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1 INTRODUCTION

Drugs produce biological effects via interactions with target molecules that include pro-
teins, DNA, RNAs, and membrane components (Yang et al., 2016). While a comprehensive
mapping of the drug targets remains an open challenge (Santos et al., 2017), numerous studies
have shown that well over 90% of the marketed drug targets are proteins (Hopkins & Groom,
2002; Rask-Andersen, Alm!en, & Schi€oth, 2011; Rask-Andersen, Masuram, & Schioth, 2014;
Santos et al., 2017). The knowledge of drug-protein interactions (DPIs) is essential for a
diverse set of applications, including screening drug candidates to target specific proteins
(Schneider, 2010; Tseng & Tuszynski, 2015), repurposing of drugs (Chong & Sullivan,
2007; Haupt & Schroeder, 2011; Li et al., 2016), and identifying side effects related to interac-
tions with off-targets (Hu et al., 2014; Lounkine et al., 2012;Wang, Li, Qiu,Wang, &Cui, 2012).
This information is also essential to elucidate the druggable human proteome/genome,
defined as the complement of human proteins interacting with drugs (Cimermancic et al.,
2016; Hopkins & Groom, 2002; Hu, Wu, Wang, Uversky, & Kurgan, 2016; Rask-Andersen
et al., 2014; Russ & Lampel, 2005).

The studies mentioned are assisted by a number of databases currently offering access to
large collections of DPIs (Chen et al., 2016; Glaab, 2016). The two arguably most popular
databases of experimentally determined DPIs include DrugBank (Wishart et al., 2006, 2018)

827In Silico Drug Design.

https://doi.org/10.1016/B978-0-12-816125-8.00028-6 # 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-816125-8.00028-6


and Therapeutic Target Database (TTD) (Chen, Ji, & Chen, 2002; Li et al., 2018). DrugBank in-
cludes biochemical and pharmacological data for over 10,000 drugs including 3254
FDA-approved compounds, 5124 experimental compounds and their 5020 protein targets.
TTD covers over 23,000 drugs, including close to 15,000 experimental drugs and 2360 protein
targets, and links this information to about 900 diseases. Other similar resources include
PDSP Ki (Roth, Lopez, Patel, & Kroeze, 2000), KEGG DRUG (Kanehisa, Furumichi,
Tanabe, Sato, & Morishima, 2017; Kanehisa, Goto, Furumichi, Tanabe, & Hirakawa, 2009),
Matador (G€unther et al., 2008), and PROMISCUOUS (von Eichborn et al., 2011). Table 1 lists
their release dates, numbers of drugs and targets they cover, addresses of their websites,
andkeystatistics comprising the totalnumberofDPIsandanaveragenumberofDPIsperdrug.

TABLE 1 Summary of the Databases of Drug-Protein Interactions (DPIs)

Type Database
Release
Date

Number
of Drugs

Number
of Targets

Key
Statistics URL

Experimental
annotations

PDSP Ki 11/01/1999 11,569 1673 63,619 DPIs
5.5 DPIs per
drug

https://pdsp.unc.edu/
databases/kidb.php

TTD 01/01/2002 23,486 3036 33,467 DPIs
1.4 DPIs per
drug

http://bidd.nus.edu.sg/
BIDD-Databases/TTD/

KEGG DRUG 07/01/2005 5045 1061 14,222 DPIs
2.8 DPIs per
drug

http://www.genome.jp/
kegg/drug/

DrugBank 01/01/2006 10,562 5020 23,380 DPIs
2.2 DPIs per
drug

http://www.drugbank.ca

Matador 10/16/2007 801 2901 15,843 DPIs
19.8 DPIs
per drug

http://matador.embl.de

PROMISCUOUS 11/10/2010 5000 6500 21,500 DPIs
4.3 DPIs per
drug

Unavailable (no longer
supported)

Putative
annotations

BioDrugScreen 11/18/2009 1592 1589 3,066,192
predictions

Unavailable (no longer
supported)

PDID 10/01/2014 51 3746 1,088,789
predictions
16,800 DPIs
and
100 DPIs per
drug

http://biomine.cs.vcu.
edu/servers/PDID/

The databases are divided into two groups that offer access to experimental vs. putative data. They are sorted chronologically by the date of their
release. We collected these dates from the release notes or time stamps recorded on the database websites, if available, and we use the date of the first
publication otherwise.
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These resources have already been available for about a decade or more, are constantly
upgraded and updated, and include data on thousands of interactions. There are also numer-
ous databases that expand beyond the drug molecules to cover interactions with many more
small, drug-like ligands. These databases include BRENDA (Placzek et al., 2017; Schomburg,
Hofmann,Baensch,Chang,&Schomburg, 2000), BindingDB (Chen,Liu,&Gilson, 2001;Gilson
et al., 2016), GLIDA (Okuno et al., 2008; Okuno, Yang, Taneishi, Yabuuchi, & Tsujimoto, 2006),
SuperTarget (G€unther et al., 2008;Hecker et al., 2012), STITCH (Kuhn, vonMering, Campillos,
Jensen,&Bork, 2008; Szklarczyket al., 2016), andChEMBL (Gaultonet al., 2012, 2017). The larg-
est twoof thesedatabasesareChEMBL,which covers over 14million interactionsbetweenover
2.1 million chemical compounds and about 11 thousand protein targets, and STITCH, which
contains 1.6 billion interactions between about 0.5 million chemicals and 9.6 million proteins
coming from over 2000 species. One caveat of the latter repository is that it stores many low-
quality, putative, and indirectly inferred annotations. Another group of relevant databases is
dedicated to drugs that target protein-protein interactions. These include TIMBAL
(Higueruelo, Jubb, & Blundell, 2013; Higueruelo et al., 2009), 2P2Idb (Basse, Betzi, Morelli, &
Roche, 2016; Bourgeas, Basse, Morelli, & Roche, 2010), and iPPI-DB (Labb!e et al., 2016; Labb!e,
Laconde, Kuenemann, Villoutreix, & Sperandio, 2013).

The databases mentioned primarily focus on the already-known drug targets. However,
drugs typically interact not only with the therapeutic targets that they were designed for
but also with often unidentified and numerous off-targets. Comprehensive identification
and cataloguing of the off-targets are crucial to fully understand how drugs work. Although
interactionswith off-targetsmay result in adverse events or side effects, theymay also present
an opportunity to repurpose drugs for diseases that they were not originally intended for
(Peters, 2013). Studies have shown that drugs interact with on average 6.3 proteins (Hu &
Bajorath, 2013; Mestres, Gregori-Puigjane, Valverde, & Sole, 2008) and this number is likely
much higher given that the current information on DPIs is likely highly incomplete (Mestres
et al., 2008; Peters, 2013). Experimental screening of drugs is limited to a relatively small panel
of protein targets (Lavecchia & Giovanni, 2013; Mestres et al., 2008). Example panels used by
pharmaceutical companies include anywhere between 15 and 48 proteins (Bendels et al.,
2013; Bowes et al., 2012; Urban, 2012; Wang & Greene, 2012). The high levels of drug promis-
cuity and the relatively low coverage of the experimental screeningmotivate the development
of high-throughput computational methods that predict DPIs on the druggable-genome and
even whole-genome scale (Chen et al., 2016; Ding, Takigawa, Mamitsuka, & Zhu, 2014; Ezzat,
Wu, Li, & Kwoh, 2018; Hao, Bryant, &Wang, 2018; Lavecchia & Cerchia, 2016). The availabil-
ity of these computational tools has also spurred the development of databases providing
access to putative DPIs. The release of these databases is primarily motivated by the often
high computational cost of running these predictions and the ability to query the predictions
across multiple drugs and thousands of protein targets. Table 1 summarizes details on the
two databases that directly focus on the putative DPIs: BioDrugScreen (Li et al., 2010) and
PDID (Protein-Drug Interaction Database) (Wang et al., 2016). BioDrugScreen is based on
results of the docking of about 1600 small drug-like molecules against 1589 human protein
targets that were collected from DrugBank and HCPIN (Huang et al., 2008) databases. The
molecular docking was performed for nearly 2000 surface pockets in these proteins, produc-
ing about 3 million putative compound-protein complexes. However, this resource is no
longer available. PDID is based on predictions that rely on structural similarity between a
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large database of structures of drug-protein complexes and a query protein and its binding
sites for a given query drug. These predictions complement the contents of the BioDrugScreen
database. PDID also provides access to the annotations of experimental DPIs that are linked to
their sources: PDB (Berman et al., 2000; Rose et al., 2017), DrugBank, and BindingDB. Impor-
tantly, PDID offers molecular level details for DPIs, in terms of coordinates of the location of
the drugs in the structures of their predicted and experimental protein targets. We also
acknowledge the Dr. PIAS database of putative druggable protein-protein interactions
(Sugaya & Furuya, 2011; Sugaya, Kanai, & Furuya, 2012). These interactions were predicted
with the help of machine-learning algorithms and they cover over 83 thousand protein-
protein interactions in human, mouse, and rat. However, they lack associations with
specific drugs.

This chapter focuses on the only currently available resource that comprehensively covers
the experimental and putative DPIs, the PDID database. We describe the algorithms that are
used tomake predictions that are stored in PDID, briefly comment on the predictive quality of
these algorithms, summarize and analyze content of a current version of PDID, and discuss
how to access and use this resource.

2 DEVELOPMENT AND OUTLINE OF THE PDID DATABASE

The fundamental principle behind the predictors that are used to implement PDID is to
transfer binding sites from known drug-protein complexes to a protein that is known to in-
teract with the input drug and that is structurally similar to these known drug-complexed
proteins. There are two ways to measure similarity between the input protein structure
and the known drug-protein complexes. The first quantifies similarity of the corresponding
protein folds. The corresponding methods include eFindSite (Brylinski & Feinstein, 2013;
Feinstein & Brylinski, 2014) and its predecessor FINDSITE (Michal Brylinski & Skolnick,
2008; Skolnick & Brylinski, 2009). The second way exploits similarity of binding sites, with
example algorithms that include SMAP (Xie & Bourne, 2007, 2008; Xie, Xie, & Bourne,
2009) and IsoMIF (Chartier, Adriansen, & Najmanovich, 2016; Chartier & Najmanovich,
2015). We also developed the ILbind (inverse ligand binding) method that combines these
two types of approaches to improve predictive performance (Hu et al., 2012).

The PDID database provides convenient access to query and retrieve results generated by
three predictors: eFindSite, SMAP, and ILbind. They represent each of the two types of
approaches and their ensemble. These putative annotations are combined with experimental
data collected from the DrugBank and BindingDB resources. Fig. 1 overviews the approach
used to populate the PDID database with data. The following subsections explain details of
the three predictors, which are shown in Fig. 1 using the blue boxes (named boxes in the mid-
dle of the figure).

2.1 eFindSite

eFindSite makes predictions using template protein(s) that have structure(s) in complex
with a given input drug. The template proteins come from a database of templates, typically
defined as a set of nonredundant high-quality structures of drug-protein complexes curated
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from the PDB database; eFindSite also accepts putative structures modeled computationally
with TASSER (Zhang, Arakaki, & Skolnick, 2005; Zhang & Skolnick, 2004a, 2004b), MODEL-
LER (Martı́-Renom et al., 2000; Šali & Blundell, 1993), or PROSPECTOR3 (Skolnick, Kihara, &
Zhang, 2004). The eFindSite’s predictive protocol includes four steps:

1. A meta-threading algorithm, eThread (Brylinski & Feinstein, 2012; Brylinski & Lingam,
2012), is used to find similar template proteins for the protein that is in complex with the
input drug; eThread applies a Naı̈ve Bayes classifier to build a consensus threading
alignment from 10 individual threading algorithms. This algorithm recognizes template
proteins that likely have similar structural folds when compared to the input protein based
on sequence alignment and predicted secondary structure, given the sequence of the input
protein. The identified template proteins are supposed to be structurally similar to the
input protein, regardless of whether or not they have high sequence similarity to the input
protein.

2. Those template proteins complexed with the input drug are selected from the template set
that is obtained by the threading alignment. Then the template set is expanded by
including homologous proteins of the current templates. Consequently, we collect a set of
template proteins that interact with the input drug, have known three-dimensional
structures of drug-protein complex, are likely structurally similar to the input protein, and
are possibly remotely homologous to the input protein.

3. A clustering algorithm, Affinity Propagation (Frey & Dueck, 2007), is utilized to group the
structures of template drug-protein complexes based on structural similarities between
templates computed with fr-TM-align (Pandit & Skolnick, 2008). The clustered template
structures are superimposed into the structure of input protein.

FIG. 1 Flowchart of the approach used to populate the PDID database with data. Blue boxes (named boxes in the
middle of the figure) represent the three predictors that were used to generate putative DPIs. Cylinders shown with
solid lines represent databases that are used directly to derive the PDID resources. The dashed lines denote sources that
were used indirectly to develop the directly used databases. The green lines (lines coming from the drug-protein com-
plex) indicate how the drugs covered in PDIDwere utilized to generate the putative data. The red cubes (cubes shown
inside the PDID database) signify the fact that PDID provides approximate location of the DPI sites.
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4. Finally, the resulting superimposed locations of drug from each clustered template
constitute the predicted position of the input drug, which in turn can be used to annotate
putative binding sites in the input protein structures. These predicted binding sites are
ranked by the number of templates from the corresponding cluster where each binding site
(cluster center) comes from.

2.2 SMAP

SMAP works by generating potential binding pockets in the input protein structure and
then finding whether these pockets are similar to the known binding pockets in the template
drug-protein complexes (Xie et al., 2009; Xie & Bourne, 2007, 2008). It employs a geometric
representation of protein structure to characterize binding sites (Xie & Bourne, 2007) and a
sequence profile alignment to compare binding sites (Xie & Bourne, 2008). The predictive
protocol of SMAP algorithm includes the following five steps:

1. SMAP reduces the representation of an input protein structure by using only the
coordinates of alpha carbon (Cα) atoms, which are the first carbon atoms attached to the
carboxyl group of an amino acid. The Cα atoms are represented as vertices in a graph.
A convex hull algorithm, Delaunay tessellation, is applied to partition the Cα atoms into
tetrahedra (triangular pyramids) that are defined by the graph edges (Xie & Bourne, 2007).

2. The Delaunay tessellation is constrained by removing those tetrahedra including edges
(atomic distances) longer than 30Å, because such distance indicates an open binding
pocket on the molecular surface, rather than an enclosed sphere. The outside layer of the
remained convex hull defines an environmental boundary that surrounds the input
protein and its binding pockets. Next, the tetrahedra larger than 7.5Å are removed. This
cut-off length is related to the average radius between two amino acids that are in
contact with each other. The remaining tetrahedra on the outside of the structure form a
protein boundary. The removed tetrahedra, which are the tetrahedra located between
the protein boundary and the environmental boundary, make up the possible positions
where drugs could be located.

3. The distance and orientation of each Cα atom to the protein boundary and environmental
boundary are used to compute a geometric potential with specific formulas listed in (Xie &
Bourne, 2007) for each Cα atom. The geometric potential quantifies the positions of a Cα
atom and its neighboring atoms relative to the environmental boundary, and the relative
positions between this Cα atom and its neighbor Cα atoms.

4. The possible positions of drugs obtained in step (2) are clustered based on their overlap in
circumscribed spheres of the corresponding tetrahedron. The cluster centers represent
the predicted potential positions of the drugs that could bind to the given protein. If a Cα
atom is located within 10Å from the predicted potential positions and the edge between
these two atoms are not cut by other circumscribed spheres, then this Cα atom
(representing a drug-binding amino acid) is predicted as a part of a binding site. This way
the amino acids that make up specific binding pockets are defined.

5. The predicted potential positions of drugs generated in step (4) represent a candidate drug-
binding position but without specifying for which specific drug. SMAP uses a sequence
order independent profile-profile alignment (SOIPPA) method to align the candidate
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drug-binding sites (the corresponding amino acids) in the input protein to the known
binding sites in the template proteins that are in complex with the input drug in the PDB
database (Xie & Bourne, 2008). Next, a candidate binding site is mapped to a known
binding site of the specific input drug if the SOIPPA alignment shows that these two sites
are similar. The SOIPPA algorithm is designed to compare and align two subgraphs that
are extracted from the geometric representations of the input protein and the template
protein. The computation of the alignment uses the geometric potential scores computed in
step (3). The binding sites from the template protein are aligned and superimposed as the
candidate sites in the input protein. An alignment score is computed based on the position
specific score matrix (Altschul et al., 1997) to measure the similarity of these binding sites.

2.3 ILbind

ILbind is an ensemble predictor that uses a machine-learning algorithm to predict drug-
binding sites for a specific input drug (Hu et al., 2012). This meta-approach exploits the fact
that FINDSITE and SMAP use complementary approaches to provide predictions for a wide
range of drugs and nutraceuticals. ILbind uses selected outputs generated by FINDSITE and
SMAP as its inputs. First, a dataset of!150 drugs was clustered into three structurally similar
groups. These clusters were represented by three drugs that correspondingly have diverse
structures: N-acetyl-D-glucosamine (NAG), adenosine-50-diphosphate (ADP), and palmitic
acid (PLM) (Hu et al., 2012). Structures of five randomly chosen complexes of proteins with
each of these three drugs were used to design ILbind, resulting in a total of 15 configurations.
Correspondingly, 15 support vector machine (SVM) models were custom designed using a
training dataset. Outputs generated by FINDSITE and SMAP were ranked by their average
area under the curve (AUC) values on the training set. Next, a wrapper-based best-first search
was applied to select the best subset of FINDSITE and SMAP outputs for each configuration
using cross-validation tests on the training dataset. Given an input drug and the structure of
an input protein, ILbind works in two steps:

1. Compute predictions with the 15 SVMmodels using the selected outputs of FINDSITE and
SMAP as the inputs.

2. Use a consensus (average) of the 15 SVM predictions as the predicted propensity for
binding to the input drug.

Since ILbind does not predict the putative position of the center of the input drug, these
positions are taken directly from the outputs of FINDSITE and SMAP.

A web server and a standalone version of the ILbind method are available at http://
biomine.cs.vcu.edu/servers/ILbind/. This is particularly useful for the users whowould like
to collect predictions for compounds that extend beyond the 51 drugs that are currently cov-
ered by PDID.

2.4 Predictive Quality of ILbind, eFindSite, and SMAP

The predictive quality of outputs generated by ILbind, eFindSite, and SMAP was recently
evaluated empirically based on a dataset that covers interactions between 25 representative
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drugs and a representative collection of human proteins (Wang et al., 2016). The test drugs
represent 25 clusters of chemically similar drug structures resulting in a broad sampling of
the drug structure space that is included in PDB. The evaluation follows a protocol from
(Hu et al., 2014). In short, the native DPIs for the 25 drugs that were collected from PDB,
BindingDB, and DrugBank are compared against the predictions from the three methods
in the structural human proteome (collection of all structures of human proteins in PDB).
AUCs values for eFindSite, SMAP, and ILbind that are averaged over the 25 drugs are
0.63, 0.74, and 0.76, respectively. These are reasonably good results given that the AUC values
range between 0.5 and 1. As expected, ILbind outperforms the other two methods, but this
advantage is not universal. The empirical tests reveal that eFindSite provides the highest
AUC for 5 drugs, SMAP for 6 drugs, and ILbind for the remaining 14 drugs. About 40% of
the native drug targets are predicted within the top 4% of predictions from ILbind and SMAP
and among the top 14% of predictions from eFindSite. Moreover, the results are better for
medium-sized drugs (molecular weight between 200 and 400Da) when compared to either
small (<200Da) or large drugs (>400Da) drugs. More specifically, the best overall method
ILbind secures AUCs for the small, medium, and large drugs that equal 0.70, 0.86, and
0.59, respectively. To sum up, the empirical results show that the three algorithms offer prac-
tical levels of predictive performance. More details concerning the evaluations of these three
tools can be found in Hu et al. (2012, 2014) and Wang et al. (2016).

3 CONTENT OF THE PDID DATABASE

The current release 1.1 of the PDID database covers 51 drugs, 3746 protein targets that are
represented by 9652 structures, 1,088,789 predicted DPIs, and 730 experimental annotations
of DPIs. Several other key statistics are summarized in Table 2. PDID is linked to the relevant
drug and protein databases. In particular, PDID links drugs and native drug target annota-
tions to the corresponding PDB, DrugBank, and BindingDB entries, while the protein targets

TABLE 2 Key Statistics of the Current Release of the PDID Database

Number of Drugs 51

Number of proteins (protein structures) 3746 (9652)

Number of predictions of interactions 1,088,789

Number of experimentally determined protein targets 730

ILbind predictions Number of putative targets 5172

Median number of putative targets per drug 31

SMAP predictions Number of putative targets 7184

Median number of putative targets per drug 23

eFindSite predictions Number of putative targets 4444

Median number of putative targets per drug 30
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are linked to their UniProt and PDB records. Importantly, PDID also provides approximate
location of the drug molecules relative to the structures of their protein targets for each of the
16,800 putative interactions and many of the 730 experimentally determined interactions.

Fig. 2 shows a breakdown of the number of protein targets across the drugs that are cov-
ered in PDID. The gray bars denote the number of experimental annotations that are included
in PDID and that are linked to PDB, DrugBank, and BindingDB. Erlotinib features the largest
number of experimentally annotated targets at 216, while the median number of targets per
drug equals 8. The colored bars represent the numbers of putative targets generated by ILbind
(orange/second from the bottom), SMAP (green/third from the bottom) and eFindSite (blue/
fourth from the bottom). The largest number of predictions was generated by SMAP (7184),
followed by ILbind (5172) and eFindSite (4444). The corresponding median number of targets
per drug generated by SMAP, Ilbind, and eFindSite is 23, 31, and 30, respectively. Moreover,
the number at the base of the bars shows the total number of experimentally and computa-
tionally annotated unique targets, in contrast to the bars where some of the targets are anno-
tated multiple times by different tools. More specifically, the total number of experimental
and putative annotations of drug-target interactions across the 51 drugs equals 17,530 while
the number of unique drug-target interactions is 13,791. This means that a substantial number
of interactions are annotated by two or more methods.We caution the reader that some of the
putative interactions in PDID could be false positives and thus the previously mentioned sta-
tistics should be taken as a ceiling for the actual number of interactions.

FIG. 2 Number of experimental and putative protein targets for the 51 drugs included in PDID. The numbers at the
base of the plot show the total number of unique protein targets across all experimental and putative annotations. The
bars represent the number of targets generated by each methodology (experiment, ILbind, SMAP, and eFindSite)
wheremultiple methods can annotate the same target. Drugs are sorted by the number of experimentally determined
targets. Each protein target could be represented by multiple structures that are stored in PDID.
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Fig. 3 further explores the issue of the multiple annotation of interactions for the same
drug-protein pairs.We categorize each of the 191,046 possible drug-protein pairs by the num-
ber and types ofmethods used to annotate it as a potential drug-protein interaction. About 7%
of these pairs are predicted and/or known to interact. Fig. 3 reveals that the majority of drug-
protein pairs are annotated as interacting by a single method (10,278 out of 13,791) and 96% of
these 10,278 annotations are putative (gray bars vs. orange/darker gray bars at the top of the
three columns in the middle in Fig. 3). There are 2934 pairs that are predicted by twomethods
with 97% of them relying solely on the computational predictions. However, the proportion
of the putative interactions substantially decreases for those drug-protein pairs annotated by
three methods. Only 17% of the drug-protein pairs predicted by three methods are putative.
Finally, PDID includes 33 drug-protein pairs that are annotated experimentally to interact
and are also predicted as such by the three predictors. This suggests that targets annotated
by multiple predictors are more likely to be accurately predicted.

4 USE OF THE PDID DATABASE

The end users need only an internet connection and a modern browser to use the PDID
resource. The resource is part of a larger computational platform located at http://
biomine.cs.vcu.edu/ that includes a variety of popular tools such as PPCpred (Mizianty &
Kurgan, 2011), fDETECT (Meng, Wang, & Kurgan, 2018; Mizianty, Fan, et al., 2014), MFDp
(Mizianty et al., 2010; Mizianty, Uversky, & Kurgan, 2014), MoRFpred (Disfani et al., 2012;
Yan, Dunker, Uversky, & Kurgan, 2016), hybridNAP (Zhang, Ma, & Kurgan, 2017),
DRNApred (Yan & Kurgan, 2017), DisoRDPbind (Peng & Kurgan, 2015; Peng, Wang,

FIG. 3 Breakdown of annotations for all possible drug-protein pairs in the PDID database. Each pair is categorized
by the number and types of methods used to annotate it as a potential drug-protein interaction. Black shading denotes
pairs that are annotated as noninteracting. Gray is for drug-protein pairs that have experimental annotation of inter-
action, which could be also accompanied by a computational prediction. Orange (darker gray at the top of the three
columns in the middle) represents pairs that feature putative computational annotation of interactions.
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Uversky, & Kurgan, 2017), and DFLpred (Meng & Kurgan, 2016). Upon landing on the main
PDID page at http://biomine.cs.vcu.edu/servers/PDID/ users are presented with the page
shown in Fig. 4. Starting at the top of the entry page, the “About” link leads to a webpage that
includes information about data sources and methods that are used to derive data that are
stored in PDID. The “Help and Tutorial” link provides access to a tutorial page that explains
layout and details of all webpages that are available in PDID, including themain page and the
query result pages. The latter pages are organized around queries for a specific drug and for a
specific protein target that can be found either by the PDB identifier or by the sequence. The
“Search the Database for Drug/Protein/Sequence” field offers the three corresponding options:

1. The “Search by drug name” allows selection of the desired drug with the help of a pull-down
menu. After clicking “Search,” a new window with the detailed information about
experimental and putative interactions of the selected drug will be opened. This page
includes links to the protein structures and sequences and results from the three predictors.
An example is shown in Fig. 5.

2. The “search by PDB identifier of target structure” option is for users who would like to search
for a specific protein target. The identifier is in the PDB format that includes four characters
followed by one character that denotes the chain identifier (e.g., 12CA_A). An example
page that is generated by such a query is given in Fig. 6.

3. The “search by protein sequence” option is directed toward users who would like to identify
their protein of interest using the sequence. PDID uses BLAST (McGinnis &Madden, 2004)
to align the query sequence to the sequences of all protein targets included in PDID to find
the closest match. Correspondingly, the user is asked to enter the query protein sequence in
the FASTA format and select the E-value threshold for BLAST alignment using a pull-
down menu. The search returns the drug binding details for the most similar protein in
PDID, which is required to have better than the threshold similarity to the query protein.
The resulting page is similar to Fig. 6, with the addition of a pairwise alignment shown at
the top.

The “Materials” section at the bottom of the main PDID webpage provides access to the list
of proteins and drugs that are included in PDID, and a complete database file in the MySQL
database format. The option at the very bottom of Fig. 4 can be used to download a text-based
file with coordinates of the predicted locations of drugs; these coordinates are relative to the
structure of the corresponding target proteins. Finally, the “?” symbol indicates availability of
a help page that explains particular details of the interface. These links are also available for
the query result pages.

Fig. 5 gives the PDID’s webpage that summarizes results for a selected query drug. This
page includes links to relevant pages in PDB, DrugBank, and BindingDB, and tabulated de-
tailed information concerning the known and putative interactions (or lack of them) between
the selected drug and each of the human proteins included in PDID. Proteins in this table are
sorted by default in descending order using the likelihood that they interact with the selected
drug quantified with the ILbind score (the most accurate predictor included in PDID). The
table includes the following columns:

1. The “PDB ID” column gives identifiers that are linked to the corresponding record in PDB.
2. The “Protein name {synonym(s)}” column is linked to the page that describes results per

protein target (Fig. 6).
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FIG. 4 The main page of the PDID database.
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FIG. 5 Results of a query for a specific drug, salicylic acid.

8
3
9

4
U
S
E
O
F
T
H
E
P
D
ID

D
A
T
A
B
A
S
E

4.
T
O
O
L
S
A
N
D

D
A
T
A
B
A
SE

S



3. The “Sequence file (FASTA)” and “Structure file (PDB)” columns provide links to the files
with the protein sequence (using the FASTA format) and protein structure (using the
Protein Data Bank format).

4. The “Type of binding annotation” column provides information on whether a given
protein is:
• Known to bind the selected drug (denoted as “in complex” or “known to bind”). The

former means that the protein-drug complex was solved structurally and is available in
PDB (the adjacent column provides a link to this structure), while the latter means that

FIG. 6 Results of a query for a specific protein target, human serum albumin (PDB identifier: 3SQJ_A). Structure of
the protein target is shown using a gray trace of the backbone. The positions of ligands complexed with this protein
are shown as blue (dark gray) sticks (these ligands are included in the PDB structure file). The predicted centers of the
drug molecule are visualized with balls, and the corresponding positions are given in the “Binding to drugs” table.
Visualization of the structure uses the JSmol plugin from http://sourceforge.net/projects/jsmol/. The structure
can be manipulated (rotated, zoomed, redrawn) using a mouse.
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this DPI was deposited into the DrugBank or BindingDB (the adjacent column provides
a link to the corresponding record in the DrugBank and/or BindingDB).

• Predicted to bind the selected drug (denoted as “predicted to bind”). This is based on the
prediction from the ILbind method, i.e., this method has to provide a sufficiently high
score (>0.75) that is shown in the last column. The ILbind scores are used to make these
annotations since this predictor was found to outperform the other twomethods, SMAP
and eFindSite.

• Predicted not to bind the selected drug (denoted as “no interaction”). Thismeans that this
protein is not known and was not predicted to bind the selected drug. Note that
some of these protein targets may have high prediction scores (shown in the last column
and color-coded in green) from the SMAP and/or eFindSite methods, which
indicates that it is possible that this interaction occurs.

5. The “Source” column provides links to the information from the Protein Data Bank (PDB),
DrugBank, and BindingDB for proteins that are known to bind the selected drug.

6. The “Sequence similarity to known target [%]” column gives the sequence similarity
measured with BLAST between the protein identified in the first column by the PDB
identifier and the protein identified in the BindingDB, DrugBank, or PDB databases, which
were used to annotate the experimental protein-drug interactions. A higher value of
similarity denotes a more accurate match.

7. The “Predicted binding propensity” column gives scores generated by ILbind, SMAP, and
eFindSite. Among several scores that ILbind and SMAP generate, we provide one
score (binding propensity for ILbind and raw score for SMAP) that was empirically shown
to provide the best predictive performance (Hu et al., 2012). The eFindSite tool
generates only one propensity score. We note that the results can be sorted by each of the
three scores by using links located at the top of this column.

Fig. 6 is an example of the PDIDwebpage that provides information concerning the known
and putative DPIs for a selected protein target. This page includes links to the corresponding
protein sequence and structure files, visualization of the protein structure in complex with
drugs that are known and predicted to bind the selected protein, and tabulated detailed in-
formation concerning the known and putative DPIs. The drugs in the table are sorted by the
likelihood that they interact with the selected proteins, starting with the drugs that are known
to interact and followingwith the drugs predicted to interact, from higher to lower likelihood
of interaction. Only the drugs that are known to interact or are predicted by at least one
method to interact are shown. The table shown at the bottom of Fig. 6 has the following
key columns:

1. The two “Annotated as Known Target” columns identify drugs that are known to interact
with the selected target protein. Two types of interactions are possible: “In Complex,” which
corresponds to the fact that the protein-drug complex was solved structurally and it is
available in the PDB database (the adjacent column provides a link to this structure), and
“Known to Bind,” meaning that this protein-drug interaction was deposited into the
DrugBank and/or BindingDB (the adjacent column provides a link to the corresponding
record in the DrugBank or BindingDB).

2. The three “Predicted as Target” columns give the selected scores generated by ILbind,
SMAP, and eFindSite.
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3. The “Predicted Coordinates” column provides coordinates (in the coordinates system
based on the structure file that is linked at the top of the page) of the predicted positions of
the centers of the drug molecules. These coordinates are shown using balls in the structure
shown in the top of the page.

4. The two “Binding Summary” columns show whether a given drug is known to interact
with the selected protein target, and howmany prediction methods (out of three) predict a
given interaction.

Overall, the navigation of the PDID database is fairly straightforward and intuitive. Users
can query this resource in three ways and can easily navigate between the corresponding
three types of screens with results. The results are color-coded to ease the interpretation
and they incorporate both the experimental and putative annotations. Users can also effort-
lessly link to the structures and sequences of protein targets and the source records of
the drugs.

5 SUMMARY

The key challenge in pharmacology has shifted from the study of single molecules to the
exhaustive exploration of biologically relevant molecular interactions at the level of complete
proteomes. Adopting a systems-level approach can help comprehend the underlying princi-
ples of the cellular networks of interacting molecules, with practical applications in the dis-
covery of new biopharmaceuticals and repurposing of current drugs. Nonetheless, a
relatively low coverage of DPIs by the experimental data necessitates augmenting the existing
databases with putative interactions annotated by across-proteome computational modeling.
To meet this demand, we recently developed the PDID, a new resource comprising over one
million PDIs confidently inferred based on the structural similarity between query proteins
and a large database of drug-protein complexes. PDID combines interaction data generated
by three state-of-the-art predictors: eFindSite, SMAP, and ILbind. A unique feature of this re-
source is that it contains the molecular level details for DPIs, such as the location of binding
sites in target structures. Encouragingly, the analysis of putative interactions included in the
PDID indicates that the majority of them are likely to be accurately predicted. The database
was designed to be user-friendly and easily accessible via any modern web browser. Online
materials include a full documentation and tutorials explaining how to query the PDID with
either a drug or a target protein and interpret the results. The PDID has a wide range of
applications, including the identification of novel targets for pharmacotherapy, the develop-
ment of safer drugs with reduced side effects, the repurposing of existing therapeutics to treat
new diseases, and the design of polypharmacological agents simultaneously targeting mul-
tiple proteins in complex disorders.
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