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Local Alignment of Ligand Binding Sites in Proteins
for Polypharmacology and Drug Repositioning

Michal Brylinski

Abstract

The administration of drugs is a key strategy in pharmacotherapy to treat diseases. Drugs are typically
developed to modulate the function of specific proteins, which are directly associated with particular disease
states. Nonetheless, recent studies suggest that protein-drug interactions are rather promiscuous and the
majority of pharmaceuticals exhibit activity against multiple, often unrelated proteins. Certainly, the lack of
selectivity often leads to drug side effects; on the other hand, these polypharmacological attributes can be
used to develop drugs acting on multiple targets within a unique disease pathway, as well as to identify new
targets for existing drugs, which is known as drug repositioning. To support drug development and
repurposing, we developed eMatchSite, a new approach to detect those binding sites having the capability
to bind similar compounds. eMatchSite is available as a standalone software and a webserver at http://www.
brylinski.org/ematchsite.

Keywords eMatchSite, Drug development, Drug repositioning, Polypharmacology, Computer-aided
drug discovery, Binding site alignment, Sequence order-independent alignment

1 Introduction

Network analysis of interactions between proteins and small
organic compounds is broadly applicable throughout the drug
development process in both biology and chemistry. The classical
picture of selective ligand binding has been challenged by experi-
mental and computational studies, which strongly suggest that the
space of protein-ligand interactions is dense and highly connected
[1]. Several independent studies were conducted to estimate the
promiscuity of protein–ligand interactions. For example, a large-
scale across-target activity analysis carried out for 189,807 active
compounds from PubChem [2] shows that the majority (62%) of
them exhibit activity against multiple, often unrelated targets [3].
Another study investigating a set of 3138 compounds against 79
targets reported that 47% of the compounds can be classified as
“promiscuous” and 24% as “highly promiscuous” with multiple
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targets hit at an IC50 of <10 μM [4]. Furthermore, a thorough
survey of a network of 5215 protein-ligand interactions connecting
829 compounds with 557 targets estimated that the average num-
ber of target proteins per ligand is 6.3 [5]. Although this notable
binding promiscuity may complicate drug development, it also
creates appealing opportunities for polypharmacology and drug
repurposing.

Classical algorithms detecting relationships between proteins
widely used in bioinformatics cannot be applied to investigate drug
cross-reactivity because many compounds bind to multiple proteins
that are totally unrelated to each other at the global sequence and
structure levels [6, 7]. Therefore, a comprehensive analysis of the
protein-drug interaction space requires a different set of tools.
A direct comparison of binding sites is capable of describing ligand
binding at the molecular level to provide useful insights into the
compound mode of action [8]. Most algorithms for binding site
matching fall into two categories: alignment-free and alignment-
based methods. Geometric hashing is a typical example of the
alignment-free approach; it measures the overall similarity of two
binding sites, however, without providing any structural informa-
tion on putative ligand binding modes and molecular interactions
with target proteins [9]. In contrast, methods based on binding site
alignments elucidate why two sites are similar, identify the sets of
atoms/residues that contribute to the similarity, and describe puta-
tive ligand binding modes. SuMo (Surfing the Molecules) was one
of the first approaches to use a residue-independent stereochemical
group description combined with a fast, graph-based algorithm to
compare protein structures and substructures [10]. Another
method, SiteEngine, matches low-resolution protein surfaces con-
structed by converting triangles of physicochemical properties into
a discrete set of chemically important points [11]. Finally, SOIPPA
performs sequence order-independent profile-profile alignments of
binding pockets using a coarse-grained representation of protein
structures [12].

Despite encouraging progress in the development of sequence
order-independent algorithms for ligand binding site alignment,
many of these approaches perform well only against high-quality
binding sites extracted from experimental protein structures. This
insufficient accuracy hinders the reconstruction of protein-drug
interaction networks across proteomes; thus, it is imperative to
develop new approaches insensitive to structural deformation in
ligand binding regions of protein models. To mitigate this issue,
we developed eMatchSite, a new algorithm that performs sequence
order-independent local binding site alignments using computer-
generated protein models [13]. A key feature responsible for its
high performance is the extensive use of evolutionary information
that can be extracted even from weakly homologous templates
complexed with ligands. In addition, eMatchSite provides a
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calibrated significance score to identify those pockets capable of
binding chemically similar ligands regardless of any global sequence
and structure similarities between the target proteins. Benchmark-
ing calculations demonstrate that eMatchSite outperforms other
algorithms constructing sequence order-independent alignments
of ligand binding sites. Importantly, eMatchSite maintains its high
prediction accuracy against protein models; therefore, it opens up
the possibility of investigating drug-protein interactions for com-
plete proteomes with prospective systems-level applications in poly-
pharmacology and rational drug repositioning.

2 Materials

2.1 Input Data Input data for eMatchSite consist of two protein structures in the
Protein Data Bank (PDB) format, whose ligand binding sites were
annotated by eFindSite (see Note 1). eFindSite is a ligand binding
site prediction and virtual screening algorithm that detects common
ligand binding sites in a set of evolutionarily related proteins identi-
fied by meta-threading [14, 15]. In order to perform binding site
annotation with eFindSite, users can employ either its standalone
version or webserver located at http://www.brylinski.org/efindsite
(see Note 2). It is noteworthy that both eFindSite and eMatchSite
work well not only with experimentally solved structures, but also
with computer-generated protein models (seeNote 3).

2.2 Programs Used eMatchSite is written in C++ and requires the following libraries:
zlib (www.zlib.net), gzstream (www.cs.unc.edu/Research/
compgeom/gzstream), and libsvm (www.csie.ntu.edu.tw/~cjlin/
libsvm). In addition, eMatchSite requires a compound library,
which is available at http://www.brylinski.org/content/
ematchsite-standalone-package. Below, we describe options for
running the standalone version of eMatchSite.

2.2.1 Input Options -i input_file, where input_file is a single text file providing
the location of all data files required by eMatchSite. Each line
should contain only one keyword followed by a space and the
path to the input file. Lines starting with # are ignored. List of
keywords (A—first protein, B—second protein):

l structureA and structureB—target structures in the PDB
format

l profilesA and profilesB—sequence profiles

l secstrA and secstrB—secondary structure profiles

l pocketsA and pocketsB—eFindSite pockets

l numberA and numberB—eFindSite pocket numbers (default 1)
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l alignmentsA and alignmentsB—eFindSite alignments

l ligandsA and ligandsB—eFindSite ligands

Alternatively, users can specify the path to individual data files
from command line. For example, the following arguments can be
used to provide the location of target structures:

-structureA first_pdb, where first_pdb is the first protein
in the PDB format,

-structureB second_pdb, where second_pdb is the second
protein in the PDB format.

The path to other input data can be specified in a similar way.

2.2.2 Output Options -ooutput_name, where output_name is a PDB file containing all
results from eMatchSite.

2.2.3 Virtual Screening

Options

-m score_func, where score_func is a scoring function to
perform ligand-based virtual screening. Currently, implemented
functions include single and combined scores (see [15] for details):

Single scoring functions:

tst—classical Tanimoto coefficient for Daylight fingerprints,

tsa—average Tanimoto coefficient for Daylight fingerprints,

tsc—continuous Tanimoto coefficient for Daylight fingerprints,

tmt—classical Tanimoto coefficient for MACCS fingerprints,

tma—average Tanimoto coefficient for MACCS fingerprints,

tmc—continuous Tanimoto coefficient for MACCS fingerprints.

Combined scoring functions:
sum—data fusion using the sum rule (default),

max—data fusion using the max rule,

min—data fusion using the min rule,

svm—machine learning using Support Vector Machines.

2.2.4 Output Files eMatchSite outputs a single file that contains (1) numerical scores
for the constructed alignment of binding sites, (2) aligned residue
pairs with the corresponding Cα-Cα distances, (3) transformation
matrices to superpose the second protein onto the first protein, and
(4) the coordinates of the second protein upon the superposition of
two binding sites.

2.3 Web Sites The webserver available at http://www.brylinski.org/ematchsite
provides a convenient interface to run eMatchSite. In addition,
the website provides a standalone package that can be installed
locally for high-throughput computations, benchmarking datasets
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and results for an easy comparison with other algorithms construct-
ing local alignments of binding sites, as well as a detailed manual
and tutorial to help run eMatchSite.

3 Methods

3.1 Web Submission
Form

The submission form for the eMatchSite webserver requires two
target pockets annotated by eFindSite. Fig. 1 shows that users need
to provide a 10-digit eFindSite ticket for each target and specify the
pocket number if multiple pockets are identified in the target
structure. In addition, each submission requires a unique “Job
ID” and, optionally, an email address where the results will be
sent. If a user prefers not to use email notifications, the automati-
cally generated 10-digit ticket for each submission can be used to
check the job status using the “Job Tracking” form in the right
sidebar at http://www.brylinski.org.

3.2 Result Page Results generated by the eMatchSite webserver are arranged into
several sections, as shown in Fig. 2. The first section (Fig. 2a) gives
the general information including the “Job ID,” the “eMatchSite
ticket” that can be used to retrieve the results within a month from
the submission date, and the identifiers of protein targets. Further,
three numerical scores for the local alignment of binding sites are
provided, including the alignment score ranging from 0 to 1, the

Fig. 1 Web submission form for the eMatchSite server. Fields marked with red asterisks are mandatory
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number of aligned residues, and the Cα-RMSD calculated upon the
superposition of target pockets. Based on the alignment score, the
similarity of the pair of target pockets is determined. The superpo-
sition of target binding sites is visualized using the AstexViewer
web applet [16] (Fig. 2b). Here, protein structures are displayed as
transparent cartoons, whereas binding residues are shown as solid
sticks. Moreover, individual aligned residue pairs can be high-
lighted and labeled using radio buttons. The next section contains
a table showing the local alignment of binding sites (Fig. 2c). For
each aligned residue pair, the Cα-Cα distance measured upon the
local superposition, as well as the Cα-Cα distance and the probabil-
ity score estimated by machine learning are listed. Finally, the last
section provides a download link to the output file generated by
eMatchSite (Fig. 2d).

Note that the results are kept on the server for 1 month only,
after which all data associated with a particular submission will be
deleted. However, we keep one sample job for each webserver, so

Fig. 2 Result page for the eMatchSite webserver. (a) Job information and numerical scores for pocket
similarity, (b) AstexViewer applet showing the superposition of target pockets according to the constructed
sequence order-independent alignment, (c) a list of aligned residue pairs and the corresponding numerical
scores, and (d) the download section
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that users can quickly find out whether the webservers offer a
desired functionality. These sample results can be accessed anytime
either by clicking on links provided in the submission web forms, e.
g., “This server is running eMatchSite v1.0. Click here to see some
sample results,” or by using 10-digit tickets, “Futermylok” for
eFindSite and “Mamlasiaty” for eMatchSite, in the “Job Tracking”
form in the right sidebar.

3.3 Case Studies We selected a couple of illustrative examples to demonstrate how
eMatchSite detects those pockets binding similar ligands in
non-homologous proteins by constructing the sequence-order
independent alignments of their binding sites. The primary target
is benzoylformate decarboxylase (BFD) from Pseudomonas putida
complexed with thiamin-2-thiazolone diphosphate (PDB-ID:
1yno) [17]. BFD belongs to the family of enzymes dependent on
thiamine diphosphate and catalyzes the conversion of benzoylfor-
mate to benzaldehyde and carbon dioxide. Thiamin-2-thiazolone
diphosphate (ThTDP) is a potent inhibitor of several thiamin-
dependent enzymes that initiate the catalyzed reactions by forming
a covalent adduct between the substrate and thiamin diphosphate
(ThDP) through the C2 atom of the thiazolium ring [18]. In
ThTDP, the proton on C2 is replaced with an oxygen atom to
effectively inactivate thiamin-dependent enzymes. ThTDP binds
to its target enzymes with an essentially identical binding mode as
ThDP, but at a 10–1000 higher affinity compared to ThDP
[19–21].

In addition to the primary target BFD, we selected two off-
targets known to bind ThTDP, oxalyl-coenzyme A decarboxylase
from Oxalobacter formigenes (OXC, PDB-ID: 2c31) [22] and the
dehydrogenase/decarboxylase component of the human
branched-chain α-ketoacid dehydrogenase complex (hE1b, PDB-
ID: 2bff) [23]. OXC plays an important role in the catabolism of
the highly toxic compound oxalate and it is structurally similar to
BFD with a TM-score [24] of 0.85 despite a low sequence identity
of 25% (Table 1, Global similarity). hE1b, which catalyzes
the decarboxylation of branched-chain α-ketoacids derived from
the amino acids leucine, isoleucine, and valine, shares neither
sequence nor structure similarity with BFD (Table 1, Global

Table 1
Global and local structure similarity between the target BFD and off-targets OXC and hE1b

Target/off-target

Global similarity Local similarity

Sequence identity (%) TM-score Pocket RMSD (Å) Ligand RMSD (Å)

BFD/OXC 25 0.85 3.18 0.88

BFD/hE1b 25 0.35 2.72 0.89
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similarity). Both off-targets represent a challenge to local binding
site alignment algorithms due to their low sequence homology with
the primary target, BFD.

eMatchSite requires binding sites and residues to be annotated
by eFindSite; therefore, eFindSite webserver at http://www.
brylinski.org/efindsite was used to identify binding sites in the
crystal structures of BFD, OXC, and hE1b. The results are shown
in Fig. 3. A binding site for ThTDP in the primary target BFD was
identified with a 95% confidence; the Matthews correlation coeffi-
cient (MCC) calculated over binding residues is as high as 0.89
(Fig. 3a). The prediction confidence for off-targets OXC and
hE1b is 94% and 93%, respectively. MCC calculated for binding
residues identified in OXC is 0.78 (Fig. 3b) and 0.88 for hE1b
(Fig. 3c). Note that bound ThTDP ligands are shown in Fig. 3
only to assess the accuracy of binding pocket prediction with eFind-
Site, which detects and annotates binding sites in ligand-free protein
structures [14, 15].

Despite a low homology between the primary target and off-
targets, binding sites in both OXC and hE1b are correctly recog-
nized by eMatchSite as highly similar to the ThTDP-binding site in
BFD, indicated by a confidence of 93% and 94%, respectively. Using
data reported by eMatchSite, we can analyze how these high simi-
larity scores were calculated. eMatchSite constructs sequence order-
independent alignments using machine learning with Support Vec-
tor Regression techniques (SVR). Specifically, it assigns SVR scores
to all possible combinations of binding residues in the first (target)
and the second (off-target) protein. Then, it applies the Kuhn-
Munkres algorithm [25, 26] to identify a unique set of residue
pairs that give the shortest overall distance between their Cα

Fig. 3 Ligand binding pockets annotated with eFindSite. Target structures are shown as transparent gray
cartoons, whereas binding residues are rendered as the molecular surface for (a) BFD, (b) OXC, and (c) hE1b.
Binding sites in BFD, OXC, and hE1b are colored in orange, pink, and cyan, respectively. ThTDP ligands bound
to the target structures are shown as sticks colored by the atom type (carbon—green, nitrogen—blue,
oxygen—red, sulfur—yellow, phosphorus—tan)
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atoms. The Kuhn-Munkres algorithm, also known as the Hungar-
ian method, belongs to the complexity class P [27], efficiently
solving combinatorial assignment problems in polynomial time.
In eMatchSite, this algorithm produces sequence order-
independent alignments whose sum of Cα-Cα distances is guaran-
teed to be the smallest among all possible alignment combinations.

Clearly, a high correlation between Cα–Cα distances estimated
by machine learning (SVR scores) and real distances calculated
upon the superposition of bound ThTDP molecules is a critical
factor to produce correct alignments. Encouragingly, light gray
circles in Fig. 4 demonstrate that the machine learning model
implemented in eMatchSite accurately predicts Cα-Cα distances;
the Pearson correlation coefficients for BFD/OXC (Fig. 4a) and
BFD/hE1b (Fig. 4b) are as high as 0.98 and 0.94, respectively. As a
consequence, the unique sets of residue pairs selected by the Kuhn-
Munkres algorithm to yield the shortest overall Cα-Cα distance
actually correspond to the reference alignments constructed by
superposing ThTDP molecules bound to the primary target and
off-targets (dark gray triangles in Fig. 4). Bear in mind that ThTDP
ligands bound to BFD, OXC, and hE1b are used only to validate
alignments generated by eMatchSite that employs binding pockets
annotated by eFindSite in ligand-free target structures.

Geometrical and physicochemical matching of binding sites in
eMatchSite is supported by a chemical correlation, which was orig-
inally devised to study the inhibitor cross-reactivity within the
human kinome [28]. In essence, a fingerprint-based virtual screen-
ing is performed against two pockets using a nonredundant subset
of the ZINC library [29] comprising 23,659 molecules.

Fig. 4 Accuracy of the prediction of inter-residue distances by eMatchSite. Correlation between real distances
upon the superposition of ThTDP ligands and those predicted by eMatchSite for target protein structures is
shown for (a) BFD/OXC and (b) BFD/hE1b pairs. Dark gray triangles show residue pairs from the reference
alignment
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Subsequently, the Kendall τ rank correlation coefficient [30] is
calculated for the ranked compounds under the assumption that
virtual screening should yield a similar ranking for those pockets
binding similar compounds. Indeed, Fig. 5 shows a high chemical
correlation between binding sites in the primary and off-targets
selected for this case study. The Kendall τ rank correlation coeffi-
cient is 0.98 between BFD and OXC (Fig. 5a), and 0.81 between
BFD and hE1b (Fig. 5b).

Sequence order-independent alignments constructed by
eMatchSite for BFD/OXC and BFD/hE1b are reported in
Table 2. Sixteen residues are involved in the alignment between
BFD and OXC, and 15 residues in that between BFD and hE1b; in
both cases, the distances between the aligned Cα atoms upon the
superposition of binding sites are fairly short. Binding pockets in
off-targets superposed onto the pocket in the primary target struc-
ture are shown in Fig. 6. Table 1 (Local similarity) reports the
RMSD calculated over Cα atoms of 3.18 Å for BFD/OXC
(Fig. 6a) and 2.72 Å for BFD/hE1b (Fig. 6b). The accuracy of
alignments constructed by eMatchSite can be evaluated by an
RMSD calculated over the non-hydrogen atoms of ThTDP mole-
cules upon the superposition of binding residues. Encouragingly,
Table 1 (Local similarity) shows that the ligand RMSD is as low as
0.88 Å for BFD/OXC (Fig. 6c) and 0.89 Å for BFD/hE1b
(Fig. 6b). Overall, these two case studies demonstrate that eMatch-
Site effectively recognizes binding site similarity and constructs
biologically correct sequence order-independent alignments for
pockets inferred by eFindSite from ligand-free protein structures.

Fig. 5 Chemical correlation between ThTDP binding sites by eMatchSite. Rank correlation is plotted for a
nonredundant subset of the ZINC library ranked using fingerprint-based virtual screening against a pair of
target binding sites, (a) BFD/OXC and (b) BFD/hE1b
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4 Notes

1. Although the current version of eMatchSite requires ligand
binding sites to be annotated by eFindSite, we are working on
other prediction protocols to compare binding pockets
detected by purely geometrical methods. Nonetheless, eFind-
Site was demonstrated to outperformmany other algorithms in
large-scale benchmarking calculations; therefore, the combina-
tion of eFindSite/eMatchSite works best in detecting similar
binding sites across large datasets of protein structures. Since
eFindSite typically detects more than one site for the majority
of proteins, users may want to specify the binding site of
interest if they plan to run eMatchSite for a handful of targets.
In large-scale applications, the top-ranked binding sites should
be used by default because eFindSite ranks the best pocket at
rank 1 in about 80% of the cases.

Table 2
Sequence order-independent alignments constructed by eMatchSite for BFD/OXC and BFD/hE1b

BFD OXC hE1b

Position Position Distance (Å) Position Distance (Å)

S375 G394 3.23 – –

T376 A395 1.07 Y108 3.67

S377 N396 1.52 R109 3.19

G400 G420 2.03 S157 0.43

G401 V421 1.97 P158 0.79

L402 M422 0.61 L159 0.86

G426 G445 0.94 G187 1.19

D427 D446 1.32 E188 1.07

G428 S447 1.38 G189 0.90

S429 A448 0.95 A190 0.71

Y432 F451 0.48 E193 0.62

T456 G479 3.48 Y219 1.57

Y457 G475 2.47 A220 1.34

G458 K478 2.35 N217 5.47

A459 Y477 1.75 H286 3.08

L460 I476 4.31 I221 2.83

Distances between the aligned Cα atoms of BFD and either OXC or hE1b are measured upon the superposition of
binding sites
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2. Web portals for eFindSite and eMatchSite are intended to study
selected proteins and their binding site similarities. However,
both tools also have standalone versions that can be installed
locally for high-throughput computations across large datasets
of protein structures. Our website provides open source codes,
the required template libraries, as well as detailed installation
instructions and manuals to help users deploy eFindSite and
eMatchSite on their computing systems. It is noteworthy that
in addition to a serial code, eFindSite was ported to parallel
accelerators in order to accelerate binding site annotations
using heterogeneous computing systems [31, 32].

3. Both eFindSite and eMatchSite have been designed to work not
only with experimental ligand-bound (holo) and ligand-free
(apo) target structures, but also with computer-generated pro-
tein models. Compared to crystal structures, the accuracy of
eFindSite predicting binding residues in high- and moderate-
quality structure models decreases only by 4.2% and 9.9%,
respectively [14]. Similarly, eMatchSite also maintains its capa-
bility to construct highly accurate alignments when protein
models are used. Depending on the model quality, the

Fig. 6 Sequence order-independent alignments of ThTDP binding sites by eMatchSite. (a, b) Protein structures
are superposed according to the local alignment of their binding sites with the Cα atoms of binding residues
shown as solid balls. (c, d) Relative orientation of ThTDP ligands upon the local alignment of target binding
sites. (a, c) BFD/OXC and (b, d) BFD/hE1b. BFD, OXC, and hE1b are colored in orange, pink, and cyan,
respectively
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percentage of correctly aligned binding sites is only 4–9% lower
than those aligned using crystal structures [13]. On that
account, binding site similarities can be effectively detected
using homology models generated across proteomes by con-
temporary protein structure prediction techniques.
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