SS-bonds present seems not to change
much. Two energy minima, helical and C7eq, seem to
stabilize the structure. No signs of the presence of �-struc-
tural forms (C5, �-parallel, �-antiparallel) can be observed
in that structure. Generally, �-structure is difficult to
reach in any ab initio protein structure prediction.1

Quite a good approach (the characteristic boat-shaped
form) was reached for the same procedure with SS-bonds
defined according to the natural system present in this
molecule.

Nonbonding Interaction

The nonbonding interactions present in all discussed
structural forms are shown in Figure 7. Significant similar-
ity of nonbonding contact distributions can be seen be-
tween native and post energy minimization forms with
SS-bonds taken into account during energy minimization.
The ellipse-derived structure also reveals the presence of
one part of the contact map present in the native form of
ribonuclease.

The percentage of native nonbonding interactions present
in the ellipse-derived structure is equal to 32.98%, and
41.50% and 33.60% for postenergy minimization struc-
tures with and without SS-bonds, respectively. This quan-
tity obviously depends on the molecule under study14 and
is strongly related to the percentage of helical forms in the
analyzed structure. The ellipse path goes through the
region attributed to helical forms on the Ramachandran
map; this is probably caused by the presence of all helical
nonbonding contacts in ellipse-derived and postminimiza-
tion structures. However, the appearance of the character-
istic distribution of nonbonding contacts [Fig. 7(C)] makes
the model promising.
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Fig. 5. The structure of ribonuclease and its �, � angle distribution versus the ellipse path. A: Native form.
B: ellipse-based structure. C: Postenergy minimization structural form of ribonuclease with SS-bonds present
in the energy minimization procedure. D: Postenergy minimization structural form of ribonuclease with
SS-bonds absent in the energy minimization procedure.



Molecule Size Change

The most critical problem concerning the relation be-
tween ellipse-derived structures and native structures is

the question of how much the size of the molecule is
changed (i.e., what degree of compactness of ellipse-
derived structures is necessary to reach the native form.
The relative (vs the native form of protein) increase of box
size (volume) containing the whole protein molecule (the
size of which is calculated according to the procedure given
in Methods) appeared to be 9.59 for ellipse-derived and
4.96 for postenergy minimization with SS-bonds present in
the energy minimization procedure. The box edge (see
Methods) proportions are as follows: 29.99:27.42, 63.20:
27.32, and 81.99:41.82. The postenergy minimization struc-
ture (with SS-bonds) reached one edge length quite well,
whereas the two others are still too large.

DISCUSSION

The search for the global energy minimum is the main
problem in protein structure prediction.15 Analysis of the
conformational space, discussed extensively,16 led to the
energy landscape perspective. Here we approached it by
introducing the idea of the conformational subspace to
limit the multidimensional energy surface. The previously
introduced geometrical model using an ellipse as the
optimal path for the energy minimization procedure may
also be treated as an early stage of polypeptide chain-
folding simulation.6,17 It was found that the ellipse path-
way—the outcome of structural analysis (Appendix Fig.
1.)—satisfies the following conditions:

Fig. 7. Nonbonding contacts in ribonuclease. A:Native form. B:
Ellipse-derived structure. C: Postenergy minimization with SS-bonds
present. D: Postenergy minimization with SS-bonds absent.

Fig. 6. Comparison of structural forms of the ribonuclease molecule. A: RMSD (per residue) calculated for
structurally differentiated polypeptide fragments. The fragments were defined according to the profile presented in
B. The parallel fragments of curves represent the correct spatial orientation of the polypeptide, whereas the
dissimilar regularity of the curve represents fragments with low similarity of the spatial orientation of the particular
polypeptide fragment. B: Profile representing the distribution of distances linking the geometrical center of the
molecule with sequential C� atoms (called Dcenter-C� in the text). Continuous (solid) line, native form; Dotted line,
ellipse-derived structure; dashed line, postenergy minimization structure with SS-bonds present; dotted/dashed
line, post-energy minimization structure with SS-bonds absent; C, SS-bond system in ribonuclease. The color
notation introduced in all graphic presentations in this article corresponds to the fragments distinguished in this figure.
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1. The structures created according to the ellipse path
exhaust the spectrum of polypeptide chain shapes from
V-angle equal to 0° (helix: low R) to V equal to 180°
(�-like structures: very high R) and can be very easily
transformed into the form of �, � angles.18–21

2. The ellipse pathway links all structurally important areas
on the Ramachandran map (�R helix through the C7eq
energy minima and then to the �L-helix). It may be
treated as controlled passage through the energy barri-
ers.19–21 It may also be seen in helix melting simula-
tions.22,23

3. It represents the conformational subspace to the extent
that the structure can be predicted based only on the
amino acid sequence. The measurable scale of amino
acid structural predictability reveals that amino acids
are structurally more or less predictable. The problem
of the specific sequences that represent characteristic
structural motives has been discussed.24–27

To overcome the problem of the multidimensional en-
ergy surface, a simplified model of polypeptide chain
representation has been suggested.28–30 Our alternative
solution to this problem is to limit the conformational
space. The Sk values calculated for amino acids character-
ize each of them very well. Using the flat surface all over
the Ramachandram map (assuming equal probabilities for
each �, � value with 5° step size), the Sx value (x denotes a
virtual amino acid with no particular structure preferable)
is equal to 12.311 bits. The amino acid representing the
closest Sk value is GLY. The dispersion of �, � angles for
this amino acid represents the lowest level of determina-
tion. The Sx value is useful as a relative scale to character-
ize the set of amino acids.

The selected protein molecule—ribonuclease—appeared to
prove the model, particularly because simple energy minimi-
zation was performed to obtain the final structure. The
influence of molecular dynamics simulation added to the
procedure delivers much better results (the size increase
ratio vs the native form is only 2.1, unpublished result).

The method presented in this article was assumed to
deliver the model for early-stage folding structures. The
stages distinguished as partitioning the protein-folding pro-
cess proposed by Ferguson and Fersht31 are as follows: 1)
specific or nonspecific chain collapse; 2) formation of second-
ary and tertiary structure, according to the balance of local
and nonlocal, native and non-native interactions; and 3)
desolvation of the chain as it folds to a lower energy conforma-
tion. The proposed model is assumed to describe the first two
steps in an event sequence oriented toward reaching the
native structure. All examined structures analyzed accord-
ing to the presented model—BPTI32 (small molecule used
very frequently as the model for structural analysis), ly-
sozyme33 (the influence of molecular dynamics simulation is
discussed), hemoglobin chains34 (a protein with no disul-
phide bonds) and the whole serpine family17,35 (large mol-
ecules with differentiated structural forms demonstrating
high similarity)—were proved in regard to hydrophobic
center creation. The analysis indicated that the hydrophobic-
ity distribution in the protein molecules obtained by the
presented model should be corrected. The next step of the

folding model, complementary to the ellipse path-derived
structure and describing the creation of the hydrophobic
center, is under consideration.
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APPENDIX

The main assumption for the model presented below is
that all structural forms of polypeptides in proteins can be
treated as helical. The �-structure in this approach is a
helix with a very large radius of curvature. The radius of
curvature depends on the V-angle, which expresses the
dihedral angle between two sequential peptide bond planes.
The quantitative analysis of the relation between these
two parameters (V and R) used the following procedure:

1. The structure of the alanine pentapeptide was created
for each 5° grid point on the Ramachandran map. Each
alanine present in the pentapetide represented the �, �
angles appropriate for a particular grid point.

2. Before the parameters (R and V) were calculated, all
structures (for each grid point) were oriented in a
unified way: the averaged position of the carbonyl
oxygen atoms and the averaged position of carbonyl
carbon atoms determined the z axis.

3. The radius of curvature was calculated for projections
of C� atoms on the xy plane. The radius of curvature for
extended (and �-structural) forms is very large (theoreti-
cally infinite). This is why the natural logarithmic scale
was introduced to express the magnitude of R.

4. The V angle was calculated as the difference between
the tilt of the central peptide bond plane and the tilt of
two (averaged) neighboring peptide bond planes.

The Ramachandran map expressing the V angle distri-
bution and R radius of curvature (in ln scale) is shown in
Figure A1.

The ln(R) dependence on the V angle for structures
representing low-energy conformations is shown in Figure
A2. The approximation function found for this relation is
as follows:

ln(R) 	 0.000340 V2 � 0.02009 V � 0.848

(A1)

The distribution of �, � angles of structures that satisfy
the above equation is shown in Figure A2. The ellipse path
found based on this distribution is as follows:

Phi	 �A cos(t) � B sin(t)
(2)

Psi	 A cos(t) � B sin(t)

where A and B are long and short ellipse diagonals,
respectively.

Fig. A1. Distribution of geometrical parameters all over the �-� map. A: Radius of curvature R on natural logarithmic scale. B: Dihedral angle (V)
between two sequential peptide bond planes.
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Fig. A2. Ellipse path determination. A: �-� map with low-energy area distinguished. B: ln(R ) as a function
of V angle for grid points shown in A. C: �-� map with grid points, where the structure satisfies Eq. 1. D:
Proposed ellipse path. E: Low-energy areas linked by ellipse.
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