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Abstract

Motivation: Fast and accurate classification of ligand-binding sites in proteins with respect to the class of binding
molecules is invaluable not only to the automatic functional annotation of large datasets of protein structures but
also to projects in protein evolution, protein engineering and drug development. Deep learning techniques, which
have already been successfully applied to address challenging problems across various fields, are inherently suit-
able to classify ligand-binding pockets. Our goal is to demonstrate that off-the-shelf deep learning models can be
employed with minimum development effort to recognize nucleotide- and heme-binding sites with a comparable ac-
curacy to highly specialized, voxel-based methods.

Results: We developed BionoiNet, a new deep learning-based framework implementing a popular ResNet model for
image classification. BionoiNet first transforms the molecular structures of ligand-binding sites to 2D Voronoi dia-
grams, which are then used as the input to a pretrained convolutional neural network classifier. The ResNet model
generalizes well to unseen data achieving the accuracy of 85.6% for nucleotide- and 91.3% for heme-binding pock-
ets. BionoiNet also computes significance scores of pocket atoms, called BionoiScores, to provide meaningful
insights into their interactions with ligand molecules. BionoiNet is a lightweight alternative to computationally ex-
pensive 3D architectures.

Availability and implementation: BionoiNet is implemented in Python with the source code freely available at:
https://github.com/CSBG-LSU/BionoiNet.

Contact: michal@brylinski.org

Supplementary information: Supplementary data are available at Bioinformatics online.

et al., 2010), to mention a few. Other methods commonly used in
computer-aided drug discovery analyze the distinctive features of
binding sites, such as their druggability (Kana and Brylinski, 2019;
Schmidtke and Barril, 2010), composition (Khazanov and Carlson,

1 Introduction

Most proteins perform their molecular functions by interacting with
other biomolecules such as nucleic acids, hormones, other proteins,

peptides, neurotransmitters and metabolites. Binding sites for low
molecular weight molecules, called ligands, are typically concave
surfaces presenting specific amino acids in a certain conformation to
bind organic compounds. A comprehensive characterization of
ligand-binding sites across proteomes is essential to elucidate the
functions of proteins, study the molecular mechanisms of disease,
and develop new pharmacological agents with improved selectivity
profiles. Structural bioinformatics offers a wide collection of tools
to facilitate these tasks. For instance, numerous algorithms are avail-
able to identify ligand-binding pockets in protein structures, includ-
ing Fpocket (Le Guilloux et al., 2009), COACH (Yang et al., 2013),
eFindSite (Brylinski and Feinstein, 2013) and 3DLigandSite (Wass

2013; Skolnick et al., 2015), the location of interaction hot spots
(Brenke et al., 2009; Ngan et al., 2012) and conformational dynam-
ics (Araki et al., 2018; Stank er al., 2016). One of the outstanding
challenges in structural bioinformatics is to accurately classify
ligand-binding sites with respect to the type of small molecules bind-
ing to these regions on protein surface.

The last decade has witnessed tremendous advances in artificial
intelligence leading to solutions to many challenging problems.
Examples include computer vision (Szegedy et al., 2016), natural
language processing (Lipton et al., 2015) and other research areas
(Li and Dong, 2014; Najafabadi et al., 2015). Deep learning compu-
tational models, usually referred to as deep neural networks (DNNs)
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are the most popular algorithms. DNNs can learn intrinsic relation-
ship between input data and their labels under proper regulariza-
tions and are capable of generalizing to unseen data (Neyshabur
et al., 2017). These models approximate sophisticated functions and
effectively extract informative features from raw data such as images
and speech signals (LeCun et al., 2015). The performance of various
DNNs in the highly competitive ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) (Russakovsky et al., 2015) is con-
tinuously improving. AlexNet (Krizhevsky ez al., 2012) was one of
the first DNNs to win ILSVRC in 2012 with a top-5 error of 16.4%,
which was 10.8% lower than the second ranked algorithm.
GoogLeNet (Szegedy et al., 2015) was the winner of 2014 ILSVRC
with a top-5 error of 6.7%. Finally, ResNet (He et al., 2016) was
the top performer in 2015 ILSVRC achieving a top-5 error of only
3.6% in. A unique feature of ResNet is identity mapping across
layers allowing gradients to take shortcuts when passing through
layers during training. These shortcuts allow bottom layers to learn
more efficiently, which greatly speeds up the learning process and
makes training very deep architectures feasible.

Many deep learning-based methods employ custom architectures
and models depending on the type of input data, for instance, the
voxel representation of spatial data requires 3D convolutional neur-
al network (CNN) frameworks (Kamnitsas et al., 2017; Pu et al.,
2019; Qureshi et al., 2019; Skalic et al., 2019). This prerequisite not
only makes the development of new tools laborious but also puts
responsibilities on developers, who are often domain scientists, to
continuously maintain, debug, and improve their codes. An alterna-
tive approach is to use a pretrained, off-the-shelf DNN architecture,
such as ResNet (He et al., 2016), OxfordNet (Simonyan and
Zisserman, 2015) or GoogLeNet (Szegedy et al., 2015). In this case,
the input data need to be transformed to be compatible with the
model and the DNN parameters should be fine-tuned. The major
advantage of this strategy is that it allows domain scientists to use
state-of-the-art models yielding the best performance at significantly
reduced development efforts. In this spirit, we developed Bionoi, a
new method to represent the 3D structures of ligand-binding sites as
2D images. We demonstrate that this representation contains suffi-
cient spatial physicochemical information to ensure a high accuracy
of binding pocket classification with an off-the-shelf deep learning
model. We call this algorithm BionoiNet because it employs ResNet,
a state-of-art DNN proven to be successful in image recognition, to
classify ligand-binding sites.

2 Materials and methods

2.1 Datasets

The primary dataset used in this study, TOUGH-C1, was compiled
previously to evaluate the performance of DeepDrug3D (Pu et al.,
2019). It comprises non-redundant sets of 1553 nucleotide-binding
pockets and 596 heme-binding pockets obtained by clustering PDB
structures at 80% sequence identity. The control dataset contains
1946 pockets selected from TOUGH-M1, which was used previous-
ly to benchmark several pocket matching algorithms (Govindaraj
and Brylinski, 2018). Control pockets bind ligands chemically dif-
ferent from ATP and heme with the Tanimoto coefficient
(Kawabata, 2011) of <0.5. Further, control proteins share <40%
sequence identity with nucleotide- and heme-binding proteins and
have different structures with the template modeling score (Zhang
and Skolnick, 2004) of <0.5. Binding residues in nucleotide-, heme-
binding and control proteins were identified with the ligand-protein
contacts (LPCs) software (Sobolev et al., 1999). These datasets are
combined for three binary classification tasks, nucleotide-heme, nu-
cleotide-control and heme-control. In addition to these binding
pocket datasets, we use 5000 images of cats and 5000 images of
dogs from Kaggle, Google’s resource for data science and machine
learning (www.kaggle.com). The cat-dog dataset is employed to
benchmark BionoiNet and compare the results to those obtained for
the nucleotide-heme dataset. Moreover, the images of cats and dogs
are more intuitive to understand than the Voronoi diagrams of bind-
ing sites making it easier to analyze and interpret the trained DNN

models. The original Kaggle images are of different sizes, therefore,
we resized them to 256 x 256 pixels.

2.2 Flowchart of BionoiNet
Diagram of the sequence of functions in BionoiNet is presented in
Figure 1. Ligand-binding sites extracted from protein structures
(Fig. 1A) are subjected to a series of transformations (Fig. 1B). First,
principal axes are calculated from the coordinates of residue atoms
and aligned to Cartesian axes in order to ensure that the subsequent
projections are invariant under different initial orientations of pock-
ets. Next, the Miller cylindrical projection, originally devised to por-
tray the Earth in two dimensions (Miller, 1942), is computed to
generate the 2D coordinates of binding site atoms. Given that bind-
ing sites typically have irregular structures, this particular projection
was found to maintain relative distances between atoms so that the
spatial arrangement of atoms is preserved after projection.
Furthermore, the Miller projection avoids eclipsing atoms, i.e. pro-
jecting atoms from the opposite sides of a pocket next to one an-
other on the 2D plane. The projected atoms are used as seeds for a
Voronoi tessellation (Aurenhammer, 1991). The basic properties of
Voronoi diagrams are explained in the Supplementary Information.
Cells in the resulting Voronoi diagrams can be colored either by
atom/residue type or according to physicochemical properties.
Figure 1C shows an example of a binding site represented by a
Voronoi diagram colored by atom type with two selected residues
marked as sticks. Indeed, the spatial arrangement of atoms is pre-
served after the projection of the 3D coordinates of residues onto a
2D plane. We found that coloring by the hydrophobicity of binding
residues according to the Kyte-Doolittle index (Kyte and Doolittle,
1982) yields a high classification performance of the model, there-
fore this coloring scheme is used by default in BionoiNet. Ligand-
binding sites are represented with this scheme as images providing
the spatial physicochemical information to the DNN classifier. In
order to mitigate the effects of overfitting, the dataset is augmented
according to a procedure described in the Supplementary
Information. A DNN model is trained in a supervised manner using
the true labels of the data (Fig. 1D). Finally, the trained DNN model
is applied to classify unseen data and to compute atom significance
scores, called BionoiScores (Fig. 1E).

2.3 Convolutional neural network for image

classification

CNNs, which evolved from traditional neural networks, consist of
convolutional layers, pooling layers and fully connected layers
(LeCun et al., 1998). Neurons in a convolutional layer are locally
connected to the input feature maps and share sets of trainable
parameters, namely filters. Figure 2 illustrates a simple CNN work-
ing on a Voronoi diagram of a ligand-binding site to generate a clas-
sification result. The function of convolutional layers is to scan the
input image (Fig. 2A) to extract features (Fig. 2B). BionoiNet
employs a rectified linear unit (ReLU) as the activation function for
its convolutional layers (Jarrett et al., 2009). Pooling layers are usu-
ally added after convolutional layers to reduce the data resolution
by down-sampling the spatial dimension of feature maps (Fig. 2C).
Feature maps are then flattened into a vector (Fig. 2D). Fully con-
nected layers are usually employed as the final layers (Fig. 2D) per-
forming the high-level induction in order to generate the output
(Fig. 2E).

In BionoiNet, all layers of the ResNet-18 CNN (He et al., 2016),
except the last fully connected layer, are used as a module for feature
extraction. A fully connected neuron followed by a sigmoid function
takes the output of this feature extractor to compute classification
results. The ResNet-18 feature extractor is pretrained on the
ImageNet dataset, which improves both the convergence rate and
the model performance by initializing the model at a good position
in the parameter space. Although ImageNet and the dataset of bind-
ing sites belong to different data domains, previous work demon-
strated that the lower layers of a CNN (those closer to the input
image) learn similar low-level features, such as edges, even on differ-
ent datasets (Zeiler and Fergus, 2014). Therefore, low-level features
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Fig. 1. Flowchart of BionoiNet. (A) The example of a ligand binding site taken from heat resistant RNA dependent ATPase with two residues colored in green (F161) and cyan
(D133). (B) A series of transformations needed to generate Voronoi diagrams. (C) The example of an atom type-based Voronoi diagram constructed for the binding site in A
with individual cells colored by atom type (nitrogen—blue, carbon—green, oxygen—red) with the color intensity representing different hybridization states. Residues F161
and D133 are shown as sticks. (D) Data augmentation followed by model training and cross-validation. (E) The performance of the trained model is tested against the unseen

data and significance scores for individual atoms are calculated
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Fig. 2. Simplified convolutional neural network extracting features from ligand-
binding sites. (A) An input image showing the Voronoi representation of a ligand-
binding site. (B) Four feature maps constructed with four filters followed by ReLU
activation. (C) Latent feature space after a pooling operation. (D) Feature maps flat-
tened into a vector. (E) A fully connected layer performing high-level induction fol-
lowed by a single fully connected neuron with a sigmoid activation function. (F)
Classification results

learned by ImageNet are still useful for the CNN model to learn
from the dataset of binding sites. In addition, Voronoi diagrams are
composed of simple polygons that can be treated as the combina-
tions of edges in different directions. The knowledge of these edges
is presumably already learned during the pretraining of ImageNet.

2.4 Saliency maps and atom significance scores

In addition to pocket classification, BionoiNet computes
BionoiScores, significance scores for all atoms in the ligand-binding
sites, from the saliency maps of input images. These atom scores to-
gether with saliency maps provide meaningful insights and guidance
for the study of ligand-binding sites in proteins. The algorithm to
calculate saliency maps was originally invented for weakly super-
vised object localization (Simonyan et al., 2014). These maps are
computed by applying the gradient-based visualization, which is the
generalization of deconvolutional networks (Zeiler and Fergus,
2014), to the class score. If I is an input image and the correspond-
ing class score S, is computed by feedforwarding, then the derivative
of the class score with respect to the input is computed by one round
of backpropagation:

oS,
=or

The value of the derivative w indicates how much the class score
S. changes when the values of the corresponding pixels change. For
example, if the derivative has a high magnitude at position i, j with
the color channel ¢, a small change of the pixel at (4, j, ¢) will result a
significant change of the class score S, indicating that this pixel is
important for the classification result. To find the important loca-
tions of an input image, a saliency map M is computed as the max-
imum magnitudes among three color channels of the derivative:

w

40

M = maxcw, |, o) (2)

A saliency map is basically a single-channel image, in which each
pixel is assigned a value representing the attention of the CNN
model to that pixel. A BionoiScore for each atom is computed by
averaging the values of all pixels inside the corresponding polygon
of a Voronoi cell.

3 Experimental setup

3.1 Setup of CNN training in BionoiNet

All layers of the ResNet-18 CNN, except the final fully connected
layer, are used as the feature extractor, which is already pretrained
on the ImageNet dataset. During training against the binding pocket
data, the feature extractor was fine-tuned, i.e. its parameters were
updated by the optimization algorithm. The batch size was set to
32. The loss function is calculated as the average binary cross-
entropy of a mini-batch of training data:

l(x,y) = mean(li, b,..., ) (3)

I = —[wpyn x logxy + (1 — yy) x log(1 — xy)] (4)

where N is the number of data in a mini-batch, x, is the output of
CNN, v, is the value of the label and w, is the class weight assigned
to positive data which is the ratio of the number of negative instan-
ces to the number of positive instances. The class weight reduces the
effect of imbalanced class numbers by assigning higher weights to
the minority class in the loss function. Adam (Kingma and Ba, 2015)
was used as the optimization algorithm with the learning rate set to
0.0003. The L2 weight decay was set to 0.0001 for nucleotide-
control and nucleotide-heme, and 0.0003 for heme-control datasets.
The optimization algorithm ran 3 epochs for cat-dog, and 8 epochs
for nucleotide-heme, nucleotide-control and heme-control datasets.

Individual CNN models were trained with the above configur-
ation to perform four binary classification tasks, cat-dog, nucleo-
tide-heme, control-nucleotide and control-heme. Both the five-fold
cross-validation and the one-fold training were conducted. The five-
fold cross validation was used to assess the classification perform-
ance of the model, whereas the one-fold training was employed to
test the inference on unseen data and to generate BionoiScores. The
dataset was first clustered with BLASTClust (Altschul et al., 1990)
at the sequence identity threshold of 20%. Next, the resulting clus-
ters were randomly assigned to five equal-sized portions creating a
homology-reduced dataset in which training, testing and validation
instances share no more than 20% sequence identity. In the five-fold
cross validation, each portion was used as a validation set for each
fold. For the one-fold training, the dataset was randomly split into
three subsets, 80% for training, 10% for validation and 10% for
testing. A model yielding the highest performance against the valid-
ation set was selected to assess how well it generalizes to unseen
data.
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Fig. 3. Simplified stacked convolutional autoencoder. (A) An input image showing
the Voronoi representation of a ligand-binding. (B) Three feature maps constructed
with three filters followed by ReLU activation. (C) Latent feature space after a pool-
ing operation. (D) Three feature maps generated from the latent feature space by an
up-sampling operation. (E) An image reconstructed by a transposed convolution
layer

3.2 Other machine learning-based classifiers

Three baseline algorithms are used to evaluate the performance of
BionoiNet against nucleotide-control and heme-control datasets, a
multilayer perceptron taking flattened pixels as input (Flat/MLP)
and two convolutional autoencoder-based approaches (Masci et al.,
2011) employing random forest (Autoencoder/RF) and multilayer
perceptron (Autoencoder/MLP) classifiers. A simplified convolu-
tional autoencoder is shown in Figure 3. An autoencoder has two
parts, the encoder and the decoder. The encoder takes an image as
input (Fig. 3A), generates feature maps (Fig. 3B), and the corre-
sponding latent feature vector (Fig. 3C). The decoder takes the latent
feature vector generated by the encoder and attempts to recover the
original image by learning a decoding function (Fig. 3D and E). The
convolutional autoencoder was trained on the Voronoi representa-
tions of nucleotide-, heme-binding and control pockets in an un-
supervised manner. The mean squared error over all pixels was
employed as the loss function. The autoencoder was trained with
the Adam optimizer for 30 epochs with 0.001 learning rate, and
0.0001 weight decay. The learning rate was decayed by the factor of
0.5 at epochs 10 and 20.

A RF and an MLP were trained on feature vectors generated by
the autoencoder. Baseline classifier architectures are listed in
Supplementary Table S1. For instance, for the first layer of the en-
coder utilizes 16 3 x 3 filters, one-pixel stride and padding, leaky
ReLU activation function and 2 x 2 max pooling function. Leaky
ReLU (Xu et al., 2015) was used as the activation function for the
hidden layers. Dropout (Srivastava et al., 2014) with a probability
of 0.5 was applied to the fully connected layers in MLP to reduce
overfitting. The loss function in MLP was the same as in CNN.
MLP was trained with the Adam optimizer for 100 epochs with
0.001 learning rate. RF has 1000 estimators, the minimum number
of samples required to split a node is 0.0005 times total number of
samples, the minimum number of samples per leaf is 0.0002 times
total number of samples, and the impurity is measured with the en-
tropy. Input images for Flat/MLP were resized to 64 x 64 for mem-
ory efficiency. The loss function in Flat/MLP was the same as in
CNN. Flat/MLP was trained by the Adam optimizer for 100 epochs
with 0.0003 learning rate and the L2 weight decay was set to
0.0001.

4 Results

4.1 Classification performance on cat-dog and heme-

nucleotide datasets

BionoiNet is first tested against a standard Kaggle dataset using
evaluation metrics described in the Supplementary Information.
Table 1 shows that the cross-validated performance against the cat-
dog dataset is very high, confirming that the model was correctly set
up and trained. The performance of BionoiNet on the heme-
nucleotide dataset is slightly lower, e.g. the accuracy is 0.944 versus
0.991 for the cat-dog dataset. This can be expected because pretrain-
ing on ImageNet gives the ResNet-18 feature extractor an extensive
prior knowledge of cats and dogs, therefore, the model performs ex-
tremely well on the cat-dog task. A slight decrease in the

Table 1. Performance of BionoiNet on cat-dog and nucleotide-
heme datasets

Dataset ACC PPV TPR MCC ACC

Cat-dog 0.991 0.990 0.990 0.980 0.995
Nucleotide-heme 0.944 0.973 0.950 0.865 0.982

Note: Accuracy (ACC), precision (PPV), recall (TPR), the Matthews correl-
ation coefficient (MCC) and the area under the ROC curve (AUC) are calcu-
lated from 10-fold cross-validation.
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Fig. 4. Cross-validated performance of several algorithms to classify pockets.
Averaged ROC curves are shown for (A) nucleotide-control and (B) heme-control
datasets. BionoiNet is compared to a multi-layer perceptron with flattened pixels as
input (Flat/MLP) and two autoencoders employing random forest (RF) and MLP
classifiers. The diagonal represents the performance of a random classifier. FPR,
false positive rate; TPR, true positive rate

performance of BionoiNet is due to dissimilarities between
ImageNet and the dataset of ligand-binding sites. The prior know-
ledge of ImageNet is simply less helpful to classify protein pockets
because those two datasets belong to different data domains.
Nonetheless, the overall performance of BionoiNet against the
nucleotide-heme dataset is still very high, indicating that ResNet-18
effectively learned distinct features of nucleotide- and heme-binding
pockets.

4.2 Classification performance on nucleotide-control

and heme-control datasets

Next, we evaluate the classification performance of BionoiNet for
more challenging tasks, the recognition of nucleotide- and heme-
binding sites (positives) against a large and diverse dataset of control
pockets binding a variety of ligands (negatives). Since these tasks
contain imbalanced classes, 1553 nucleotide-binding, 596 heme-
binding and 1946 control instances, and the identification of posi-
tive instances is more important, precision, recall and the Matthews
correlation coefficient (MCC) are the most useful metrics to evaluate
the classification performance. Figure 4 and Table 2 show that
BionoiNet outperforms baseline classifiers on both datasets in terms
of these metrics. For the nucleotide-control dataset, it yields a preci-
sion of 0.837 and a recall of 0.843 showing a high capability to cor-
rectly identify positive instances. In contrast, the precision of all
baseline classifiers is significantly lower, ranging from 0.591 for
Autoencoder/MLP to 0.673 for Autoencoder/RF. BionoiNet also
achieves the highest MCC of 0.712, which measures the overall clas-
sification performance. In addition, the corresponding receiver oper-
ating characteristics (ROC) plots for the nucleotide-control dataset
are presented in Fig. 4A. BionoiNet has the best area under the curve
(AUC) of 0.935, whereas Autoencoder/RF outperformed both MLP-
based algorithms. The performance of BionoiNet is compared to
those of baseline classifiers on the heme-control dataset in Figure 4B
and Table 2. BionoiNet clearly outperformed baseline classifiers
with an accuracy of 0.913, a recall of 0.882, a precision of 0.777
and an MCC of 0.771. ROC plots for the heme-control dataset are
shown in Figure 4B. BionoiNet yields the best ROC curve with an
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Table 2. Performance of BionoiNet and baseline classifiers on nucleotide-control and heme-control datasets
Algorithm Nucleotide-control Heme-control

ACC PPV TPR MCC AUC ACC PPV TPR MCC AUC
BionoiNet 0.856 0.837 0.843 0.712 0.935 0.913 0.777 0.882 0.771 0.960
Flat/MLP 0.655 0.594 0.706 0.320 0.715 0.747 0.478 0.822 0.472 0.845
Autoencoder/RF 0.721 0.673 0.723 0.441 0.790 0.795 0.557 0.597 0.441 0.833
Autoencoder/MLP 0.650 0.591 0.687 0.306 0.708 0.744 0.475 0.815 0.465 0.839

Note: Accuracy (ACC), precision (PPV), recall (TPR), the Matthews correlation coefficient (MCC) and the area under the ROC curve (AUC) are calculated
from 10-fold cross-validation. Baseline classifiers are a multilayer perceptron with flattened pixels as input (Flat/MLP) and two autoencoders employing machine

learning with random forest (RF) and MLP.

A

Fig. 5. Examples of saliency and heat maps generated with BionoiNet. (A) Input
images, (B) saliency maps and (C) heat maps are shown for a picture of a cat (first
row) and the Voronoi representation of a nucleotide-binding site (second row)

AUC of 0.960, which is higher than AUC values obtained for other
classifiers.

Regardless of the classification task, BionoiNet outperforms
Flat/MLP taking image pixels directly as input. CNN-based models,
such as BionoiNet, employ filters with shared parameters on differ-
ent locations of an image in order to extract local invariant features
more easily and accurately, leading to better performance.
BionoiNet is also more accurate that both autoencoder-based meth-
ods. The difference between the CNN- and autoencoder-based algo-
rithms is that the former are trained in an end-to-end style, whereas
the latter have two separate phases, the training of the autoencoder
and the training of the actual classifier. Although the classifier could
acquire some knowledge from data labels during training, the
autoencoder was trained in an unsupervised manner, thus, it was
not provided any labels during training. In contrast, since the CNN
model was trained with an end-to-end supervised protocol, convolu-
tional filters were able to learn more information from data labels
during training. Another interesting observation is that all classifiers
yield better results on the heme-control dataset compared to the
nucleotide-control dataset. Many heme-binding pockets have a simi-
lar shape because the porphyrin ring of heme is rigid, while
nucleotide-binding pockets are generally much more diverse in
shape and physicochemical properties (Pu ef al., 2019). Since the
spatial arrangement of atoms is preserved in the Voronoi diagrams
of binding sites, classifiers can learn these patterns to yield better
prediction accuracy on the heme-control dataset than on the
nucleotide-control dataset. No discernible patterns were found to
explain individual misclassifications.

4.3 BionoiScores for binding pockets

BionoiNet calculates BionoiScores from saliency maps constructed
for input images. Two examples of saliency maps generated by
BionoiNet are presented in Figure 5 for a picture of a cat (first row)
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Fig. 6. Distribution of BionoiScores over nucleotide- and heme-binding residues.
Binding residues are divided into three groups depending on the contact surface area
with a ligand, <5 A%, 5-10 A? and >10 A2. For nucleotide-binding pockets, mean
+ standard dev1at10n values are calculated separately for residues forming hydro-
philic and aromatic interactions with nucleotides. For heme-binding pockets, these
values are calculated for residues forming hydrophobic and aromatic interactions
with heme molecules

and the Voronoi representation of a ligand-binding site (second
row). Figure SA shows the original images with the corresponding
saliency maps presented in Figure 5B. Figure 5C shows heat maps
constructed by overlaying saliency maps processed through a
Gaussian filter on the original images. Heat maps provide better
visualization by highlighting those regions that are important for
image classification. It can be seen that the prediction for a cat (the
first row of Fig. 5C) is triggered by different semantic regions of the
image and the model learned to localize the common visual patterns,
such as the animal face. According to the model, the remaining
‘cold’ regions covering a scratching post in the background are ir-
relevant for the classification.

The same principle can be applied to the Voronoi representations
of ligand-binding sites. As shown in the second row of Figure 5, the
saliency map (Fig. 5B) and the heat map (Fig. 5C) are generated by
BionoiNet to highlight those locations that are important for pocket
classification. We first identified binding residues forming the key
interactions with nucleotide and heme molecules in our dataset.
Here, we consider hydrophilic and aromatic interactions in
nucleotide-protein complexes (Mao et al., 2004) and hydrophobic
and aromatic interactions in heme-binding proteins (Li et al., 2011).
Using LPC, we divided these residues into three groups dependlng
on the contact surface area with a ligand, <5 A2, 5-10 A% and >10
A? , assuming that binding residues more strongly interact with a lig-
and when the corresponding contact surface area is high. Figure 6
shows the distribution of BionoiScores over nucleotide- and heme-
binding residues with respect to the interaction type and the contact
surface group assignment. Interestingly, the average BionoiScores
are low for residues assigned to the first group (<5 A2) forming ra-
ther weak interactions with a ligand. BionoiScores start to be higher
in the second group (5-10 A2), particularly for those residues form-
ing aromatic interactions with heme molecules. Residues with the
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highest contact surface area in the third group (>10 A?) have the
highest BionoiScores. Note that BionoiNet computes BionoiScores
from the conformation and physicochemical properties of pockets
without any information on binding ligands. Two representative
examples selected from the nucleotide-heme dataset are described in
the Supplementary Information. Overall, the analysis of the strongly
discriminative regions of input images indicates that the attention of
BionoiNet is on animal faces for the cat-dog dataset and on residues
forming key interactions with ligands for the nucleotide-heme
dataset.

5 Discussion

In this communication, we describe BionoiNet, a new deep learning-
based framework to classify ligand-binding site structures based on
their 2D representations. We demonstrate that BionoiNet signifi-
cantly outperforms traditional machine learning methods providing
a lightweight alternative to more sophisticated 3D CNN models,
such as DeepDrug3D (Pu e al., 2019). This recently developed deep
learning-based method first creates 3D voxel representations of
ligand-binding sites and then performs binary classification with 3D
CNN. DeepDrug3D was demonstrated to be more accurate than
many other methods, including volume- and shape-based
approaches, a classifier employing the histogram of gradients with
principal component analysis (HOG/PCA), pocket matching with
G-LoSA (Lee and Im, 2016), molecular docking with Vina (Trott
and Olson, 2010) and sequence signature detection with ScanProsite
(de Castro et al., 2006). Although BionoiNet also significantly out-
performed all these baseline methods, its performance is slightly
lower than that of DeepDrug3D. For instance, the AUC of
DeepDrug3D against the nucleotide-control (heme-control) dataset
is 0.986 (0.987), whereas the corresponding AUC of BionoiNet is
0.935 (0.960). It is important to note that both DeepDrug3D and
BionoiNet have high precision and recall values at the same time
indicating that these approaches effectively detect positive instances.
The classification performance of DeepDrug3D is slightly higher be-
cause its 3D voxel representation of ligand-binding sites with 14
channels contains more information than 2D Voronoi diagrams
with a single channel.

Nonetheless, BionoiNet has four major advantages over 3D
methods. First, 2D images are more efficient in terms of computing
time, memory and storage compared to 3D voxels. For example, cal-
culating a 3D voxel requires 10-30 min on a single core and produ-
ces a binary file whose size is 3.7 MB. In contrast, Voronoi images
are only about 14 kB in size and can be generated in a fraction of se-
cond, which is highly advantageous when working with large data-
sets. Second, off-the-shelf DNN architectures, such as ResNet (He
et al., 2016), OxfordNet (Simonyan and Zisserman, 2015) and
GoogLeNet (Szegedy et al., 2015), can directly be applied to classify
binding sites eliminating the necessity to develop highly-specialized
deep learning frameworks. Third, users can initialize those off-the-
shelf models with publicly available pretrained parameters signifi-
cantly reducing training time. Forth, the convolutional autoencoder
implemented as part of the BionoiNet software outputs fixed-size
feature vectors effectively encoding ligand-binding sites regardless of
their size. Similar to ProtVec (Asgari and Mofrad, 2015) and
Mol2vec (Jaeger et al., 2018) generating feature vectors for protein
sequences and ligand chemical structures, BionoiNet constructs fea-
ture vectors specifically for binding pockets, which can then be used
in other machine learning-based projects that require this kind of
data. Although the current version is trained to recognize nucleo-
tide- and heme-binding sites, BionoiNet will be extended to other
ligand types by employing various data augmentation techniques to
account for fewer structures currently available for certain
complexes.
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