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The ability to design and fine- tune non- covalent interactions between organic  ligands 
and proteins is indispensable to rational drug development. Aromatic stacking has 
long been recognized as one of the key constituents of ligand–protein interfaces. In 
this communication, we employ a two- parameter geometric model to conduct a 
large- scale statistical analysis of aromatic contacts in the experimental and computer- 
generated structures of ligand–protein complexes, considering various combinations 
of aromatic amino acid residues and ligand rings. The geometry of interfacial π–π 
stacking in crystal structures accords with experimental and theoretical data col-
lected for simple systems, such as the benzene dimer. Many contemporary ligand 
docking programs implicitly treat aromatic stacking with van der Waals and 
Coulombic potentials. Although this approach generally provides a sufficient speci-
ficity to model aromatic interactions, the geometry of π–π contacts in high- scoring 
docking conformations could still be improved. The comprehensive analysis of aro-
matic geometries at ligand–protein interfaces lies the foundation for the development 
of type- specific statistical potentials to more accurately describe aromatic interac-
tions in molecular docking. A Perl script to detect and calculate the geometric param-
eters of aromatic interactions in ligand–protein complexes is available at https://
github.com/michal-brylinski/earomatic. The dataset comprising experimental com-
plex structures and computer- generated models is available at https://osf.io/rztha/.

K E Y W O R D S
π–π interactions, aromatic interactions, ligand binding, ligand docking, molecular docking, molecular 
modeling, non-covalent interactions, parallel stacking, perpendicular stacking, protein–ligand complexes

1 |  INTRODUCTION

Low molecular weight ligands, such as endogenous com-
pounds and synthetic drugs, reversibly bind to proteins by 
forming multiple non- covalent interactions predominantly 
with the side chains of binding pocket residues. In contrast 
to strong covalent bonds, these rather weak intermolecular 
contacts comprise a variety of interactions that do not in-
volve sharing electrons. Key interactions between ligands 
and macromolecules include hydrogen bonds,[1,2] π–π ar-
omatic stacking,[3,4] cation–π interactions,[5,6] hydropho-
bic effects,[7,8] halogen bonds,[9,10] and salt bridges.[11,12] 

A significant effort is directed to study the geometrical 
properties and energetics of these non- covalent bonds be-
cause of their paramount importance in molecular recog-
nition and practical applications in drug discovery.[8,13,14] 
Pharmacology exploits the fact that bioactive compounds 
have a sufficient specificity and potency to bind and mod-
ulate the function of macromolecular targets. At the outset 
of drug development, the selection of a molecular scaffold 
requisite for binding is often followed by the optimization of 
the adjoining chemical moieties non- covalently interacting 
with pocket residues. Here, the goal is to maximize the af-
finity of a drug candidate toward the target macromolecule 
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and to reduce its dissociation from the functional site. On 
that account, the ability to fine- tune a network of non- 
covalent interactions promoting high- affinity binding of 
small molecules to their targets is critical for the success of 
rational drug discovery.

Two distinct, yet complementary computational tech-
niques are used to gain insights into the structure and energy 
landscape of non- covalent interactions in biological systems. 
The first approach employs quantum mechanical (QM) cal-
culations, sometimes in combination with molecular me-
chanics (MM). For instance, the geometrical preferences of 
various types of hydrogen bonds frequently present at ligand–
protein interfaces have been investigated with QM.[15] The 
derived distance and angle values describing the geometry 
of hydrogen bonds can subsequently be utilized by empirical 
methods to effectively model hydrogen bonds upon ligand 
binding. Another study employed a hybrid QM/MM method 
to analyze polarization effects playing a significant role in 
the determination of ligand–protein complex structures.[16] In 
this approach, fixed charges on ligand atoms obtained from 
force field parameterization are replaced by those calculated 
by QM/MM to improve the accuracy of the modeling of mo-
lecular assemblies. Finally, the relative strength of π–π and 
cation–π interactions was investigated as a function of the ge-
ometry and protonation state in histidine- aromatic complexes 
with quantum chemistry methods.[17] In addition to important 
differences in the stability of aromatic interactions in the gas 
phase, water, and protein- like environments, it was found that 
π–π stacking is essential for the favorable electron correla-
tion, whereas cation–π contacts produce further electrostatic 
contributions. The advantage of QM methods is that these 
calculations can be applied to a variety of systems and the 
results obtained for idealized molecules are usually straight-
forward to interpret. Nonetheless, because of limits on the 
system size as well as the fact that only simple molecules 
in vacuum are subject to QM calculations, the derived geo-
metric and energy parameters may not be suitable to reliably 
model a biological system with its highly complex and het-
erogeneous environment.

On that account, another computational approach to 
 explore the geometry and energy landscape of various non- 
covalent interactions at ligand–protein interfaces builds on 
the accumulated knowledge of the atomic structures of mo-
lecular assemblies. For example, accurate potentials of mean 
force (PMF) can be derived from a large number of com-
plexes deposited in the Protein Data Bank (PDB).[18] The 
Biomolecular Ligand Energy Evaluation Protocol (BLEEP) 
was developed to estimate the affinity of ligand binding from 
the complex structure.[19] BLEEP considers 40 different atom 
types and employs a reverse Boltzmann methodology to con-
vert the distribution of interaction distances into energy- like 
pair potential functions. As it was anticipated, these potentials 
promote short- range polar contacts and hydrogen bonding, 

whereas the range of hydrophobic interactions is distinctively 
longer.

Another example of an atomic PMF derived from a da-
tabase of ligand–protein complexes is the Astex Statistical 
Potential (ASP).[20] A unique feature of this new potential 
is that it accounts for differences in the exposure of var-
ious types of protein atoms toward ligand- binding sites. 
Employing ASP in molecular docking considerably improves 
the accuracy of pose prediction not only across a large vali-
dation set of ligand–protein complexes, but also for a small 
testing set of pharmaceutically relevant targets. Finally, two 
distance- dependent statistical scoring functions were devel-
oped using probability theory, PoseScore to identify native 
ligand- binding geometries and RankScore to distinguish be-
tween binding ligands and non- binding molecules.[21] Both 
potentials were derived from a set of 8,885 crystallographic 
structures of ligand–protein complexes employing optimized 
atomic distance thresholds and including non- native ligand 
geometries. In addition to experimental structures, the per-
formance of PoseScore and RankScore was evaluated against 
computer- generated protein models with encouraging results. 
Because of their remarkable accuracy, these tools can sup-
port drug development by predicting ligand–protein com-
plex structures and helping identify potentially bioactive 
compounds.

In addition to parameters for contact- based and distance- 
dependent pair potentials routinely derived from interaction 
statistics in the PDB, this large collection of molecular struc-
tures can also be used to parameterize other types of poten-
tial functions. For instance, a sophisticated descriptor- based 
scoring function integrating evolutionary constraints with 
physics- based energy terms implemented in the geauxdock 
docking program[22,23] was parameterized against a represen-
tative snapshot of ligand–protein complexes extracted from 
the PDB. Scoring terms in geauxdock include electrostatic 
and van der Waals interactions, hydrogen bonds, hydrophobic 
interactions, generic and pocket- specific contact potentials, a 
pseudo- pharmacophore potential, and position restraints on 
family conserved anchor substructures and the binding site 
center.

As an example, much deeper potential wells representing 
strong interactions are assigned by geauxdock to salt bridges 
between guanidinium groups in arginine residues and ligand 
carboxyl moieties, compared to those less favorable, for ex-
ample, between arginine and amide groups. Moreover, dif-
ferent types of hydrogen bounds have distinct geometries 
and strengths. Although the mean interaction distance of hy-
drogen bond between the hydroxyl group on threonine and 
ligand primary amine is shorter than that for the tyrosine hy-
droxyl and an amide group, the latter is slightly stronger at 
the optimal distance. Also, force field parameters to model 
hydrophobic interactions in geauxdock are in line with the 
physicochemical properties of ligand atoms, for example, 
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aromatic carbons and halogens tend toward non- polar resi-
dues, whereas amine nitrogen and carboxylate oxygen atoms 
clearly prefer a polar microenvironment. Indubitably, these 
carefully derived parameters are pivotal for the accuracy of 
subsequent molecular modeling simulations. Other studies 
systematically explore structural data in the PDB to calculate 
distance-  and angle- dependent statistical potentials for hydro-
gen bonds,[15] investigate the geometrical and energetic fea-
tures of halogen bonds in biological molecules,[9,24] as well 
as characterize hydrophobic and aromatic interactions at the 
ligand–protein interface.[8,25]

Although π–π stacking, defined as an attractive, non- 
covalent interaction between aromatic rings, is not as 
widespread as hydrogen bonds and hydrophobic contacts, 
it plays a vital role in biological recognition and the or-
ganization of biomolecular structures. The benzene dimer 
is a prototypical system to study π–π aromatic stacking. 
However, investigating this simple system poses signifi-
cant practical challenges due to its relatively small binding 
energy of about 2–3 kcal/mol and the fact that the dimer 
is stable only at low temperatures. An experimental ev-
idence of the perpendicular conformation in crystal and 
liquid benzene was obtained by molecular beam electric 
deflection study.[26] A subsequent theoretical research on 
π–π interactions indicated that favorable perpendicular and 
offset- parallel configurations correspond to energy min-
ima of comparable depth, whereas the less stable eclipsed 
geometry represents an energetic saddle point.[27,28] 
Indeed, perpendicular and offset- parallel configurations 
are dominant in the crystal structures of simple aromatic 
compounds[29] and proteins,[30] in contrast to infrequently 
observed eclipsed stacking.

As the major energetic contributors to π–π interactions 
are London dispersion forces and electrostatics, many mo-
lecular force fields and scoring functions simulate aromatic 
stacking implicitly with van der Waals and Coulomb poten-
tials rather than employing explicit terms. On that account, 
a systematic evaluation of the geometry of aromatic inter-
actions in computer- generated models compared to that in 
the experimental structures of organic ligand–protein com-
plexes can cast light on the accuracy of the modeling of π–π 
stacking in pharmaceutical design. In this communication, 
we first conduct a large- scale statistical analysis or inter-
facial aromatic contacts in the crystal structures of organic 
ligand–protein complexes employing a two- parameter geo-
metric model. Our study considers various combinations of 
aromatic protein residues and ring structures in ligand mol-
ecules. Subsequently, complex models constructed by con-
temporary docking software are carefully assessed in terms 
of the predicted geometry of aromatic contacts. The results 
have important ramifications for the development of molec-
ular force fields and scoring functions for structure- based 
drug discovery.

2 |  METHODS AND MATERIALS

2.1 | Geometry of aromatic interactions
Aromatic rings in ligand molecules are identified with the 
Chemistry::Ring::Find module available in PerlMol.1 This 
module implements a breadth- first ring finding algorithm 
to identify the Smallest Set of Smallest Rings.[31,32] Based 
on atomic contacts detected with ligand–protein contact 
(lpc) software,[33] we subsequently select those interactions 
involving aromatic residues, phenylalanine (F), tyrosine 
(Y), tryptophan (W) and histidine (H), and ligand aromatic 
atoms. This procedure produces a complete list of interacting 
aromatic rings in a given structure of a ligand–protein com-
plex. Next, we employ a two- parameter model, presented in 
Figure 1, to describe the geometry of each pair of interact-
ing rings. The first parameter in this model is the Cartesian 
distance between the geometric centers of two rings, referred 
to as the distance. The second parameter is an angle between 
normal vectors of two aromatic rings, referred to as the angle. 
Further, the interaction type is specified using a notation 
AP:L, where A is an amino acid, P is the number of amino 
acid ring atoms, and L is the number of ligand ring atoms. For 
instance, W6:5 denotes an interaction between a 6- member 
benzene ring of tryptophan and a 5- member aromatic ring of 
the ligand.

2.2 | Dataset of ligand–protein complexes
The protocol employed in this work to compile the dataset 
of ligand–protein complexes is similar to that previously de-
veloped to generate representative and non- redundant sets of 
ligand–protein complexes for benchmarking of eFindSite[34] 
and other binding site prediction algorithms. First, we identi-
fied in the PDB protein chains composed of 50–999 amino 
acids that non- covalently bind small organic molecules. Next, 

F I G U R E  1  Two- parameter model describing the geometry of 
aromatic interactions. Parameters are the Cartesian distance d between 
the geometric centers of aromatic rings (blue) and an angle between the 
normal vectors v1 and v2 of ring planes (red). Two distinct low- energy 
configurations of the benzene dimer are shown, (a) perpendicular and 
(b) parallel [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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we retained those proteins binding a single ligand whose 
Tanimoto coefficient (TC) to at least one FDA- approved drug 
is ≥0.5. The TC is calculated for 1,024- bit molecular finger-
prints with openbabel[35] against FDA- approved drugs in 
the DrugBank database.[36] Subsequently, protein sequences 
were clustered with cd- hit[37] at 40% sequence similarity, and 
a representative set of proteins binding chemically dissimi-
lar ligands (a pairwise TC of <0.5) at different locations (at 
least 8 Å apart) were selected from each homologous cluster. 
Finally, we kept only those complexes stabilized by at least 
one aromatic interaction between the ligand and the receptor 
protein identified with lpc.[33] This procedure resulted in a 
non- redundant and representative dataset of 3,079 proteins 
bound to ligands containing aromatic moieties, referred to 
as the daTaset tO evalUate alGoritHms for ligand Docking 
(TOUGH- D1) dataset.

2.3 | Molecular docking
In addition to experimental structures acquired from the 
PDB,[18] a series of docking models were constructed for 
TOUGH- D1 complexes with two academic programs, 
 autodock vina[38] and rdock.[39] vina has an excellent scoring 
power according to a recent benchmarking study,[40] and it is 
the most widely used molecular docking tool.[41] rdock is a 
newly released program that is more accurate and faster than 
other academic codes. For vina, mgl tools 1.5.6[42] and open 
babel 2.4.1[43] were used to add polar hydrogens and par-
tial charges, as well as to convert target proteins and library 
compounds to the PDBQT format. The optimal search space 
centered on the binding site was defined for each docking 
ligand from its radius of gyration as described previously.[44] 
Molecular docking was carried out by autodock vina 1.1.2 
with the exhaustiveness parameter set to 1,000. For rdock, 
open babel 2.4.1[43] was used to convert receptor proteins 
and ligands to the required Tripos MOL2 and SDFile for-
mats. The docking box was defined by the rcavity program 
employing the reference ligand method. Simulations were 
conducted by rdock 2013.1 with the default scoring function 
and 100 docking runs per ligand. Finally, we executed vina 
for each ligand–protein system with the –local_only option 
to generate near- native conformations and the –randomize_
only option to generate 100 random configurations avoiding 
atomic clashes.

Docking models constructed for TOUGH- D1 complexes 
were evaluated with the Contact Mode Score (CMS)[45] 
against experimental binding poses. The CMS is a new met-
ric assessing the conformational similarity based on inter-
molecular ligand–protein contacts, which is less dependent 
on the ligand size compared to the widely used root- mean- 
square deviation. It ranges from about 0 for random binding 
poses to 1 for identical configurations. Two sets of confor-
mations were compiled from docking models generated by 

vina, a native- like set comprising those configurations having 
a CMS of ≥0.5 and a random set of models whose CMS to 
the experimental structure is <0.3. In addition, we prepared 
a set of high- scoring models for each docking program based 
on the predicted binding affinity.

2.4 | Data analysis and visualization
Two- dimensional histograms of the distribution of geometric 
parameters describing aromatic interactions, the distance and 
the angle, were smoothed with the kernel density estimation 
(KDE) technique.[46,47] KDE is a nonparametric method es-
timating the probability density function of a set of variables 
based on a finite data sample. The parameter space was first 
discretized to a 100 × 100 matrix and then populated with 
observations, that is, distance and angle values computed 
for each aromatic interaction in a given dataset. To smooth 
the data with KDE, each observation was represented by a 
Gaussian kernel, which is a non- negative function integrating 
to 1 and with a mean of 0. matrix2png 1.2.2[48] was then used 
to generate heat maps showing the correlative distribution of 
geometric parameters for aromatic interactions. In addition 
to the visual analysis of heat maps, the overlap between two 
probability distributions is measured with the G test[49,50]:

where Oi and Ei are the observed and expected counts in the 
ith cell and the sum is taken over all nonempty cells in the 
100 × 100 matrix. Finally, pKa values are assigned to histi-
dine residues with propka 3.1[51,52] and the molecular struc-
tures of ligand–protein complexes are visualized with viSual 
molecular dynamicS 1.9.3.[53]

3 |  RESULTS

3.1 | Geometry of aromatic contacts in 
experimental complex structures
The TOUGH- D1 dataset of experimental structures com-
piled in this study comprises 3,079 ligand–protein complexes 
forming a total number of 8,148 interactions between 4,967 
aromatic rings of organic ligands and 5,961 protein residues. 
The amino acid composition of these interactions is 37.4% 
F6, 23.5% Y6, 24.7% H5, 5.5% W5, and 8.9% W6. Further, 
56.0% and 44.0% of aromatic interactions involve 6-  and 
5- member rings in ligand molecules, respectively, whose 
atomic makeup is 75.2% carbon, 24.7% nitrogen, 0.1% sulfur, 
and 0.03% oxygen. Table 1 shows the composition of aro-
matic interactions in TOUGH- D1 complexes. Phenylalanine, 
tyrosine, and tryptophan residues form more interactions 
with 6- member ligand rings, in contrast to histidine residues 
that prefer to interact with 5- member ligand rings. Aromatic 
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interactions involving a bicyclic side chain of tryptophan 
more often are formed through its 6- member benzene ring 
than a 5- member nitrogen- containing pyrrole ring.

Figure 2 shows the correlative distribution of distance and 
angle values for all interaction types calculated for the exper-
imental structures of ligand–protein complexes included in 
the TOUGH- D1 dataset. The distance ranges from 3 to 8 Å, 
and the angle is within the acute range of 0°–90°. In general, 
most interactions have two distinct regions of a high proba-
bility density. The first recognizable geometry is described 
by a relatively close distance of about 3.5–4.5 Å between the 
centers of aromatic rings, and a small angle of 0°–15° be-
tween the normal vectors of ring planes. This range of pa-
rameters corresponds to a parallel aromatic stacking, shown 
for the benzene dimer as a prototypical system in Figure 1b. 
The second densely populated region described by longer 
distances of 5–6 Å and near- right angles corresponds to a 

perpendicular aromatic interaction, another typical geometry 
illustrated for the benzene dimer in Figure 1a.

Distance and angle values obviously mutually depend on 
one another, for example, rotating one aromatic ring by 90° in 
order to change the parallel stacking to a perpendicular orien-
tation pushes rings farther apart because of the van der Waals 
repulsion between the clouds of ring atoms. Further, there 
are certain differences between interactions involving vari-
ous amino acids and ligand rings. For instance, the presence 
of a hydroxyl group in tyrosine perceptibly changes the ge-
ometry of aromatic interactions with respect to phenylalanine. 
Notably more intermediate configurations between parallel 
and perpendicular regions can be observed for F6:6 (Figure 2a) 
and F6:5 (Figure 2b) compared to Y6:6 (Figure 2c) and Y6:5 
(Figure 2d). The 5- member aromatic ring in tryptophan favors 
a parallel stacking with 6- member ligand rings (Figure 2e), 
but forms both parallel and perpendicular interactions with 
5- member ligand rings (Figure 2f). Because of the fused ring 
structure of tryptophan side chains, W6:6 has a dual peak 
within the perpendicular region (Figure 2g), and the major-
ity of W6:5 interactions are parallel with a somewhat broader 
range of distances between rings of 3–5.5 Å (Figure 2h).

Finally, histidine residues form both parallel and perpen-
dicular interactions with 6- member ligand rings (Figure 2i), 
whereas perpendicular geometries are the most common for 
those interactions involving 5- member ligand rings (Figure 2j). 
Depending on the pH, a histidine switches between the double- 
protonated form with both δ and ε nitrogen atoms protonated, 
and the neutral state with either δ or ε nitrogen protonated. On 
that account, in Figure 3, we show the distribution of geomet-
rical parameters for H5:6 and H5:5 interactions in two groups 
identified based on the predicted pKa shift from the model value 

T A B L E  1  Composition of aromatic interactions across the 
TOUGH- D1 dataset

Amino acid ring

Ligand ring

6- member (%) 5- member (%)

F6 21.8 15.6

Y6 15.4 8.1

W5 3.4 2.1

W6 5.8 3.1

H5 9.6 15.1

Interactions between phenylalanine (F6), tyrosine (Y6), tryptophan (W5 and W6) 
and histidine (H5) residues, and 6-  and 5- member ligand aromatic rings are 
considered.

F I G U R E  2  Heat maps showing the 
distribution of the geometrical properties 
of aromatic interactions across the 
experimental structures of ligand–protein 
complexes included in the TOUGH- D1 
dataset. The interaction geometry is 
described by two parameters, an angle 
between the normal vectors of aromatic 
rings and a distance between ring centers. 
The following interaction types are 
presented: (a) F6:6, (b) F6:5, (c) Y6:6, (d) 
Y6:5, (e) W5:6, (f) W5:5, (g) W6:6, (h) W6:5, 
(i) H5:6, and (j) H5:5 [Colour figure can be 
viewed at wileyonlinelibrary.com]

(a) (b) (c) (d)

(e) (f)

(i) (j)

(g) (h)

www.wileyonlinelibrary.com
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of 6.5 for the imidazole side chain. According to propka3,[51,52] 
as many as 84.6% of histidines interacting with ligand aromatic 
rings are acidic with negative pKa shifts from the model value, 
most likely because the protonation of histidine residues has 
a stabilizing effect of about 1–3 kcal/mol.[17,54] Consequently, 
interaction geometries shown in Figure 2i,j are biased toward 
protonated histidine residues, for which the distributions of 
distance and angle values are also independently presented 
in Figure 3a,b. Interestingly, the protonation of the imidazole 
side chain has a notable effect on the geometry of aromatic 
interactions. The vast majority of H5:5 interactions involving 
protonated histidine residues are perpendicular, likely due to 
the additional favorable contribution from the cation–π elec-
trostatic energy.[17] In contrast, the distributions of geometrical 
properties of π–π interactions involving neutral histidine res-
idues shown in Figure 3c,d are qualitatively similar to those 
computed for other aromatic amino acids.

3.2 | Examples of aromatic interactions 
stabilizing ligand–protein complexes
We selected a series of representative examples to exam-
ine the molecular structures of aromatic interactions in the 

context of high probability density regions in heat maps pre-
sented in Figure 2. Figure 4 shows four ligand–protein com-
plexes stabilized by various aromatic contacts. Predominant 
interactions are exemplified by those formed by pyridoxal- 
5′- phosphate and phenylalanine residues. The offset- parallel 
aromatic stacking in glutamine aminotransferase from 
Thermus thermophilus HB8 (Figure 4a, PDB- ID: 1v2d, chain 
A)[55] has a distance of 3.8 Å and an angle of 8.5°, whereas the 
perpendicular stacking in maize serine racemase (Figure 4b, 
PDB- ID: 5cvc, chain B)[56] has a distance of 4.9 Å and an 
angle of 79.5°. Further, complexes shown in Figure 4c,d 
typify interactions between nucleotides and tyrosine resi-
dues. The offset- parallel aromatic stacking between ADP and 
Y474 in isocitrate dehydrogenase kinase/phosphatase from 
Escherichia coli (Figure 4c, PDB- ID: 3lc6, chain A)[57] con-
sists of two interactions, Y6:5 and Y6:6. The former involves 
a 5- member ring a1 and has a distance (angle) of 4.0 Å (7.4°), 
and the latter involves a 6- member ring a2 and has a distance 
(angle) of 4.0 Å (6.3°). ATP bound to Hmd co- occurring pro-
tein HcgE from Methanothermobacter marburgensis forms 
two perpendicular interactions with Y91 (Figure 4d, PDB- ID: 
3wv8, chain B).[58] In this complex structure, Y6:5 (ring a1) 
has a distance of 5.1 Å and an angle of 76.9°, whereas Y6:6 
(ring a2) has a distance of 5.1 Å and an angle of 77.2°.

Figure 5 presents three examples of ligand–protein com-
plexes stabilized by multiple aromatic interactions involv-
ing tryptophan and histidine residues. Proflavin forms a 
3- layer parallel stacking with two tryptophan residues, W95 
and W126, when bound to multidrug binding protein EbrR 
from Streptomyces lividans (Figure 5a, PDB- ID: 3hth, chain 
A). For example, the middle ring a2 in proflavin forms two 
offset- parallel interactions with W95, W5:6 with a distance 
(angle) of 4.6 Å (4.2°) and W6:6 with a distance (angle) of 
3.7 Å (4.1°), as well as a near- parallel interaction with W126, 
W5:6 whose distance (angle) is 5.9 Å (36.5°). In addition, 
the EbrR/proflavin complex is stabilized by aromatic inter-
actions with F67 and Y107; for instance, proflavin interacts 
with F67 through a perpendicular stacking F6:6 with a dis-
tance (angle) of 5.2 Å (83.9°). A series of perpendicular ar-
omatic interactions are formed between tryptophan residues 
W47 and W52 of the human catalytic elimination antibody 
13G5 and a hapten molecule (Figure 5b, PDB- ID: 3fo2, chain 
B).[59] Distance (angle) values for selected contacts involv-
ing W47, W5:5, W6:6, and W5:6 are 5.7 Å (85.1°), 6.3 Å 
(85.6°), and 6.1 Å (85.6°), respectively. Also, histidine H98 
perpendicularly interacts with the ring a1 of the ligand with 
a distance of 4.8 Å and an angle of 75.1°. The last example 
is metallo- β- lactamase from Bacteroides fragilis bound to a 
potent inhibitor (Figure 5c, PDB- ID: 1a8t, chain A).[60] This 
complex is stabilized by a variety of aromatic interactions 
involving three histidine residues, H84, H145, and H206, as 
well as tryptophan W32. For instance, H206 forms a parallel 
stacking H5:6 against ring a3 with a distance (angle) of 5.6 Å 

F I G U R E  3  Heat maps showing the distribution of the 
geometrical properties of aromatic interactions involving histidine 
residues across the experimental structures of TOUGH- D1 complexes. 
The interaction geometry is described by two parameters, an 
angle between the normal vectors of aromatic rings and a distance 
between ring centers. Interactions are divided into two groups with 
(a, b) negative and (c, d) positive shifts from the model pKa value 
for the imidazole side chain. The following interaction types are 
presented: (a, c) H5:6 and (b, d) H5:5 [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a) (b)

(c) (d)

www.wileyonlinelibrary.com
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(22.0°), and a perpendicular interaction H5:5 against ring a1 
with a distance (angle) of 4.0 Å (72.0°). Furthermore, both 
rings of W32 make parallel contacts with ring a3 of the inhib-
itor whose distances (angles) are 5.7 Å (11.8°) for W5:6 and 
5.5 Å (11.4°) for W6:6.

3.3 | Aromatic contacts in computer- 
generated complex structures
Heat maps presented in Figure 2 clearly demonstrate that 
aromatic interactions in the experimental structures of li-
gand–protein complexes tend to adopt certain geometries. 
An important question from a modeling point of view is 
whether similar stacking configurations are observed in the 
theoretical models of complex structures generated by mo-
lecular docking. To look into this facet of ligand docking, 
we analyze aromatic interactions in four sets of theoretical 
models of ligand–protein assemblies constructed for the 
TOUGH- D1 dataset. In addition to heat maps presented in 
Figure 6, the deviation from the reference probability distri-
bution obtained for experimental structures is quantified by 
the G test. G- values are reported in Table 2 for all interaction 
types with smaller values indicating a better agreement with 
the reference distribution. Heat maps generated for native- 
like configurations (1st column in Figure 6) are very simi-
lar to those shown in Figure 2 for experimental structures. 
Further, the average G- value for this set is as low as 0.184. 
This can be expected because employing a CMS threshold 
of ≥0.5 ensures that the modeled ligand–protein contacts are 
highly correlated with those in experimental structures.

vina and rdock construct ligand conformations in which 
the geometry of aromatic interaction does not deviate far away 
from that in experimental complexes (2nd and 3rd columns 
in Figure 6). Although the average G- values for both dock-
ing tools are comparable, there are notable differences with 

respect to individual interaction types. In general, binding 
poses generated by vina have better geometries of aromatic 
interactions involving 6- member rings in ligand molecules 
than rdock. For instance, G- values for F6:6, Y6:6, W5:6, and 
H5:6 modeled by vina are 0.122, 0.118, 0.359, and 0.312, re-
spectively, compared to 0.179, 0.165, 0.753, and 0.340 for 
rdock. However, rdock seems to model certain interactions 
involving 5- member rings more accurately than vina; for ex-
ample, G- value for W5:5 (H5:5) is 0.581 (0.278) for rdock 
and 1.065 (0.601) for vina. The quality of other interaction 
types, such as F6:5, Y6:5, W6:6, and H5:6, in docking models 
is to a large extent independent of the docking algorithm. For 
comparison, the last column in Figure 6 shows the distribu-
tion of distance and angle values across a dataset of random 
ligand–protein configurations. The correlative distribution 
of geometric parameters for aromatic interactions is totally 
lost when ligands are arbitrarily positioned within their tar-
get binding sites only to avoid steric clashes. In addition, 
G- values for random conformations reported in Table 2 are 
much higher than those calculated for high- scoring models 
by vina and rdock; for example, the average G- value across 
the random dataset is as high as 2.185, compared to only 
0.401 for vina and 0.399 for rdock.

4 |  DISCUSSION

In this communication, we report the results of a statis-
tical analysis of aromatic contacts at the ligand–protein 
interface. A two- parameter model considering a distance 
between the geometric centers of aromatic rings and an 
angle between normal vectors of ring planes is employed 
to investigate interfacial π–π interactions in experimen-
tal as well as computer- generated complex structures. 
Our analysis of X- ray crystallography data is consistent 

F I G U R E  4  Examples of aromatic 
stacking in ligand–protein complexes 
involving phenylalanine and tyrosine 
residues. (a, b) pyridoxal- 5′- phosphate and 
phenylalanine residues, and (c, d) ADP/ATP 
and tyrosine residues. Two distinct stacking 
geometries are presented: (a, c) offset- 
parallel and (b, d) perpendicular. Ligands 
are colored by atom type (C—green, N—
blue, O—red, P—ocher), whereas aromatic 
binding residues are purple. Normal vectors 
of aromatic rings are shown as yellow 
sticks [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a)

(c) (d)

(b)
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with the geometrical and energetic properties of aromatic 
stacking reported previously. Exploring the potential en-
ergy surface for the benzene dimer with ab initio methods 

revealed two nearly isoenergetic structures, perpendicular 
and offset- parallel configurations.[61] The ideal offset- 
parallel conformation with an angle between ring planes of 
0° has the lowest energy of −3.33 kcal/mol at a horizontal 
displacement of 1.54 Å, whereas perfectly perpendicular 
structures with an angle of 90° have interaction energies 
of −2.84 kcal/mol (point- face) and −2.51 kcal/mol (edge- 
face).[27] Another QM study predicted that perpendicular 
and offset- parallel configurations are nearly isoenergetic 
with binding energies of 2.7 and 2.8 kcal/mol, respectively. 
These two low- energy arrangements of aromatic rings ap-
pear as distinct areas of high probability density on the 
distance- angle maps constructed in this study for different 
combinations of protein aromatic residues and ligand ring 
structures present in the TOUGH- D1 dataset.

With respect to the geometry of π–π interactions, a dis-
tance of 4.96 Å between the centers of mass of individual 
rings in the perpendicular benzene dimer in the gas phase 
was measured by rotational experiments.[62] Similar distances 
of 5.0–5.1 Å were obtained with QM calculations.[27,28,61,63] 
These values match a lower bound of the intermonomer 
distance range in ligand–protein complexes, which in our 
analysis extends to about 6 Å. This broader distance range 
is likely caused by divers chemical moieties attached to ar-
omatic rings in ligand molecules. It has been reported that 
adding a substituent to one of the rings in the benzene dimer 
impacts the π–π interaction energy and geometry compared 
to unsubstituted systems.[64] Specifically, Monte Carlo simu-
lations demonstrated that the presence of a substituent tends 
to increase the intermonomer separation in perpendicular 
conformations. For instance, the lowest energy structure of 
the benzene/phenol dimer has a distance of 5.6 Å, which in-
creases to 6.2 Å as the dimer adopts an edge- to- edge con-
figuration. Furthermore, ab initio calculations together with 
the analysis of X- ray crystallography data showed that aro-
matic molecules form stacks with the vertical separation of 
3.3–4.1 Å between ring planes in various parallel orienta-
tions,[27–29] closely matching the distance range for the paral-
lel aromatic stacking in our analysis. Interestingly, a quantum 
chemistry study of the benzene dimer revealed the presence 
of a shallow minimum on the path interconverting offset- 
parallel structures through a perpendicular saddle point.[27] 
This configuration corresponds to a tilt angle between phenyl 
ring planes of about 45°, which can also be observed as a me-
dium probability density area at a distance of approximately 
5.5 Å in our distance- angle maps generated for phenylalanine 
and tyrosine residues.

Previous studies investigating aromatic stacking at the li-
gand–protein interface are often focused only on nucleotide 
binding; for instance, it was reported that 65% of adenylate- 
protein complexes form π–π interactions between adenine 
bases and aromatic side chains with two predominant orien-
tations, offset- parallel and perpendicular.[65] A similar model 

F I G U R E  5  Examples of aromatic stacking in ligand–protein 
complexes involving tryptophan and histidine residues. (a) EbrR 
complexed with proflavin, (b) catalytic antibody 13G5 complexed 
with a hapten, and (c) metallo- β- lactamase complexed with a biphenyl 
tetrazole inhibitor. Ligands are colored by atom type (C—green, N—
blue, O—red), whereas aromatic binding residues are purple. Normal 
vectors of aromatic rings are shown as yellow sticks [Colour figure can 
be viewed at wileyonlinelibrary.com]
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to that used in the present study was employed to survey the 
structures of complexes between proteins and adenine-  and 
guanine- containing ligands in the PDB.[4] Reported values of 
the vertical distance between ring planes of less than 4.5 Å 
for parallel and less than 5.5 Å for perpendicular orientations 
are in line with our analysis of the X- ray crystallography 
data. Nonetheless, a somewhat broader range of distances ob-
served for the perpendicular configurations in our distance- 
angle maps arise from the fact that geometric parameters 
describing aromatic stacking in ligand–protein complexes are 
derived in the present study from a more diverse collection of 
compounds containing aromatic groups.

In addition to the experimental structures of ligand–pro-
tein complexes, we examine the geometry of aromatic interac-
tions in theoretical models constructed by molecular docking. 
To the best of our knowledge, scoring functions implemented 
in modern docking programs treat π–π stacking as van der 
Waals and Coulombic interactions. This description of aro-
matic interactions is sufficient in some cases. For instance, 
docking of a series of agonists to the binding pocket of the 
homology model of the serotonin 5- HT2C G protein- coupled 

F I G U R E  6  Heat maps showing the distribution of the geometrical properties of aromatic interactions across the computer- generated models 
of ligand–protein complexes included in the TOUGH- D1 dataset. The interaction geometry is described by two parameters, an angle between the 
normal vectors of aromatic rings and a distance between ring centers. The following interaction types are presented: (a) F6:6, (b) F6:5, (c) Y6:6, (d) 
Y6:5, (e) W5:6, (f) W5:5, (g) W6:6, (h) W6:5, (i) H5:6, and (j) H5:5. Four models are considered for each interaction type: native- like conformations, 
high- scoring models reported by vina and rdock, and ligands randomly positioned within binding sites [Colour figure can be viewed at 
wileyonlinelibrary.com]

T A B L E  2  Deviation of the geometry of aromatic interactions 
from experimental structures for computer- generated models of 
TOUGH- D1 complexes

Interaction

Protein–ligand conformations

Native- like vina rdock Random

F6:6 0.045 0.122 0.179 1.622

F6:5 0.113 0.199 0.203 2.198

Y6:6 0.082 0.118 0.165 1.733

Y6:5 0.132 0.333 0.354 2.232

W5:6 0.274 0.359 0.753 2.325

W5:5 0.296 1.065 0.581 3.479

W6:6 0.131 0.274 0.271 1.585

W6:5 0.418 0.628 0.862 3.049

H5:6 0.130 0.312 0.340 1.530

H5:5 0.215 0.601 0.278 2.093

Average 0.184 0.401 0.399 2.185

The deviation is measured with the G test for native- like conformations, high- 
scoring models constructed by vina and rdock, and ligands randomly positioned 
within binding sites.
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receptor with the patchdock server[66]  produced ligand con-
formations interacting with tryptophan and phenylalanine 
residues through parallel and perpendicular aromatic stack-
ing.[67] Another example is a molecular modeling study con-
ducted with glide[68] for subnanomolar affinity antagonists 
of the cannabinoid receptor CB2.

[69] Docking calculations re-
vealed a number of parallel and perpendicular aromatic con-
tacts between chloromethylphenyl and methylbenzyl rings 
of the compounds and a cluster of aromatic residues in CB2, 
suggesting that π–π interactions are critical to the efficacy of 
these antagonists.

Postprocessing of docking models is a common practice to 
improve the prediction accuracy of molecular docking. For in-
stance, molecular mechanics with continuum solvation offers 
a rigorous approach to decompose free energy into individual 
contributions from various interaction groups enhancing the 
screening and ranking power of autodock.[70,71] In addition, 
it has been reported that re- ranking guanosine triphosphate 
(GTP) docking poses generated by the gold[72] program by 
explicitly accounting for the π–π stacking yields a higher ac-
curacy of the modeling of GTP–protein complexes compared 
to the default goldscore scoring function.[4] Our assessment of 
docking models constructed by autodock vina[38] and rdock[39] 
for a diverse collection of ligands and proteins included in the 
TOUGH- D1 dataset indicates that although state- of- the- art 
molecular docking force fields provide sufficient specificity to 
reliably model aromatic interactions, the geometry of π–π con-
tacts in high- scoring conformations could still be improved. 
The comprehensive analysis of aromatic geometries at ligand–
protein interfaces presented in this study lies the foundation 
for the development of type- specific statistical potentials to 
more accurately treat π–π interactions in molecular docking. 
A Perl script to detect and calculate the geometric parame-
ters of aromatic interactions in ligand–protein complexes is 
available at https://github.com/michal-brylinski/earomatic. 
The TOUGH- D1 dataset comprising experimental structures 
and computer- generated models of ligand–protein complexes 
is available at https://osf.io/rztha/.
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