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Abstract: The binding of small organic molecules to protein targets is fundamental to a wide array
of cellular functions. It is also routinely exploited to develop new therapeutic strategies against a
variety of diseases. On that account, the ability to effectively detect and classify ligand binding sites in
proteins is of paramount importance to modern structure-based drug discovery. These complex and
non-trivial tasks require sophisticated algorithms from the field of artificial intelligence to achieve
a high prediction accuracy. In this communication, we describe GraphSite, a deep learning-based
method utilizing a graph representation of local protein structures and a state-of-the-art graph neural
network to classify ligand binding sites. Using neural weighted message passing layers to effectively
capture the structural, physicochemical, and evolutionary characteristics of binding pockets mitigates
model overfitting and improves the classification accuracy. Indeed, comprehensive cross-validation
benchmarks against a large dataset of binding pockets belonging to 14 diverse functional classes
demonstrate that GraphSite yields the class-weighted F1-score of 81.7%, outperforming other ap-
proaches such as molecular docking and binding site matching. Further, it also generalizes well to
unseen data with the F1-score of 70.7%, which is the expected performance in real-world applications.
We also discuss new directions to improve and extend GraphSite in the future.

Keywords: structure-based drug discovery; ligand binding sites; deep learning; graph neural network

1. Introduction

Proteins carry out numerous biological functions in the cellular environment. Interac-
tions between proteins and other molecules, such as peptides, neurotransmitters, nucleic
acids, hormones, lipids, and metabolites, are, therefore, vital to understanding the biology
of the cell. In particular, interactions between proteins and small molecules, or ligands, are
associated with a wide range of the functions of a living cell [1]. Ligand binding sites are
typically pockets and cavities on the surface of proteins formed by spatially close amino
acid residues interacting with small molecules in a specific way [2]. The ability to precisely
detect and annotate these sites in protein structures is of paramount importance in modern
structure-based drug discovery. It can help reveal novel targets for pharmacotherapy and
support the design of biopharmaceuticals not only against the most common health issues
affecting a large population worldwide [3] but also rare diseases without any treatment
options currently available [4]. Numerous approaches have been developed over past years
to identify and analyze ligand binding sites in proteins, including LIGSITE [5], FTSite [6],
eFindSite [7], Fpocket [8], and SiteComp [9], to mention a few examples. A comprehen-
sive characterization of ligand binding accounts for multiple factors of this multifaceted
phenomenon, such as the conformational dynamics [10], the druggability [11], interaction
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hotspots [12], and the amino acid composition [13]. Despite the encouraging progress in
ligand binding site detection, there is a need for a better functional characterization of the
identified sites with respect to the types and properties of binding molecules.

It has been demonstrated that similar ligands can bind to evolutionary unrelated
proteins [14]. Therefore, accurate methods to classify binding sites depending on the ligand
information are essential to study ligand binding at a system level with a broad range of
applications in polypharmacology [15], side effects prediction [16], and drug reposition-
ing [17]. Several algorithms to predict binding sites in protein targets, given the ligand
information, have been developed to date. For instance, the ProBiS-ligands web server can
help figure out the types of ligands binding to the input protein structures [18]. As many
ligands perform specific cellular functions important for a variety of biological processes,
such as cell signaling, active transport, cell metabolism, and the regulation of the cell cycle,
several algorithms focus on specific types of ligands. VitaPred employs the evolutionary
information to predict residues interacting with vitamin ligands [19], SITEPred identifies
nucleotide-binding residues from protein sequences [20], and HemeBIND detects heme
binding residues based on the sequence and structure information [21]. Similar techniques
were designed to work with other specific organic molecules, such as flavin adenine din-
ucleotide [22], guanosine triphosphate [23], nicotinamide adenine dinucleotide [24], and
inorganic ions, such as calcium [25] and zinc [26]. Most of these methods employ traditional
machine learning classifiers to predict binding residues based on the sequence, structure,
and evolutionary information. However, currently available state-of-the-art deep learning
approaches hold significant promise to greatly improve the accuracy of the functional
annotation of ligand binding sites.

Deep learning is currently the most advanced group of machine learning techniques
employing various types of multilayer artificial neural networks to learn complex patterns
from the input data. Deep learning makes headway in the computer vision field, where
it has successfully been applied across numerous tasks, including object detection [27],
face recognition [28], and body pose estimation [29]. A key to the success of deep learning
methods is the convolutional neural network (CNN), which utilizes local trainable filters to
effectively learn hierarchical latent features from the Euclidean data, such as 2D and 3D
images [30]. Advances in computer vision have inspired the development of deep learning
tools for biology and biomedicine as well. Most approaches to predict and annotate
ligand binding sites in proteins with CNNs represent pockets as either 2D or 3D images.
The former group of methods includes BionoiNet, which first projects pockets onto a 2D
plane encoding various physicochemical, structural, and evolutionary properties, and
then employs a 2D-CNN to perform classification tasks [31]. An example of a 3D-based
approach is DeepDrug3D, which deploys a 3D-CNN to accurately classify binding sites for
adenosine triphosphate (ATP) and heme ligands represented as voxel-based 3D images [17].
A related method, DeeplyTough, employs a similar pocket representation as DeepDrug3D
and pocket matching with a CNN to detect similar binding sites [32]. Another 3D-based
predictor is DeepSite, which deploys a CNN to binding pockets represented as voxels
annotated with various atomic-based pharmacophoric properties [33].

In addition to the Euclidean space, many contemporary data, such as social networks,
sensor networks, biological networks, and meshed surfaces, have an underlying structure
that belongs to the non-Euclidean domain. Graph neural network (GNN) is a group of deep
learning models designed to work specifically with non-Euclidean graph data [34]. GNNs
have been demonstrated to achieve unparalleled performance in numerous applications
against non-Euclidean data, including text classification [35], traffic prediction [36], and
complex physics simulations [37]. GNNs were deployed to address important problems in
biology as well, for instance, to predict the quantum properties of organic molecules [38],
generate molecular fingerprints [39], detect protein interfaces [40], and identify drug-target
interactions [41]. These applications are based on a notion that molecular structures can
conveniently be represented as graphs, in which atoms are nodes, and chemical bonds are
undirected edges connecting pairs of nodes.
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In this communication, we expand the repertoire of graph-based approaches in biology
and biomedicine by developing GraphSite, a new method to classify ligand binding sites
with a GNN. First, a large and diverse dataset of binding sites are converted into graphs
preserving the physicochemical properties of local protein structures, which are then used
to train a GNN classifier. In contrast to computationally more intensive methods operating
in the Euclidean space, lightweight GraphSite generates the graph representations of ligand
binding site on-the-fly without any pre-processing requirements. Encouragingly, it not only
achieves state-of-the-art performance in multi-class classification benchmarks with respect
to other approaches but also generalizes well to unseen data. A comprehensive analysis of
selected predictions by GraphSite demonstrates that its high performance is a result of the
ability to effectively learn the underlying patterns of various types of binding pockets. We
would like to note that the current GraphSite employing a GNN model to classify ligand
binding sites is distinct from another software with the same name that utilizes a graph
transformer to predict DNA binding residues in protein structures [42].

2. Materials and Methods
2.1. Datasets of Ligand Binding Pockets

A non-redundant collection of 51,677 pockets were compiled in September 2019
following a protocol developed previously to construct a dataset to evaluate binding
site prediction with eFindSite [7,43]. Binding ligands in the eFindSite dataset were clustered
at a Tanimoto coefficient (TC) threshold of 0.7 with the SUBSET program [44]. The 30 most
abundant clusters were then manually curated into 14 pocket classes, referred to as the
benchmarking dataset. The benchmarking dataset was divided into training (80%) and
testing (20%) subsets by randomly splitting each class at a 4:1 ratio. The unseen dataset was
created by selecting ligand-bound protein structures deposited to the Protein Data Bank
(PDB) [45] no earlier than October 2019. Those proteins having a sequence identity of≥50%
to any protein in the benchmarking dataset were excluded. Pocket classes were assigned
based on the chemical similarity of binding ligands to small molecules in the benchmarking
dataset at a TC threshold of 0.7. This procedure resulted in 45 unseen pockets assigned
to 9 classes. Finally, as the negative dataset, we use a previously published collection of
42 surface pockets resembling binding sites but not known to bind any ligand [46].

The eFindSite collection of ligand binding pockets [7,43] was first clustered by lig-
and chemical similarity and then the 30 most abundant clusters were manually curated
into a dataset of 14 pocket classes. Clusters containing ATP, adenosine diphosphate
(ADP), phosphoaminophosphonic acid-adenylate ester (ANP), uridine monophosphate
(UMP), thymidine monophosphate (TMP), nicotinamide adenine dinucleotide, adenosine,
azamethionine-5′-deoxyadenosine, and β-D-erythrofuranosyl adenosine, were merged
to form class 0 (nucleotides). Further, clusters composed of glucose, fructose, α-D galac-
topyranose, and manopyranose, were combined into class 2 (carbohydrates). Another
merged class 5 comprises phosphocholine, bromododecanol, tetradecylpropanedioic acid,
oleic acid, palmitic acid, and hexaenoic acid. Clusters containing amino acids, such as
lysine, arginine, and norvaline, citric acid and its derivatives, tartaric acid, tetraglycine
phosphinate, and 1,3 dihydroxyacetone phosphate were joined to class 6. Finally, class 10
includes methylbenzamide, pentanamide, hexaethylene glycol, and tetraethylene glycol.
The remaining clusters were sufficiently distinct to become separate classes. The clustering
procedure followed by a manual data curation resulted in the benchmarking dataset of
21,124 pockets assigned to 14 classes binding a variety of ligands listed in Table 1.
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Table 1. Classes of ligand binding sites in the primary benchmarking dataset. Support is the number
of pockets in the dataset.

Class Binding Ligands Support

0 nucleotide 7625
1 heme 1158
2 carbohydrate 3001
3 benzene ring 1054
4 chlorophyll 968
5 lipid 1890

6 essential amino/citric/tartaric
acids 1663

7 S-adenosyl-L-homocysteine 602
8 coenzyme A 573
9 pyridoxal phosphate 566
10 benzoic acid 897
11 flavin mononucleotide 417
12 morpholine ring 374
13 phosphate 337

2.2. Graph Representation of Binding Sites

Ligand binding pockets are converted to graphs, which are the input for the classifier.
The nodes of these graphs are atoms contacting ligands identified through the analysis
of interatomic contacts with the Ligand-Protein Contacts (LPC) software [47]. Nodes
are connected by undirected edges when the distance between two atoms is ≤4.5 Å. We
employ 11 node features, 7 of which are spatial features, and the other 4 are physicochemi-
cal/evolutionary features. Spatial features defining the shape of binding pockets include
atomic Cartesian coordinates (x, y, z), spherical coordinates (r, ϑ, γ), and the solvent ac-
cessible surface area (SASA). Physicochemical/evolutionary features comprising charge,
hydrophobicity, binding probability, and sequence entropy have been previously used in
Bionoi, a method to represent ligand binding sites as Voronoi diagrams [48]. To distinguish
between various bonding and non-bonding interactions, the bond multiplicity is used as the
edge attribute with the value of 1.5 for aromatic bonds and 0 for non-covalent interactions.

Figure 1 illustrates the procedure to transform pockets into graphs. Atoms of binding
residues become nodes connected to neighboring nodes within a distance threshold of
4.5 Å. To distinguish between bonding and non-bonding interactions, the edge attribute is
set to either the bond multiplicity if two atoms form a chemical bond or 0 for those atoms
interacting non-covalently. Individual nodes are assigned two types of features, spatial
features defining the shape of the binding pocket (atomic coordinates and the solvent
accessible surface area) and physicochemical/evolutionary features describing various
properties, such as the charge, the hydrophobicity, the binding probability, and the sequence
entropy. Representing pockets as graphs captures their overall characteristics and enables
the information flow between atoms during the GNN model training.

2.3. Graph Neural Network

As pockets are represented as graphs, the binding site classification task becomes a
graph classification problem essentially. A general graph classification framework employ-
ing a GNN incorporates three key components, message passing, the graph readout, and
the classification stage. The overall architecture of a classifier implemented in GraphSite is
presented in Figure 2. The main module consists of an embedding network (Figure 2B–D)
comprising message passing layers (Figure 2B), the jumping knowledge connections (Fig-
ure 2C), and a global pooling layer to perform the graph readout (Figure 2D). As illustrated
in Figure 2B, the node features of the input graph are first iteratively updated by neural
weighted message (NWM) passing layers hω taking the edge attribute e12 as input to
generate a12 as the weight of a message propagating from node 2 to node 1. Subsequently,
the jumping knowledge network (JK-Net) [49] connecting message passing layers is em-



Biomolecules 2022, 12, 1053 5 of 17

ployed, allowing the model to learn the optimal number of layers for individual nodes. The
generated outputs are then processed by a max pooling layer performing a feature-wise
pooling. The max pooling layer is followed by a global pooling layer to reduce the node
feature dimension to a fixed-size vector, which is passed to a set of fully connected layers
to generate the final classification result (Figure 2E).
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of four residues, W20, R174, E14, and R53, selected from (A).
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Figure 2. Architecture of the pocket classifier in GraphSite. (A) The input graph represents a
binding site. (B) A neural network computing the weight for message passing from the edge
attributes of the input graph. (C) Message passing layers of the jumping knowledge network. (D) A
global pooling layer implementing the Set2Set model. (E) Fully connected layers generate the final
classification results.

2.3.1. Message Passing

The role of message passing layers of the GNN is to update node features by propagat-
ing the information along edges. Node features updated with the information aggregated
from neighbors contain valuable local patterns. Message passing layers in GraphSite adopt
the general form of the neighborhood aggregation [50]:

x(k)i = λ

(
x(k−1)

i , aggr
j∈N (i)

φ
(

x(k−1)
i , x(k−1)

j , eij

))
, (1)

where φ is a differentiable function generating a message, aggr is a permutation-invariant
function aggregating all messages, and λ is the updating function. Other parameters are
x(k)i corresponding to the output feature vector of node i in layer k, x(k)j representing feature
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vectors of the neighbors of node i, and the edge attribute eij. To better exploit node and
edge features of binding site graphs, we implemented the following single-channel NWM:

x(k)i = hθ

(
(1 + ε) · x(k−1)

i + ∑
j∈N (i)

hω

(
eij
)
· x(k−1)

j

)
, (2)

where hω is an MLP taking the edge attribute as the input and outputting a message weight,
which is a node feature j, ε is a learnable scalar, and hθ is another MLP updating the aggre-
gated information. Edge attributes are the same for all layers and are not updated during
training. The NWM message passing rule can be regarded as an extension of the graph
isomorphism network (GIN) [51], an expressive message passing model that is as powerful
as the Weisfeiler–Lehman test in distinguishing graph structures. Its sum aggregator is
replaced in GraphSite by the sum of weighted messages with weights generated by a
neural network hω. From another perspective, the NWM model belongs to the message
passing neural network (MPNN) family [38]. The gated graph neural network (GGNN)
is an MPNN family member whose message is formed by Aeij x

(k)
j , where Aeij is a square

transformation matrix generated by a multilayer perceptron (MLP) from the edge attribute
eij. The GGNN can be regularized to the NWM by imposing a restriction on the matrix Aeij

to make it diagonal with all elements on the diagonal equal. We found empirically that the
regularization of GGNN to NWM is not only computationally more efficient but also helps
mitigate model overfitting.

Finally, inspired by the idea that multiple aggregators can improve the expressiveness
of GNNs [52], we extended the single-channel NWM layer described by Equation (2) to a
multi-channel NWM layer by concatenating the outputs of multiple aggregators:

x(k)i = hθ

(
concat

c∈Channels

(
(1 + εc) · x(k−1)

i + ∑j∈N (i) hωc
(
eij
)
· x(k−1)

j

))
, (3)

where εc and hωc represent an aggregator learned as channel c. The aggregated node
features are concatenated in their last dimension so that the concatenated node features
have the shape of n by d× |C|, where d is the dimension of node features. The updated
neural network hθ also acts as a reduction function, decreasing the size of node features
from d × |C| to d. Intuitively, the concatenation of multiple aggregators in the GNN is
analogous to using multiple filters in the CNN; each aggregator corresponds to a filter, and
the concatenated output is equivalent to the output feature maps in the convolution layer
of the CNN.

2.3.2. Graph Readout

A graph readout function reduces the size of a graph to a single node. GraphSite em-
ploys Set2Set [53] as a global pooling function to perform graph readout. Set2Set generates
fixed-sized embeddings for sets of various sizes by utilizing the attention mechanism to
compute the global representation of a set. Briefly, a long short-term memory (LSTM) [54]
neural network recurrently updates a global hidden state of the input set. During the
recurrent process, the global hidden state is used to compute attention values associated
with each element in the set, which are in turn used to update the global hidden state.
After several iterations, a global graph representation is created by concatenating the global
hidden state constructed by the LSTM and the weighted sum of elements in the set. The
global pooling layer reduces the node feature dimension from n× d to d, where n is the
number of nodes and d is dimension of the node feature vector.

2.3.3. Loss Function

The dataset of ligand binding pockets is imbalanced, meaning that some classes, such
as nucleotide, have many more data points than other classes. Consequently, a training
mini batch contains mostly the data from major classes, which could bias a typical loss
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function utilizing the cross-entropy. To mitigate this problem, GraphSite employs the focal
loss (FL) function adding a damping factor (1− pt)

γ to the cross-entropy loss [55]:

FL(pt) = −(1− pt)
γ log(pt), (4)

where pt is the predicted probability generated by the softmax function, and γ ≥ 0 is a
tunable hyperparameter. With this damping factor, dominating predictions with high proba-
bilities are suppressed, while those predictions having low probabilities are assigned higher
weights. This approach has been shown to minimize the problem of imbalanced classes.

2.4. Other Methods to Classify Pockets

A docking-based approach employs a small library of 14 ligands, each representing
one class of pockets listed in Table 1. These compounds are docked to a query pocket
with a molecular docking program smina [56] and the class of a molecule with the best
docking score is assigned to that pocket. A pocket matching-based approach scans a query
pocket against a small library of 14 representative pockets for all classes in Table 1 with
a local structure alignment program G-LoSA [57]. The query pocket is then assigned a
class from the library pocket having the best matching score. A random classifier randomly
assigns the query pocket with a class according to the frequencies of individual classes in
the dataset.

3. Results
3.1. Classification Performance against the Benchmarking Dataset

The performance of GraphSite is compared to that of several other approaches, GIN,
molecular docking, pocket matching, and a random classifier. The GIN is an expressive
message passing model, shown to be as powerful as the Weisfeiler–Lehman algorithm in
distinguishing graph structures [51]. As the GIN employs a sum aggregator ignoring edge
attributes, it constitutes an appropriate baseline to demonstrate the benefit of taking advan-
tage of edge attributes in GraphSite with the NWM model. To conduct a fair comparison,
the configurations of GraphSite and GIN are identical, except for the architecture of GNN
layers. In addition to GNN-based classifiers, we also include docking- and pocket matching-
based approaches. The former method employs smina [56], a fork of AutoDock Vina [58]
featuring improved scoring and minimization, whereas pocket matching is conducted with
G-LoSA, a tool to align protein local structures in a sequence order independent way [57].

After training, Graphsite and GIN is tested on the testing split of the dataset. Training
the GraphSite classifier on Nvidia V100 GPU for 200 epochs took about 5 h. The clas-
sification performance of all tested methods on the testing subset is reported in Table 2.
GraphSite achieves the best overall classification accuracy with a high recall of 81.3% and
F1-score of 81.7%. Both recall and F1-score for the GIN are lower, therefore, utilizing edge
attributes with multi-channel NWM layers indeed improves the classification accuracy
over GIN layers. The performance of docking- and pocket matching-based approaches
assessed by the recall and F1-score is comparable to that of a random classifier. Despite
this low sensitivity, both techniques achieve relatively high precision, corresponding to a
high fraction of correctly classified instances among all pockets. We note that docking and
pocket matching were executed with default parameters because it is impractical to apply
these algorithms exhaustively to increase the classification accuracy further.

Figure 3 shows the confusion matrix calculated for GraphSite predictions against
the benchmarking dataset, in which numbers on the diagonal are recall values for ligand
classes. Although GraphSite correctly predicted most classes, it misclassified a few pockets
as well. There are two main reasons for these misclassifications. First, the support for some
pocket classes across the dataset is low; for instance, only 1.8% of instances belong to class
12 and 1.6% to class 13 (Table 1). As more gradients are generated for the majority of classes
during training, the model learns these classes more efficiently. Although this issue can
partially be mitigated by employing the focal loss [55], the performance of minority classes
is still going to be somewhat lower compared to those classes having stronger support. The
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second reason is that ligands binding to pockets belonging to different classes can, in fact,
contain similar chemical moieties. We discuss several representative examples of these
misclassifications in the following section.

Table 2. Classification performance against the benchmarking dataset. GraphSite is compared to the
graph isomorphism network (GIN), molecular docking with smina, pocket matching with G-LoSA,
and a random classifier. Precision, recall, and F1-score are class-weighted.

Method Recall Precision F1-Score

GraphSite 81.3% 82. 3% 81.7%
GIN 75.1% 74.3% 74.3%

Smina 16.7% 43.4% 16.1%
G-LoSA 14.8% 34.4% 15.9%
Random 17.8% 17.7% 17.7%
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3.2. Examples of Misclassified Pockets

Class 12 comprises pockets binding ligands containing morpholine rings, 17% of which
are misclassified as nucleotides (Figure 3). Examples of these molecules are commonly
used organic buffering agents [59], such as piperazine-N,N′-bis(2-ethanesulfonic acid)
(PIPES). GraphSite classified a binding site in centromere-associated protein E (CENP-E)
complexed with PIPES (PDB-ID: 1t5c) [60] as a nucleotide-binding pocket with a confidence
score of 0.96. This prediction can be validated by structurally aligning the CENP-E pocket
with a known nucleotide binding site. Here, we selected the ATP binding site in phos-
phoribosylformylglycinamidine (FGAM) synthase II (PDB-ID: 2hs0) [61], whose sequence
identity with CENP-E is only 21%. Ligand binding sites in both proteins were aligned
with PocketAlign, which employs shape descriptors in the form of geometric perspectives,
supplemented by chemical group classification, to compute sequence order-independent
alignments [62]. Figure 4A shows the superposition of binding sites in CENP-E (purple)
and FGAM synthase II (yellow). Encouragingly, the root-mean-square deviation over Cα
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atoms (Cα-RMSD) of 9 equivalent residues is as low as 1.6 Å. Generally, values below 3.0 Å
indicate that the aligned pockets are structurally similar [62].
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site in FGAM synthase II (yellow surface). (B) MES (orange sticks) binding site in zitR (purple
surface) and ATP (cyan sticks) binding site in FGAM synthase II (yellow surface). (C) Imatinib
(orange sticks) binding site in ANC-AS (purple surface) and ATP (cyan sticks) binding site in
FGAM synthase II (yellow surface). (D) (3R)-3-hydroxy-2,4-dioxopentyl dihydrogen phosphate
(orange sticks) binding site in LsrF (purple surface) and arginine (cyan sticks) binding site in AT
(yellow surface). (E) Colchicine (orange sticks) binding site in BRD4 (purple surface) and ATP
(cyan sticks) binding site in FGAM synthase II (yellow surface). (F) Tromethamine (orange sticks)
binding site in MAT (purple surface) and di(hydroxyethyl)ether (cyan sticks) binding site in BtR318A
(yellow surface).

Another example is 2-(N-morpholino)ethanesulfonic acid (MES) containing the mor-
pholine ring that is structurally related to the piperazine ring with one nitrogen atom
replaced by oxygen [63]. GraphSite classified a binding pocket in zinc transport transcrip-
tional regulator (zitR) complexed with MES (PDB-ID: 5yhz) [64] as a nucleotide-binding
pocket with a confidence score of 0.97. Figure 4B shows that this pocket (purple) is struc-
turally related to the ATP binding site in FGAM synthase II (yellow) with 1.5 Å Cα-RMSD
over 6 equivalent residues reported by PocketAlign. Note that the global sequence iden-
tity between zitR and FGAM is only 20%. Piperazine and morpholine rings are often
used to develop molecules competing with nucleotides. For instance, morpholinos, nu-
cleotide analogs blocking mRNA splicing and translation [65], contain the morpholine
ring replacing the sugar group of a nucleotide [66]. Further, morpholine-containing pyra-
zolopyrimidines are selective and potent ATP-competitive inhibitors of mTOR, showing
anti-cancer properties in xenograft tumor models [67]. ATP-competitive inhibitors often
contain piperazine rings to increase their aqueous solubility [68] and to form favorable
interactions with the hinge region of protein kinases [69].

An example of the ATP-competitive inhibitor containing piperazine is imatinib, a
widely used chemotherapeutic to treat certain types of cancer [70]. Piperazine and benzene
rings in imatinib are required for their inhibitory activity against leukemia cell lines [10]. A
binding site in Src-Abl tyrosine kinase ancestor (ANC-AS) complexed with imatinib (PDB-
ID: 4csv) [71] was classified by GraphSite as a nucleotide-binding pocket with a confidence
of 0.99. Despite a low sequence identity between ANC-AS and FGAM synthase II of
23%, PocketAlign aligned their binding sites with a Cα-RMSD of 1.8 Å over 17 equivalent
residues (Figure 4C, ANC-AS is purple and FGAM yellow), indicating that both pockets
can bind similar ligands. Indeed, ANC-AS has also been co-crystallized with ATP (PDB-ID:
4ueu); therefore, the classification by GraphSite is, in fact, correct. This is an example of a
pocket capable of binding multiple, chemically dissimilar ligands, which may belong to
more than one class.
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GraphSite classified 26% of pockets binding alkyl phosphates belonging to class 13 as
binding sites for essential amino acids (Figure 3). For instance, a binding site in a coenzyme
A-dependent thiolase LsrF bound to (3R)-3-hydroxy-2,4-dioxopentyl dihydrogen phos-
phate (PDB-ID: 4p2v) [72] was classified as an essential amino acid binding pocket with
0.96 confidence. Figure 4D shows a valid structure alignment constructed by PocketAlign
between this pocket (purple) and a known amino acid binding pocket in L-arginine:glycine
amidinotransferase (AT, yellow) complexed with arginine (PDB ID:4jdw) [73]. This align-
ment has a Cα-RMSD of 1.5 Å calculated over 14 equivalent residues indicating that the
binding site in LsrF is structurally related to arginine binding pockets. As a matter of fact,
alkyl phosphates and amino acids are connected through common biochemical pathways,
e.g., phosphoenol pyruvate is an important citric acid cycle intermediate that produces
alpha-ketoglutarate, ultimately leading to the synthesis of amino acid arginine [74,75]. This
may explain the classification result by GraphSite of the binding site in LsrF.

Colchicine is an anti-inflammatory agent primarily used to treat gout [76]. A colchicine
binding site in human bromodomain-containing protein 4 (BRD4, PDB-ID: 6ajz) [77] was
classified by GraphSite as a nucleotide binding site with a confidence score of 0.93. Inter-
estingly, BRD4 is homologous to the murine mitotic chromosome-associated protein [78]
and the human RING3 protein [79], both annotated with kinase activity. Colchicine is
also effective against acute coronary syndrome by inhibiting a nucleotide-binding domain
(NOD)-like receptor protein 3 inflammasome protein complex [80]. The colchicine binding
site in BRD4 was aligned to a known ATP binding site in FGAM synthase II with Pock-
etAlign. The resulting alignment shown in Figure 4E has a low Cα-RMSD of 1.7 Å over
9 equivalent residues (BRD4 is purple and FGAM is yellow). This result indicates that both
pockets are structurally similar, explaining the classification by GraphSite of the pocket in
BRD4 as nucleotide binding.

A few pockets binding essential amino/citric/tartaric acids belonging to class 6 were
classified by GraphSite as binding sites for lipids (Figure 3). An example is a pocket in
maltose O-acetyltransferase from E. coli binding tromethamine (MAT, PDB-ID: 6ag8) [81]
assigned by GraphSite to class 5 with a confidence score of 0.98. MAT catalyzes the CoA-
dependent transfer of an acetyl group to maltose and other sugars [82]. The fatty acid or
lipid biosynthesis pathway produces acetyl CoA that enters the citric acid cycle to produce
citrate [83]. According to results by PocketAlign shown in Figure 4F, the binding site in
MAT is structurally similar to a pocket in putative endonuclease/exonuclease/phosphatase
family protein binding di(hydroxyethyl)ether (BtR318A, PDB-ID: 3mpr) [84] with an RMSD
of 1.5 Å over 8 equivalent residues (MAT is purple and BtR318A is yellow). This high
similarity to a lipid-binding site gives a reason for the misclassification of a pocket in MAT
by GraphSite.

3.3. Performance on Unseen Data

Next, the performance of GraphSite is evaluated against a small dataset of “unseen”
pockets. All data in this set were published later than the benchmarking dataset; thus,
these pockets have not been used to train the machine learning model. In addition, the
unseen dataset comprises only those proteins having low homology to benchmarking
proteins. Encouragingly, using GraphSite yields the weighted recall, precision, and F1-score
against the unseen dataset of 68.9%, 75.5%, and 70.7%, respectively. Although these values
are somewhat lower than those reported in Table 2, the performance of GraphSite is still
satisfactory considering that the unseen dataset is smaller and much more challenging
than the benchmarking dataset. GraphSite is expected to achieve such performance in
real-world applications employing new data.

3.4. Classification of the Negative Dataset

Lastly, GraphSite was applied to the negative dataset of surface pockets having char-
acteristics of binding sites yet not binding any ligands [46]. Figure 5 shows that the
distribution of the classification confidence is diametrically different from that obtained for
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the benchmarking dataset. A purple violin plot on the left shows the distribution of the
probability of the top-ranked class predicted by GraphSite for the benchmarking dataset.
The median probability of 0.93 indicates that the model produced not only accurate but
also highly confident predictions for the benchmarking dataset. Note that this performance
was obtained employing a proper cross-validation protocol. In contrast, predictions for the
negative dataset are clearly less confident, with a median probability of only 0.67. These
results demonstrate that even though non-binding sites were classified into 14 classes as
GraphSite was designed for, unconfident predictions indicate that these surface pockets do
not fit well any ligand class the model was trained against.
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3.5. Siamese-GraphSite Extension

In addition to the classifier model, we extended GraphSite by adding a Siamese model
for metric learning. This model generates two graph embeddings for a pair of input graphs,
which are then used to calculate the contrastive loss (CL) [85]:

CL(W, y, x1, x2) =
1
2
(1− y)(dW)2 +

1
2
(y)(max(0, m− dW))2 (5)

where y is the label of the pair of input graphs x1 and x2 (either 1—similar or 0—dissimilar),
W parameterizes the embedding network, dW is the Euclidean distance between graph
embeddings, and m > 0 is a distance margin for the input pair to contribute to the loss
function. Intuitively, using the contrastive loss in model training results in embeddings
from the same class being close to one another in the Euclidean space and far away from
each other for embeddings belonging to different classes.

As shown in Figure 6, embedding networks with shared parameters require a pair
of graphs representing binding pockets as the input to generate two graph embeddings.
These embeddings can subsequently be used in various machine learning applications,
such as the visualization of the binding pocket conformational space. As this architecture
optimizes the relative distances of the data in the Euclidean space, embeddings generated
by Siamese-GraphSite are well suited for distance-based analyses, including, for instance,
t-distributed stochastic neighbor embedding (t-SNE) visualization [86] and k-nearest neigh-
bor clustering [87].
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To test the distance metric learning on weakly supervised data, we trained Siamese-
GraphSite against 8 clusters in the original dataset prior to the manual curation. Figure 7
shows the t-SNE visualization of the clusters from the validation subset (10%) after the
model was trained on the remaining subset (90%). Overall, similar pockets are grouped
together, while dissimilar pockets are located away from one another. Interestingly, clus-
ters 0 (green dots in Figure 7) and 3 (orange dots in Figure 7) come together according
to the t-SNE analysis. The former cluster contains ADP and ANP, whereas the latter is
composed of UMP and TMP. Because of the functional similarity of pockets belonging
to these clusters, both groups were merged during the manual curation of the dataset
into a single class 0 comprising nucleotides (Table 1). Similarly, clusters 3 (red dots in
Figure 7) and 8 (yellow dots in Figure 7) are grouped together. These clusters containing
glucose and fructose ligands were also manually curated into a single class 2 composed
of carbohydrates (Table 1). These observations indicate that the Siamese model effectively
learns embeddings to represent functional relations among binding pockets in line with the
human expert knowledge.



Biomolecules 2022, 12, 1053 13 of 17Biomolecules 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 
Figure 7. t-SNE visualization of embeddings generated by Siamese-GraphSite. Each dot represents 
one pocket colored by the cluster assignment. 

4. Discussion 
In this communication, we describe GraphSite, a method to classify ligand binding sites, 

represented as graphs, with a graph deep learning model. Comprehensive benchmarking 
calculations demonstrate that the trained classifier extracts informative features of binding pockets 
yielding state-of-the-art classification performance. Importantly, GraphSite successfully classifies 
binding sites without any information on their ligands. It has the desired capability to generalize to 
unseen data, as shown for an independent dataset of pockets taken from proteins having low 
homology and solved posterior to training structures. Moreover, calculations conducted for the 
negative dataset of surface pockets not binding any ligands demonstrate that GraphSite does not 
overpredict; therefore, the false positive rate in real applications should be low. 

GraphSite can further be extended in several directions. Utilizing larger datasets comprising 
more classes will not only help train a more powerful and accurate classifier, but it will also increase 
the performance of metric learning by the Siamese model presented here as an example of the 
extension of GraphSite. However, this plan of action would require employing various data 
augmentation techniques [31] to account for fewer structures currently available for certain pocket 
classes. We also expect that exploring additional node features of binding site graphs may also 
improve the classification performance. GraphSite is a versatile approach that can be useful in other 
deep learning-based applications involving the analysis of ligand binding sites. For example, it is 
possible to train a graph autoencoder to generate latent embeddings of binding sites for subsequent 
use in machine learning. Another potential application is to build a model to predict drug-target 
interactions where the GNN layers of GraphSite can be used as the feature extractor for input 
binding sites. These new directions to improve and extend GraphSite will be explored in the future. 

Author Contributions: Conceptualization, W.S., L.P., and M.B.; data curation, W.S., M.S., G.S., and 
M.B.; methodology, W.S. and L.P.; software implementation, W.S.; case studies, M.S.; funding 
acquisition, J.R. and M.B.; supervision, M.B. and J.R.; manuscript draft, W.S. and M.S.; final 
manuscript, M.B. All authors have read and agreed to the published version of the manuscript. 

Figure 7. t-SNE visualization of embeddings generated by Siamese-GraphSite. Each dot represents
one pocket colored by the cluster assignment.

4. Discussion

In this communication, we describe GraphSite, a method to classify ligand binding
sites, represented as graphs, with a graph deep learning model. Comprehensive bench-
marking calculations demonstrate that the trained classifier extracts informative features of
binding pockets yielding state-of-the-art classification performance. Importantly, GraphSite
successfully classifies binding sites without any information on their ligands. It has the
desired capability to generalize to unseen data, as shown for an independent dataset of
pockets taken from proteins having low homology and solved posterior to training struc-
tures. Moreover, calculations conducted for the negative dataset of surface pockets not
binding any ligands demonstrate that GraphSite does not overpredict; therefore, the false
positive rate in real applications should be low.

GraphSite can further be extended in several directions. Utilizing larger datasets com-
prising more classes will not only help train a more powerful and accurate classifier, but it
will also increase the performance of metric learning by the Siamese model presented here
as an example of the extension of GraphSite. However, this plan of action would require em-
ploying various data augmentation techniques [31] to account for fewer structures currently
available for certain pocket classes. We also expect that exploring additional node features
of binding site graphs may also improve the classification performance. GraphSite is a
versatile approach that can be useful in other deep learning-based applications involving
the analysis of ligand binding sites. For example, it is possible to train a graph autoencoder
to generate latent embeddings of binding sites for subsequent use in machine learning.
Another potential application is to build a model to predict drug-target interactions where
the GNN layers of GraphSite can be used as the feature extractor for input binding sites.
These new directions to improve and extend GraphSite will be explored in the future.
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