
Vol.:(0123456789)1 3

Journal of Computer-Aided Molecular Design (2019) 33:509–519 
https://doi.org/10.1007/s10822-019-00197-w

Elucidating the druggability of the human proteome with eFindSite

Omar Kana1 · Michal Brylinski1,2 

Received: 8 December 2018 / Accepted: 12 March 2019 / Published online: 19 March 2019 
© Springer Nature Switzerland AG 2019

Abstract
Identifying the viability of protein targets is one of the preliminary steps of drug discovery. Determining the ability of a 
protein to bind drugs in order to modulate its function, termed the druggability, requires a non-trivial amount of time and 
resources. Inability to properly measure druggability has accounted for a significant portion of failures in drug discovery. 
This problem is only further exacerbated by the large sample space of proteins involved in human diseases. With these bar-
riers, the druggability space within the human proteome remains unexplored and has made it difficult to develop drugs for 
numerous diseases. Hence, we present a new feature developed in eFindSite that employs supervised machine learning to 
predict the druggability of a given protein. Benchmarking calculations against the Non-Redundant data set of Druggable and 
Less Druggable binding sites demonstrate that an AUC for druggability prediction with eFindSite is as high as 0.88. With 
eFindSite, we elucidated the human druggability space to be 10,191 proteins. Considering the disease space from the Open 
Targets Platform and excluding already known targets from the predicted data set reveal 2731 potentially novel therapeutic 
targets. eFindSite is freely available as a stand-alone software at https ://githu b.com/micha l-bryli nski/efind site.

Keywords Druggability prediction · Human proteome · Drug targets · Pocket prediction · Structural bioinformatics · 
Molecular modeling · eFindSite

Introduction

Pharmacology exploits the ability of bioactive compounds to 
bind with a sufficient specificity to macromolecular targets 
modulating their functions. New pharmaceuticals are devel-
oped through the onerous and often expensive process of 
drug discovery. In 2010 the overall cost of developing a drug 
and bringing it to market was estimated at 1–2 billion dollars 
with a 14-year cycle [1]. In 2016, research done by the Tufts 
Center for the Study of Drug Development put the cost of 
bringing a drug to market at $2.6 billion with nearly 11.3% 
of drugs that enter clinical testing being ever be approved 
in the United States [2]. This is down from 16.4% of drugs 
in 2005 [3]. Therefore, technology must be developed to 
increase accuracy and precision in order to reduce costs 
and miss-rates in drug discovery. It should be emphasized 

that most known proteins binding small molecules have no 
known confirmed therapeutic effect. Although the ChEMBL 
database comprises around 5000 known proteins with bind-
able pockets [4], only around 700 of these proteins are 
confirmed therapeutic targets for FDA approved drugs [5]. 
Consequently, the candidacy of a protein, and thus a protein 
pocket, for drug discovery is incredibly hard to confirm.

A large portion of the cost of drug development is due 
to developmental failures. It is estimated that nearly 60% 
of drug discovery failures are due to invalid or inappro-
priate identification of drug targets [6]. This is in part 
due to the large discovery space of possible drug-protein 
interactions. The total chemical space of drug discovery 
is estimated to be  1060 possible compounds [7], which can 
be alleviated somewhat with chemical fragment libraries 
and physiochemical thresholds reducing this number to 
roughly  1023 possible drugs [8]. Drug discovery is further 
complicated by the large number of possible protein targets 
for therapeutics in humans. Estimates put the portion of 
the human proteome related to some disease pathology at 
10% [9, 10]. According to the Open Targets Platform this 
number appears as a conservative estimate because nearly 
25,000 human proteins are within the top 5th percentile of 
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disease association scores [11]. With these challenges, it 
can be concluded that the validation of drug targets in an 
experimental setting is logistically intensive.

In drug discovery, the analysis of a protein druggabil-
ity is integral to successful target validation. Druggabil-
ity, termed over 15 years ago [10], is currently defined as 
the ability of a protein to be modulated by small drug-
like molecules, defined by Lipinski’s Rule of Five [12], 
with sufficient affinity and specificity in vivo to create a 
therapeutic effect in a relevant cellular pathway [1]. Tra-
ditionally, druggability was analyzed by co-crystalizing 
proteins with organic solvents to expose possible hydro-
phobic pockets [13]. This approach eventually evolved to 
the use of high-throughput screens and nuclear magnetic 
resonance (NMR) analysis of chemical fragment libraries 
[14]. In turn, hit rates were used as a metric for protein 
druggability. However, these methods were problematic 
as they had low sensitivity and high protein consumption 
[15]. Recent approaches such as fragment-based NMR flu-
orescence assays work to overcome these problems [16]. 
Despite advancements in NMR spectroscopy, experimental 
methods are still problematic in that their accuracies are 
directly linked to the fragment library being used. Nega-
tive results from drug targets are generally inconclusive 
and can only be controlled for using more complex and 
diverse libraries. The same problem extends to reproduci-
bility as the results of these tests are not normalized across 
fragmentation libraries [17]. In response, the wide avail-
ability of pharmacologically relevant data sets has allowed 
many groups to turn to computationally driven solutions 
to assessing druggability.

In silico analysis of druggability starts with building mod-
els of drug binding pockets. Pocket prediction of in the past 
has heavily relied on the high-resolution structural data from 
X-ray crystallography and NMR spectroscopy. The effort 
and time needed to produce such data is non-trivial even 
with new methods emerging such as cryo-Electron Micros-
copy (cryo-EM). Even among known drug targets, a portion 
of the proteome heavily overrepresented in structural biol-
ogy, only half of the structures have been elucidated [18]. 
To overcome the lack of high-resolution data, researchers 
have started turning to sequence-based homology modeling 
to develop accurate protein pocket and ligand prediction 
software. Homology modeling has a discrete advantage in 
that nearly 95% of known drug targets are represented by an 
acceptable homolog thus increasing the overall coverage of 
pharmacologically relevant protein structures [18]. In this 
paper, eFindSite [19, 20] is used to develop a new drugga-
bility classifier. eFindSite employs meta-threading to detect 
weakly homologous templates, clustering techniques, super-
vised and unsupervised machine learning, and a confidence 
estimation system to accurately predict drug-binding pockets 
in protein structures. eFindSite thus provides a convenient 

means of pocket detection that can reliably analyze the pro-
tein without the need of high-resolution data.

Many druggability classifiers rely on the use of geomet-
ric and physiochemical descriptors to predict protein pocket 
druggability. Geometric descriptors involve the size and 
complexity of the cavity with the hypothesis that they are 
directly correlated with easier drug binding and thus higher 
druggability. However, these descriptors are heavily depend-
ent on the structural information from the pocket prediction 
algorithm being used. Thus, there is usually weak correla-
tion between different data sets involving these descriptors. 
Unlike geometric descriptors, however, the significance of 
physiochemical descriptors of the pocket have been found 
to be generally independent of the accuracy of the pocket 
prediction algorithm [21]. Typically, druggability models 
look for closed hydrophobic pockets within a protein tar-
get. These models lean on the knowledge that electrostatic 
interactions between the ligand and the drug are in opposi-
tion to the desolvation energies. In a low dielectric medium 
such as one exemplified by a lipophilic pocket, the electro-
static interactions are heightened in a quantifiable way [22]. 
Thus, hydrophobicity as described by [23] is a prominent 
feature in assessing druggability. Due to these effects, it has 
been hypothesized that polar residues matter significantly 
in context specific instances as they often act as hydrogen 
bond donors in drug-target interactions [22]. Another physi-
ochemical characteristic of note is aromaticity, especially 
in the case of tyrosine and tryptophan residues. Aromatic 
amino acids have been hypothesized to interact with drugs 
using cation-π bonding and π-stacking. In the case of tyros-
ine and tryptophan, the NE1 and OH groups act to enrich 
the environment of the pocket with hydrogen bonds [24].

In this paper, we present a method to detect druggabil-
ity of a pocket that conforms to previous physiochemical 
findings. A machine learning classifier is developed using 
descriptors from pocket prediction parameters calculated in 
eFindSite and the characteristics of the active residues of the 
pocket. Thus, the model is fully embedded into eFindSite 
to create an all-in-one software for pocket prediction and 
analysis. Finally, an inspection of the human proteome with 
eFindSite was done to quantify a portion of feasibly drug-
gable proteins. This is done in hopes to illuminating novel 
classes of druggable targets that have yet been explored by 
scientists either due to a lack of existing structural data, or 
due to the large nature of the drug target space in humans.

Methods

Druggability data set

Training machine learning requires training data for the 
algorithm to analyze and adapt from. The Non-Redundant 
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data set of Druggable and Less Druggable binding sites 
(NRDLD) provides us with a wholistic analysis on the drug-
gability of over 130 known proteins [25]. This data set, how-
ever, lacks proper resolution for our research since it does 
not specify polypeptide chains of the proteins. To account 
for heteropolymers, each of the 198 protein chains had their 
pockets manually analyzed using VMD [26] for druggable 
ligands. Pockets are labeled as druggable or less druggable 
based on whether their ligand structures match any known 
drugs followed by cross referencing against the PDB [27]. 
The ligands are matched to each pocket using the pocket 
with the shortest Euclidean distance between the geometric 
center of the pocket and the geometric center of the ligand. 
A curated druggability data set with polypeptide chain reso-
lution along with protein pocket ligands confirming pocket 
druggability is compiled. A threshold of 6 Å Euclidean dis-
tance between the pocket center predicted by eFindSite and 
the geometric center of a ligand is used to make sure that 
accurately predicted pockets are used in the training set. This 
modified data set of 240 predicted pockets in 181 polypep-
tide chains is used to train druggability classifiers.

Feature selection

Two types of descriptors are considered when analyzing 
possible feature candidates in druggability elucidation. Pro-
tein pocket predictors are hypothesized to have an extended 
application in druggability prediction. Table 1 lists seven 
pocket descriptors computed by eFindSite chosen as pos-
sible feature candidates, including the fraction of tem-
plates assigned to a particular pocket (temp_frac), the log 
of the absolute number of templates assigned to a pocket 
(temp_log), the average Template Modeling score [28] of the 
templates to a target (TM-score), the average confidence of 

binding residues (res_conf), the log of the number of binding 
residues (res_log), the Protein–Ligand Binding index (PLB_
index) [29], and the pocket confidence score (pock_conf).

eFindSite software predicts the relevant residues within 
the protein pocket and thus physiochemical properties of 
these binding residues are analyzed as possible druggabil-
ity feature candidates [19]. Based on findings of previous 
druggability prediction software, including DrugPred [25] 
and PockDrug [21], hydropathy, weighted frequency of 
polar residues (polar_freq), weighted frequency of aromatic 
residues (aromatic_freq), and frequency of tyrosine atoms 
(tyr_freq) are included in parameter analysis (Table 1). All 
frequencies are weighted using confidence estimates calcu-
lated by eFindSite.

After the candidates are chosen, violin plots are calcu-
lated for the NRDLD druggability data set in order to visual-
ize the distributions of each of the 11 features in druggable 
and non-druggable proteins. To quantify the correlations 
and to exclude the possibility of randomness accounting for 
these correlations, the Monte-Carlo variant of the Fischer-
Pittman permutation test is applied via a permute python 
module [30]. The data set is resampled 100,000 times with-
out replacement to calculate p-values. Any feature with a 
p-value > 0.02 is discarded from the druggability classifier.

Prediction models

The druggability data set, while reflecting a great deal of 
research, is relatively small sample size to work with statis-
tically. In choosing the machine learning algorithms, rather 
than select more popular machine learning models such as 
neural networks, support vector machines, and random forest 
techniques, a more basic approach is taken using graphical 
machine learning models in order to reduce the possibility 

Table 1  Description and analysis of relevant investigated descriptors

All descriptors are computed with eFindSite. p-Values and mean differences between druggable and non-druggable classes are calculated with 
the Fisher-Pittman permutation test

Descriptor Description of the descriptor Difference of means p-value

temp_frac Fraction of templates assigned to a pocket by eFindSite 0.278 Near 0
temp_log Log of the absolute number of templates assigned to a pocket by eFindSite 1.85 Near 0
TM-score Average template modeling score of the templates to a target 0.0176 0.123
res_conf Average confidence of binding residues predicted by eFindSite 0.00842 0.807
res_log Log of the number of binding residues predicted by eFindSite 0.468 Near 0
PLBI Protein–ligand binding index 0.0592 0.0161
pock_conf Pocket confidence calculated by eFindSite 0.0241 0.00959
aromatic_freq Weighted frequency of predicted binding aromatic residues (H, F, Y, W) 0.755 Near 0
tyr_freq Weighted frequency of predicted binding tyrosine residues (Y) 0.183 0.00876
polar_freq Weighted frequency of predicted binding polar residues (C, D, E, H, K, N, Q, R, 

S, T, W, Y)
0.438 0.0633

hydropathy Average weighted hydropathy of predicted binding residues 1.21 Near 0
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of overfitting. The two models settled on are logistic regres-
sion (LR) and linear discriminant analysis (LDA). A weight 
vector is calculated via the scikit-learn module [31] for 
LDA, and the Newton–Raphson method [32] is used for the 
dichotomous case of LR. Since the Newton Raphson and 
LDA both require matrix inversions, using all nine pocket 
descriptors is too unstable for the algorithm. Thus, two sets 
of parameters are used to create two different classifiers 
for LDA and LR with different sets of pocket descriptors 
employed developed to elucidate druggability.

Model evaluation

Classifiers are evaluated using the Receiver Operating Char-
acteristic (ROC) analysis. ROC displays in a plot the fall-out, 
or false-positive rate (FPR), i.e. the inability to recognize 
non-druggable pockets, against the sensitivity, or true-pos-
itive rate (TPR), i.e. the capacity to correctly identify drug-
gable binding sites. The area under the ROC curve (AUC) 
is calculated and compared amongst models to establish the 
default model to be implemented into eFindSite. The confi-
dence intervals of the AUC are estimated non-parametrically 
by bootstrapping 100,000 times. A 10-fold cross validation 
is used to confirm the viability of a machine learning model. 
To optimize threshold values, the Mathew Correlation Coef-
ficient (MCC) [33] is calculated over all possible thresholds 
between 0 and 1. A model with the highest AUC is used 
to measure performance against Fpocket, a popular pocket 
druggability prediction tool with over 250 downloads in the 
past year alone [34]. This is done using one pocket from 
each of the 198 polypeptide chains in the NRDLD data set. 
The model is also independently evaluated for sensitivity on 
the scPDB data set, a collection of solely druggable proteins 
across multiple proteomes [35]. The ligands for these pro-
teins have their predicted pockets matched to eFindSite in a 
manner identical to that of the NRDLD data set. The scPDB 
data set comprises 15,298 druggable pockets.

Annotated structural human proteome

The structural human proteome is constructed using a ref-
erence genome, GRCh38 (Genome Reference Consortium 
Human Build 38), from the Human genome project [36] 
downloaded from the Ensembl database [37]. The entire 
annotated data set comprises 89,872 sequences 50–999 
amino acids in length. The 3D structures of these gene prod-
ucts are built with eThread [38] followed by a quality assess-
ment with ModelEvaluator [39] in terms of the estimated 
Global Distance Test (GDT_TS) score [40]. Subsequently, 
ligand-binding pockets are predicted in confidently modeled 
target structures with eFindSite [19]. The top-ranked pockets 
are subject to fingerprint-based virtual screening [20] against 
a non-redundant subset of 244,659 small molecules selected 

from the ZINC library [41]. The druggability of each pro-
tein is assessed using the default classifier from eFindSite. 
The disease space of the human proteome is estimated by 
mapping gene products to the Open Targets Platform [11], 
a set of known proteins with significant association to a dis-
ease. Those genes with a disease association score of ≥ 0.5 
are considered relevant, and any protein expressed from a 
relevant gene is considered linked, in part, to some disease. 
Finally, known drug targets in the human proteome are iden-
tified by mapping the sequences of gene products to drug 
targets in DrugBank [42]. Those polypeptides having at least 
one protein in DrugBank with a sequence identity of ≥ 80% 
are labelled as known drug targets.

Results and discussion

Binary classifier for pocket druggability

Of the 11 pocket descriptors scrutinized in this study, 
Table 1 shows that only eight pass the stringent requirement 
of p-values ≤ 0.02. Five of these descriptors are related to 
protein pocket prediction, whereas the other three are physi-
ochemical descriptors. The analysis of the distributions of 
these descriptors is presented in Fig. 1. Due to the unstable 
nature of computing matrix inversions, the descriptors were 
organized into two different models. Table 2 shows that the 
first model (Model 1) introduces a stringent requirement of 
using descriptors with p-value ≤ 0.001, while the second 
model (Model 2) uses mainly protein pocket prediction 
descriptors along with hydropathy. Despite the prevalence 
of polar attributes in other models [22], the polar_freq value 
was not statistically relevant to be included in the model. 
Thus, current models reflect closed “greasy” pockets as the 
ideal druggable sites.

The performances of each of the two LR and LDA models 
developed in this study are tested on a training data set of 
240 protein pockets. Figure 2a shows ROC plots graphed 
for each of the four classifiers with the AUC of each classi-
fier used to determine its accuracy. The AUC of Model 1 is 
0.910 for LR (LR-1) and 0.898 for LDA (LDA-1), whereas 
the AUC of Model 2 is 0.901 for LR (LR-2) and 0.909 for 
LDA (LDA-2). The model with the numerically largest AUC 
(LR-1) is selected as the default classifier for eFindSite. Fig-
ure 2b shows that the maximum MCC values of individual 
models range from 0.6 to 0.7. The default model yields the 
highest MCC of 0.702 at a probability threshold of 0.732.

Fpocket is one of the most widely used protein pocket 
prediction programs [34]. Due to its geometric approach 
to modeling pockets and inclusion of relevant polar 
parameters, Fpocket is the perfect subject of comparison 
to test the performance of eFindSite. The analysis of all 
pockets in the NRDLD data set determines AUC values 
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of 0.882 for eFindSite and 0.794 for Fpocket with the cor-
responding ROC graphs shown in Fig. 3a. Furthermore, 
0.95 confidence intervals are 0.845–0.928 for eFindSite 
and 0.752–0.871 for Fpocket (Fig. 3b). Thus, there is a 
quantifiable increase in performance from Fpocket to 
eFindSite.

Sensitivity validation on the scPDB data set

Sensitivity of the model was independently tested on the 
scPDB data set. Figure 4 shows that of 15,298 druggable 
pockets in this set, 9376 pockets are predicted with a high 
confidence of ≥ 0.8 (solid orange line). Furthermore, the 
MCC calculated for predicted binding residues is ≥ 0.4 for 
12,411 pockets (solid blue line). Encouragingly, as many as 
9575 pockets (62.6%) are correctly classified by eFindSite 
as druggable (solid green line). We may expect the sensitiv-
ity accuracy to increase when only confidently and accu-
rately predicted pockets are considered. Indeed, of 9376 
confidently predicted pockets, 7667 (81.8%) are classified 
as druggable (dotted-dashed green line), whereas of 8119 
confidently predicted pockets whose MCC is ≥ 0.4, 6727 
(82.9%) are classified as druggable (dotted green line). This 
analysis demonstrates that the sensitivity of druggability 
prediction with eFindSite is quite high and the majority of 
confidently identified pockets are in fact druggable.

Next, we selected a subset of 101 scPDB proteins 
whose structures were deposited into the PDB after July 
2016 and conducted druggability prediction by eFindSite 
with a template library constructed from the June 2016 
snapshot of the PDB. Figure 5 demonstrates that the per-
formance of eFindSite using a library compiled before 
the structure of any of target proteins was determined 

Fig. 1  Violin plots for statistically relevant pocket descriptors. The 
horizontal blue bar represents the mean, whereas the horizontal pur-
ple bar represents the median of a particular data set. The following 

descriptors are analyzed: a temp_frac, b temp_log, c res_log, d PLB_
index, e pock_conf, f hydropathy, g tyr_freq, and h aromatic_freq 

Table 2  Organization of 
statistically relevant pocket 
descriptors

tyr_freq was not used due to 
inability to meet the p-value 
≤ 0.001 requirement of Model 
1 and because it was already 
generalized in aromatic_freq in 
Model 2

Descriptor Model used in

temp_frac 1, 2
temp_log 1, 2
res_log 1, 2
PLB_index 2
pock_conf 2
hydropathy 1, 2
tyr_freq –
aromatic_freq 1
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experimentally is only slightly lower than that obtained 
in February 2017. Indeed, the median druggability val-
ues are 0.823 for June 2016 and 0.854 for February 2017 
template libraries. Thus, eFindSite is able to function as 
a prospective predictor.

Druggable pockets in the human proteome

An analysis of druggability is performed on the struc-
tural human proteome from the curated GRCh38 data set. 
Figure 6 shows that 63,713 (70.9%) structure models are 

Fig. 2  Assessment of the performance of draggability classifiers. a 
ROC plots and b MCC for varying threshold values. Four classifiers 
are evaluated, LR-1 (Model 1), LR-2 (Model 2), LDA-1 (Model 1), 

and LDA-2 (Model 2). TPR is the true positive rate and FPR is the 
false positive rate. Gray regions represent the performance of a ran-
dom classifier

Fig. 3  Performance comparison of eFindSite and Fpocket. This 
evaluation is conducted against all 198 polypeptides in the curated 
NRDLD data set. a ROC plots for druggability prediction with eFind-
Site and Fpocket. TPR is the true positive rate and FPR is the false 

positive rate. A gray region represents the performance of a random 
classifier. b Histogram of bootstrapped distributions of randomly res-
ampled AUC scores
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confidently predicted with an GDT_TS score of at least 0.4 
(solid purple line), of which 39,271 are annotated with puta-
tive binding sites by eFindSite. The data set is further pruned 
for a ≥ 0.8 confidence of the top-ranked pocket resulting 
in 16,203 (41.3%) proteins used to analyze the druggable 
human proteome (solid orange line). The druggability of 
each protein is assessed using the classifier from eFindSite 
with a probability threshold of ≥ 0.5. From the data set, 
10,191 (62.9%) proteins are found to be druggable with high 
confidence (dotted-dashed green lines).

Analysis of proteins expressed from probable gene dis-
ease candidates and known drug targets is conducted to 
discern relevant proteins for study. Figure 7 shows that the 
disease space of the human proteome comprises 45,766 gene 
products (blue circle), whereas 13,412 proteins are known 
drug targets (red circle). As expected, there is a significant 

Fig. 4  Performance of eFindSite against the scPDB data set. Histo-
gram of the pocket confidence by eFindSite, the MCC calculated for 
binding residues predicted by eFindSite, and the druggability calcu-
lated with LR-1 (Model 1). Solid lines represent the entire data set, 
whereas dotted-dashed and dotted lines represent the data set filtered 
by the pocket confidence and the MCC. Dashed lines mark thresholds 
at which the data set was filtered

Fig. 5  Violin plots for the retrospective assessment of druggability 
prediction. The druggability of 101 scPDB proteins, whose structures 
were deposited into the PDB after July 2016, is predicted by eFind-
Site with template libraries constructed from June 2016 (purple) and 
February 2017 (gold) snapshots of the PDB. The horizontal green bar 
represents the mean, whereas the horizontal red bar represents the 
median of a particular data set

Fig. 6  Inspection of protein druggability across the human proteome. 
Histogram of the structure confidence assessed with model GDT_TS 
by eThread, the pocket confidence by eFindSite, and the druggability 
calculated with LR-1 (Model 1). Solid lines represent the entire data 
set, whereas dotted-dashed line represents the data set filtered by the 
pocket confidence. Dashed lines mark thresholds at which the data set 
was filtered

Fig. 7  Analysis of relevant drug targets in the human proteome. The 
disease space corresponds to those human gene products having a 
disease association score of ≥ 0.5. Known targets are proteins within 
the confidently classified data set (GDT_TS by eThread of ≥ 0.4 
and the pocket confidence by eFindSite of ≥ 0.8) that have a close 
homolog in DrugBank (sequence identity of ≥ 0.8). Predicted targets 
are proteins within the confidently classified data set with a drugga-
bility score by eFindSite of ≥ 0.5. The set of all proteins within the 
disease space and the predicted target space, but not in the known tar-
get space are considered relevant novel targets
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overlap between the disease space and known targets com-
prising 9357 proteins. Out of 10,191 gene products predicted 
by eFindSite to be druggable (Fig. 7, green circle), 3867 
are already known drug targets, whereas 3593 are outside 
the disease space according to the Open Targets Platform. 
Interestingly, as many as 2731 proteins within the predicted 
druggability space are expressed from genes with disease 
association scores of ≥ 0.5, yet are not catalogued in Drug-
Bank. These proteins are potentially novel targets that can 
be exploited for drug discovery.

Case study: α/β hydrolase domain‑containing protein 11

Below, we discuss a couple of representative cases selected 
from the predicted druggable human proteome. Note that 
neither these proteins nor their close homologs are included 
in the DrugBank database combining detailed drug data with 
the comprehensive information on 4985 non-redundant drug 
targets [42]. The first example is α/β hydrolase domain-con-
taining protein 11 (ABHD11) comprising 315 amino acid 
residues. A 3D model of ABHD11 was constructed based 
on the X-ray structure of haloalkane dehalogenase from 
Xanthobacter autotrophicus (PDB-ID: 2yxp, chain A) [43]. 
Although both proteins share only 26.3% sequence iden-
tity, the estimated GDT_TS score for the ABHD11 model 
is as high as 0.70. Figure 8a shows the top-ranked pocket 
(gold) predicted by eFindSite with a 97.4% confidence in 
the structure model (purple). This binding site comprising 
17 residues (H73, G74, L75, F76, F77, H140, S141, M142, 
F177, Y180, V181, M184, L201, W232, F270, H296, and 
W297) is assigned a high druggability of 0.98 by the default, 
LR-1 model.

Next, we docked two top-ranked compounds identified 
by fingerprint-based virtual screening in the ZINC library 
into the binding site of ABHD11 with eSimDock [44]. 
The resulting models of ABHD11-ZINC63536302 and 
ABHD11-ZINC70638822 are shown in Fig. 8b, c, respec-
tively. eSimDock is a similarity-based docking approach 
that places ligands within the predicted binding sites by 
superposing them onto ligand-bound templates. It selected 
the alpha-amino acid ester hydrolase from Acetobacter tur-
bidansand complexed with d-phenylglycine (PDB-ID: 2b4k, 
chain A, ligand PG9) [45] as a template for the ABHD11-
ZINC63536302 model and the human soluble epoxide 
hydrolase complexed with an inhibitor (PDB-ID: 5all, chain 
A, ligand II6) [46] for the ABHD11-ZINC70638822 model. 
Not only are both template proteins structurally similar to 
ABHD11 with a TM-score of 0.72 (2b4k) and 0.79 (5all), 
but their bound ligands are also chemically similar to both 
ZINC compounds with a Tanimoto coefficient (TC) [47] 
reported by kcombu [48] of 0.39 (PG9 and ZINC63536302) 
and 0.50 (II6 and ZINC70638822).

An analysis of binding poses of ZINC molecules within 
the pocket of ABHD11 carried out with the eAromatic 
program [49] reveals a network of aromatic interactions 
with the side-chains of Y180, F270, H296, F177, and 
W297. Moreover, the Ligand Protein Contact (LPC) soft-
ware [50] reports hydrophobic interactions between the 
cyclohexoxyl (ZINC63536302) and the 4-hydroxytetrahy-
dropyran (ZINC70638822) moieties, and a cluster of non-
polar residues, A202, L206, V209, V215. It is important to 
note that both compounds selected from the ZINC library 
by virtual screening closely match the physicochemical 
parameters of putative binders of ABHD11 estimated by 
eFindSite, a molecular weight (MW) of 247.0 Da ± 147.5, 

Fig. 8  Druggability assessment of α/β hydrolase domain-containing 
protein 11 (ABHD11). a Structure model of ABHD11 (solid purple 
cartoons) with a putative, druggable pocket (a transparent gold sur-
face). Predicted binding residues are shown as solid sticks and the 
shiny gold sphere is the pocket center. Models of ABHD11 com-

plexed with top-ranked compounds identified with virtual screening: 
b ZINC63536302 and c ZINC70638822. Small molecules are colored 
by atom type, relevant pocket residues are represented by solid gold 
sticks, and target structure is shown in transparent purple
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an octanol–water partition coefficient (logP) of 1.17 ± 2.48, 
and a polar surface area (PSA) of 78.8 Å2 ± 58.8. The MW, 
logP, and PSA are, respectively, 291.2 Da, 3.18, and 58.6 
Å2 for ZINC63536302, and 263.2 Da, 1.97, and 58.6 Å2 for 
ZINC70638822.

Case study: 5‑aminolevulinic acid synthase 2

Another example of a confidently predicted druggable bind-
ing pocket in the human proteome is a putative pyridoxal 
5′-phosphate site of erythroid specific mitochondrial 5-ami-
nolevulinate synthase (ALAS2) comprising 587 amino acid 
residues. Figure 9a shows a 3D model of ALAS2 (purple) 
constructed based on the X-ray structure of serine palmitoyl-
transferase from Sphingobacterium multivorum (PDB-ID: 
3a2B, chain A) [51]. This model exhibits a modest estimated 
GDT-score of 0.56 with the 31.6% target-template sequence 
identity. Figure 9a also shows the top-ranked pocket (gold) 
predicted by eFindSite with 87.8% confidence comprising 
10 residues (C258, F259, H285, A286, S287, H331, S332, 
V359, H360, and K391). This binding site is assigned a 
druggability of 0.77 by the LR-1 model.

Next, two top-ranked compounds identified by finger-
print-based screening were docked into the binding site 
of ABHD11 with eSimDock. The constructed models of 
ALAS2-ZINC00517451 and ALAS2-ZINC00169159 are 
shown in Fig. 9b, c, respectively. eSimDock selected methio-
nine γ-lyase complexed with β-butenoic acid-pyridoxal-
5′-phosphate from Entamoeba histolytica (PDB-ID: 3ael, 
chain A, ligand 4LM) [52] as the template for both ALAS2-
ZINC00517451 and ALAS2-ZINC00169159 models. The 
template protein has a moderate structure similarity to 
ALAS2 with a TM-score of 0.46, however, the probabil-
ity that it shares a pocket with ALAS2 is 0.71. The TC 

values are 0.66 for 4LM-ZINC00517451 and 0.47 for 4LM-
ZINC00169159, indicating sufficiently high chemical simi-
larity to construct reliable template-based complex models.

An analysis with eAromatic shows an aromatic residue, 
H285, forming parallel stacking with both ligands, whereas 
LPC reveals hydrophobic interactions between the pyridi-
nyl N1 moiety, and H285 and V359 residues. Further, 
both compounds selected from the ZINC library by virtual 
screening have physicochemical parameters similar to the 
putative binders of ALAS2 estimated by eFindSite: an MW 
of 254.0 Da ± 123.0, a logP of 0.51 ± 1.14, and a PSA of 
122.4 Å2 ± 62.4. The MW, logP, and PSA are, respectively, 
167.2 Da, 0.89, and 42 Å2 for ZINC00517451, and 167.2 Da, 
1.31, and 42 Å2 for ZINC00169159.

Conclusion

Identification of suitable targets for pharmacotherapy in the 
human proteome is a critical component of drug develop-
ment. To improve the state-of-the-art in drug target iden-
tification, a new pocket druggability prediction algorithm 
was developed and implemented in eFindSite. Protein pocket 
predictors are shown in this study to be generalized to the 
prediction of pocket druggability. Although certain physio-
chemical predictors such as the hydropathy and the aromatic 
character of pocket residues are found to be statistically rel-
evant in the analysis of pocket druggability with current data 
sets, the pocket polarity is not statistically correlated with 
druggability. Consequently, the current algorithm favors 
closed, “greasy” pockets as druggable binding sites.

Subsequently, the extended eFindSite is used to analyze 
the scope of the druggable human proteome. Our findings 
indicate that druggable targets make up about 7% of the 

Fig. 9  Druggability assessment of 5-aminolevulinic acid synthase 2 
(ALAS2). a Structure model of ALAS2 (solid purple cartoons) with 
a putative, druggable pocket (a transparent gold surface). Predicted 
binding residues are shown as solid sticks and the shiny gold sphere 
is the pocket center. Models of ALAS2 complexed with top-ranked 

compounds identified with virtual screening: b ZINC00517451 and c 
ZINC00169159. Small molecules are colored by atom type, relevant 
pocket residues are represented by solid gold sticks, and target struc-
ture is shown in transparent purple
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human proteome. As more data are accumulated, the esti-
mated number of druggable proteins is likely to increase. 
eFindSite is freely available as a stand-alone software at 
https ://githu b.com/micha l-bryli nski/efind site.
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