
RESEARCH ARTICLE

GeauxDock: Accelerating Structure-Based
Virtual Screening with Heterogeneous
Computing
Ye Fang1,5, Yun Ding2, Wei P. Feinstein3, David M. Koppelman1, Juana Moreno2,5,
Mark Jarrell2,5, J. Ramanujam1,5, Michal Brylinski4,5*

1 School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge,
Louisiana, United States of America, 2 Department of Physics and Astronomy, Louisiana State University,
Baton Rouge, Louisiana, United States of America, 3 High-Performance Computing, Louisiana State
University, Baton Rouge, Louisiana, United States of America, 4 Department of Biological Sciences,
Louisiana State University, Baton Rouge, Louisiana, United States of America, 5 Center for Computation &
Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America

*michal@brylinski.org

Abstract
Computational modeling of drug binding to proteins is an integral component of direct drug

design. Particularly, structure-based virtual screening is often used to perform large-scale

modeling of putative associations between small organic molecules and their pharmacologi-

cally relevant protein targets. Because of a large number of drug candidates to be evaluated,

an accurate and fast docking engine is a critical element of virtual screening. Consequently,

highly optimized docking codes are of paramount importance for the effectiveness of virtual

screening methods. In this communication, we describe the implementation, tuning and per-

formance characteristics of GeauxDock, a recently developed molecular docking program.

GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function

combining physics-based energy terms with statistical and knowledge-based potentials.

Developed specifically for heterogeneous computing platforms, the current version of Geaux-

Dock can be deployed onmodern, multi-core Central Processing Units (CPUs) as well as

massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU).

First, we carried out a thorough performance tuning of the high-level framework and the dock-

ing kernel to produce a fast serial code, which was then ported to shared-memory multi-core

CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improve-

ment over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980,

achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of

modern heterogeneous architectures to considerably accelerate structure-based virtual

screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.

org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.

PLOS ONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 1 / 29

a11111

OPEN ACCESS

Citation: Fang Y, Ding Y, Feinstein WP, Koppelman
DM, Moreno J, Jarrell M, et al. (2016) GeauxDock:
Accelerating Structure-Based Virtual Screening with
Heterogeneous Computing. PLoS ONE 11(7):
e0158898. doi:10.1371/journal.pone.0158898

Editor: Alexandre G. de Brevern, UMR-S1134,
INSERM, Université Paris Diderot, INTS, FRANCE

Received: February 1, 2016

Accepted: June 23, 2016

Published: July 15, 2016

Copyright: © 2016 Fang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All simulation code and
benchmark results are available from www.brylinski.
org/geauxdock and https://figshare.com/articles/
geauxdock_tar_gz/3205249.

Funding: This study was supported by the National
Science Foundation under the NSF EPSCoR
Cooperative Agreement No. EPS-1003897, the
Louisiana Board of Regents through the Board of
Regents Support Fund [contract LEQSF(2012-15)-
RD-A-05] and the National Institutes of Health grant
No. GM-119524. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

http://www.brylinski.org/geauxdock
http://www.brylinski.org/geauxdock
https://figshare.com/articles/geauxdock_tar_gz/3205249
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0158898&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.brylinski.org/geauxdock
http://www.brylinski.org/geauxdock
https://figshare.com/articles/geauxdock_tar_gz/3205249
https://figshare.com/articles/geauxdock_tar_gz/3205249


Introduction
The goal of drug discovery is to identify, optimize and clinically validate those compounds that
bind and modulate the function of a target protein implicated in a disease state. A drug mole-
cule must possess certain geometry and physicochemical properties in order to have a suffi-
ciently high binding affinity toward a given macromolecular target. As a result, the number of
bioactive compounds is very small compared to a vast collection of candidate compounds. For
example, the ZINC database of commercially available small molecule entities consists of
17,900,742 drug-like compounds collected from 243 vendors as of January 2016 [1]. Consider-
ing molecules yet to be synthesized, the chemical universe comprises an estimated novemdecil-
lion (1060) of small organic compounds [2]. At the outset of drug discovery, this large number
of candidates need to be downsized to hundreds or thousands of the most promising com-
pounds. Experimental high-throughput screening is a conventional approach used by the phar-
maceutical industry to identify bioactive molecules, however, it suffers from high costs and
relatively low hit rates [3]. For instance, a recent study by the Tufts Center for the Study of
Drug Development estimates that the development of a new prescription medicine typically
continues for longer than a decade with the total costs of over 2.5 billion US dollars [4]. Not
surprisingly, modern drug discovery is increasingly supported by computational modeling to
reduce the overall costs, improve the efficiency and speed up the development time. As an
example, a fast drug development is critical in combating the Ebola virus, therefore, computa-
tional approaches are expected to significantly contribute to Ebola research through protein
structure modeling and large-scale docking of small molecule libraries against viral proteins
[5].

One of the most widely used techniques for ligand virtual screening is structure-based
molecular docking to model the binding pose of a ligand in the binding site of the receptor pro-
tein followed by the prediction of binding affinity and/or free energy [6]. In contrast to ligand-
based approaches that need an initial set of bioactive compounds, the only experimental data
required for structure-based docking is the 3D structure of the protein target, although homol-
ogy models can be used instead [7,8]. Consequently, these methods are well positioned to take
advantage of the continuously growing structure databases, such as the Protein Data Bank
(PDB) [9], providing opportunities to discover novel biopharmaceuticals. Because of the
importance of ligand docking in modern drug development, a number of programs have been
developed to date [10]. In general, using large compound databases increases the chances of
finding bioactives, however, large-scale virtual screening typically requires a long computing
time. In addition to the database size, computing time also increases with the increasing accu-
racy of the modeling of drug-protein interactions. Although sophisticated models outperform
simple approaches, these algorithms often have high demands for computational resources.
For example, docking accuracy can be improved by incorporating the plasticity of biomole-
cules, e.g. using pre-generated ensembles of target protein structures [11]. Since ensemble-
based docking requires conducting docking simulation for each target conformation, the
computational complexity increases linearly with the number of conformers. Another
approach to improve ligand docking incorporates the configurational entropy. This property
can be approximated by clustering ligand binding poses generated by a docking program to cal-
culate the conformational similarity between each pair of ligand modes, leading to O(n2) com-
plexity, where n is the total number of binding poses. Mining Minima provides a more
accurate way to calculate entropy by integrating potential energies as a function of coordinates,
however, at a significantly increased computational cost [12]. Finally, the simulation time can
also affect docking accuracy for those docking programs relying on stochastic methods to

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 2 / 29

Competing Interests: The authors have declared
that no competing interests exist.



sample the free energy landscape, where longer simulations are more likely to reach the global
minimum [13].

Undeniably, achieving a good balance between docking accuracy and the computation time
represents a major challenge in structure-based virtual screening. To address this problem, par-
allel computing is often used to accelerate docking simulations. Parallel architectures fall into
two broad categories: 1) small groups of tightly coupled processors sharing a common memory
space, and 2) large, scalable systems that do not share a common memory. Both models often
coexist in a high-performance computing (HPC) environment; for instance, many HPC sys-
tems use the distributed memory model to scale up to thousands of multi-processor nodes,
each employing the shared memory model. A common programming practice for shared
memory systems is to inform the compiler of parts of the serial code to be executed in parallel
by including extra hints, e.g. using OpenMP pragmas [14]. In contrast, distributed memory
systems require manually implemented message-passing procedures, e.g. using Message Pass-
ing Interface (MPI) protocols [15]. Parallel programming used to be a small niche until the tra-
ditional single-core Central Processing Unit (CPU) hit the "instruction level parallelism wall”
and the "clock speed wall" [16] a decade ago. Although CPU vendors managed to bypass these
limitations by integrating more computing cores into a CPU, contemporary multi-core CPUs
are not the ultimate solution due to the power [17] and energy [18] problems. A new trend in
processor design to replace a handful of heavyweight cores with a massive amount of light-
weight computing units upthrust parallel programming to the mainstream.

In contrast to traditional CPU architectures designed to minimize the execution latency of
serial codes, highly simplified cores of modern accelerators are generally optimized for high-
throughput computations, therefore, their performance on latency-sensitive applications is
often poor. Consequently, these computing units are usually attached to conventional CPU-
based systems as heterogeneous devices equipped with their own memory. Two major accelera-
tor architectures currently available, NVIDIA Graphics Processing Unit (GPU) and Intel Xeon
Phi, share some common features, but also have unique characteristics. With respect to hard-
ware, both accelerators as well as contemporary multi-core CPUs share a two-level parallel
design principle. The outer, coarse-grained level defines a computation cluster whose individ-
ual processing elements provide the inner, fine-grained level of parallelism. With regard to
software, each coarse-grained cluster handles its own programming context known as a thread
on CPU and Xeon Phi, and a thread block defined by the GPU Compute Unified Device Archi-
tecture (CUDA) [19] paradigm. On CPU and Xeon Phi, the inner level exposes data parallel-
ism, viz. Single Instruction, Multiple Data (SIMD) operations. NVIDIA GPU uses CUDA
threads inheriting a similar principle of vector processing. For instance, a bundle of 32 conse-
cutive CUDA threads, denoted as a warp, are scheduled together. Consequently, CUDA
threads may go predication when a small, conditionally protected piece of code is encountered,
forcing the execution of all instructions.

When different CUDA threads take different paths in multiple-path branches, more cycles
are consumed leading to a lower device utilization. Although SIMD instructions on CPU and
Xeon Phi have similar characteristics, the number of vector elements is about one-quarter to
one-half of that on GPU and the code generation heuristic can vary significantly, therefore, an
irregular code may perform dramatically differently on these platforms. Another major differ-
ence between CPU and Xeon Phi, and GPU is that the former implement hardware multi-
threading at the outer level, whereas multi-threading on GPU is at the inner level demanding
more data parallelism. Compared to CPU, contemporary Xeon Phi delivers roughly equal
amount of raw compute power per core in terms of the number of data operations per cycle.
However, because of a larger number of computing cores on the co-processor, it offers certain
advantages over CPU in processing regular, highly parallel workloads. On the other hand, CPU

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 3 / 29



cores typically perform better for irregular workloads. In addition to core characteristics, com-
puting performance is also affected by memory operations. Different from the automatic mem-
ory management as cache on CPU and Xeon Phi, GPU exposes to programmers its fast on-
chip memory, known as the CUDA shared memory.

A common programming practice for GPU is to exploit the parallelism using low-level
Application Programming Interfaces (APIs), such as CUDA and OpenCL [20]. GPU program-
ming typically comprises several stages, 1) identify parallel workloads, 2) copy data from the
host to the device, 3) map workloads to computing cores, 4) determine a suitable memory
access for CUDA threads, 5) synchronize the execution between GPU and CPU, and 6) copy
data back to the host. Despite a significant effort directed to help automate these steps, high-
level GPU programming languages are still not versatile enough to fully unleash the power of
GPU for complex applications. In contrast, Xeon Phi is designed to provide massive parallelism
at considerably reduced programming efforts. Intel compilers can generate Xeon Phi acceler-
ated binaries in a similar way to compiling traditional CPU codes [21], therefore, programming
Xeon Phi in the native mode is fairly comparable to coding for multiple-core CPUs. Similar to
GPU, Xeon Phi also offers an offload mode, where only selected portions of the code marked
by compiler pragmas are executed on the accelerator. OpenMP can be used in both native and
offload modes alleviating the need for low-level implementations.

In order to address computational challenges in structure-based virtual screening, several
docking programs offer HPC capabilities. For instance, AutoDock Vina [22] supports multi-
threading on CPU using the Boost::thread library yielding significant speedups on multi-core
processors compared to a serial version. Moreover, a CUDA implementation of MolDock
accelerates both the evolution search algorithm and its two-element scoring functions on GPU
[23], whereas PLANTS employs a systematic grid search with an accelerated scoring function
on GPU using a high-level shading language [24]. A few projects take the heterogeneous con-
cept one step further by developing a hybrid docking framework that can be executed on differ-
ent computer architectures. For example, non-bonded interactions in molecular dynamics
kernels were parallelized for both GPU (using CUDA) and CPU (using OpenMP), and further
extended to fully utilize distributed platforms through MPI protocols [25]. The docking engine
BUDE [26] employs the OpenCL language to maintain a parallel implementation of the genetic
search algorithm for CPU, Xeon Phi and GPU. Nonetheless, to the best of our knowledge, an
efficient multiple-backend implementation of the docking kernel based on Metropolis Monte
Carlo (MMC) has not been reported yet.

Recently, we developed GeauxDock, a new molecular docking package to model drug-pro-
tein complexes using a mixed-resolution molecular representation and the MMC search engine
[27]. GeauxDock uses non-hydrogen atoms for ligands, whereas proteins are described at the
coarse-grained, sub-residual level. Such a mixed-resolution description not only helps tolerate
structural deformations in the target binding sites caused by using protein models as docking
targets, but also speeds up calculations by decreasing the number of interaction points on mac-
romolecules. The descriptor-based force field implemented in GeauxDock includes nine energy
terms carefully optimized to drive docking simulations toward native-like conformations using
a multi-replica MMC sampling. Furthermore, GeauxDock employs an ensemble-based
approach to effectively model the flexibility of ligands and proteins. Although GeauxDock sim-
ulations typically converge in less than 1,000 MMC cycles on standard datasets, its large-scale
virtual screening applications remain computationally challenging due to a large number of
candidate molecules to be evaluated. On that account, the present study describes our efforts
porting GeauxDock to multi-core CPUs and massively parallel accelerators, Xeon Phi and
GPU. Computational models and performance patterns are analyzed in detail for different
architectures. We also discuss various code characteristics as well as general and platform-

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 4 / 29



specific optimization techniques used to turn GeauxDock into an ultra-fast docking tool for
large-scale drug virtual screening.

Materials and Methods

Virtual screening workflow
GeauxDock is designed for virtual screening applications, where a given protein target is
screened against a large library of small organic compounds. A docking simulation of a single
ligand is an independent computational task. Fig 1 shows four stages of virtual screening using
GeauxDock. The procedure starts with reading the input data and creating a pool of tasks (Fig
1A). Protein and ligand files provide the initial coordinates of the target protein and library
compounds. The parameter file specifies various parameters, such as coefficients to calculate
energy terms, weight factors to linearly combine individual energy components, as well as the
length of rotation and translation vectors to perturb ligand conformations during MMC simu-
lations. Other files contain data to calculate a pseudo-pharmacophore using the Kernel Density
Estimation (KDE), restraints on family-conserved anchor substructures using the Maximum

Fig 1. Workflow of virtual screening using GeauxDock. (A) The front-end reads input data and creates a pool of docking tasks. The back-end carries
out three consecutive operations: (B) device initialization and data transfer, (C) docking calculations for individual tasks, and (D) saving output data.

doi:10.1371/journal.pone.0158898.g001

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 5 / 29



Common Substructure (MCS), and a pocket-specific potential (PSP). The KDE component of
the scoring function describes the likelihood of target ligand atoms to be at certain positions
with respect to template-bound ligand atoms, whereas the MCS term imposes root-mean-
square deviation (RMSD) restraints according to a chemical matching between the target
ligand and template-bound ligands collected from the PDB [27,28]. Further, PSP is a contact-
based statistical potential derived from weakly homologous holo-templates identified by
threading rather than all protein-ligand complexes present in the PDB [27,29]. Once the
required input data are read and pre-processed, a computing device is initialized and the data
is copied to the accelerator (Fig 1B). Subsequently, docking calculations are performed for indi-
vidual tasks (Fig 1C) and finally, the output files are generated on the host (Fig 1D).

Preliminary testing of this workflow reveals that the redundant loading and parsing of the
same target protein when docking different ligands consumes up to 90% of the total I/O time
(Table 1). As a consequence of these excessive I/O operations, the execution of MMC kernels
on GPUmakes for only 52% of the total simulation time. Furthermore, the repetitive GPU
memory allocation and de-allocation performed for each task takes almost as much time as
running the MMC kernel. Although the code for Xeon Phi is expected to have similar issues,
the compiler pragmas are placed inside the MMC kernel code, thus the entire offload proce-
dure combines data transfer and core calculations. The memory management for the code off-
load is not required in the CPU implementation. To address the problem of the excessive I/O
operations particularly for GPU-based platforms, the four-step workflow for GeauxDock is
arranged into two parts. The front-end consists of data loading, pre-processing and creating a
pool of tasks (Fig 1A), whereas the back-end fetches tasks, initializes a computing device, exe-
cutes the docking kernel, and periodically saves the output data (Fig 1B–1D). With this design,
the memory allocation and de-allocation on GPU occur only once at the beginning and the
end of the back-end process, respectively.

Code implementation
Docking simulations with GeauxDock can be conducted on three platforms, multi-core CPU,
GPU and Xeon Phi. Therefore, the source code is modularized for an easy maintenance across
different architectures (Fig 2). All three platforms share a common code for front-end compu-
tations, whereas back-end codes have two versions, one for CPU and Xeon Phi, and one for
GPU. The C++ kernel employing OpenMP and Intel SIMD pragmas is shared between CPU
and Xeon Phi. Using the “-Doffload” flag enables additional pragmas protected by the “#ifdef
offload”macro, which instruct the compiler to generate object files for Xeon Phi instead of
CPU. In contrast, the GPU version comprises a C++ launcher and a docking kernel imple-
mented in CUDA. This design allows for maintaining a single front-end code and two versions
of the back-end code. Compiling the source codes (Fig 2A) generates architecture-specific
object files (Fig 2B), which are linked to create different versions of the binary (Fig 2C).

Table 1. Time in ms required to complete various stages of a docking simulation by GeauxDock for the 1a07 complex.

Computing
platform

Loading data Initialization Simulation Output generation Total

Protein Other Device MemAlloc Copy data to device Docking kernel Copy data from device Device MemFree

CPU 214 21 - - 4,848 - - 2,740

Xeon Phi 214 21 3,135 (initialization + simulation + output) 3,374

GPU 216 21 2,063 0.72 2,740 8 182 5,237

Docking kernel performs 1,000 MMC cycles.

doi:10.1371/journal.pone.0158898.t001

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 6 / 29



Parallelization levels
GeauxDock features an enormous task-level parallelism, where different library compounds
docked against the target protein correspond to individual tasks. In addition, the docking ker-
nel exploits coarse- and fine-grained parallelism. Docking calculations for a single task involve
multiple protein and ligand conformations, where each unique combination of protein-ligand
conformations is regarded as a replica of the system. Although replicas can be subjected to
MMC simulations at different temperatures, only one temperature is currently used. For a
given docking task, the corresponding ensembles of independent replicas are suitable for
coarse-grained parallel computing. Moreover, a fine-grained parallelization takes place at the
level of pairwise interactions between data points within each replica. These interactions are
computed as three matrices, proteinColumnVector × ligandRowVector (PRT), KDEColumnVector ×
ligandRowVector (KDE), and MCSMatrix × ligandColumnVector (MCS). Here, a fairly large number
of computations are subjected to fine-grained parallelization; the analysis of input data reveals
up to 104 data points for a single replica, which is sufficient to saturate computing resources
available on modern CPUs and accelerators.

Back-end calculations start when a task is fetched from the task pool. Fig 3 and Table 2
explain mapping between the docking algorithm and computing resources. First, replicas
within each task are mapped to coarse-grained resources, GPU streaming multiprocessors
(SMs) as well as CPU and Xeon Phi cores (Fig 3A and Table 2, Coarse-grained parallelism).
When multiple GPUs are available, replicas within a given task are evenly assigned to the
attached GPU cards. Second, interaction-level calculations (Fig 3B) are mapped to fine-grained
resources, where computing 2D matrices utilizes SIMD lanes on CPU and Xeon Phi, and
CUDA threads on GPU (Fig 3C and Table 2, Fine-grained parallelism). S1 Code illustrates
loop operations on PRT, KDE, andMCSmatrices involving a number of summation reduc-

tions. For instance, five energy terms calculated using the PRTmatrix (Esoft
ele ; E

soft
vdW , EHB, ECP,

and EPS
CP) are directly reduced from a 2D array to a scalar value. Another type of reduction is

hierarchical, where a 2D array a[i][j] is first reduced to a 1D array b[i] along the j-dimension,
and then to a scalar value along the i-dimension. This technique is applied to selected data
across all three matrices, e.g. EHP in the PRTmatrix, EKDE in the KDEmatrix, and EMCS in the
MCSmatrix. In order to implement hierarchical reductions on GPU, we made adjacent GPU
threads efficiently exchange data by scheduling the i-dimension as the outer loop, and the j-
dimension as the inner loop. Specifically, the outer (inner) loop iterates over ligandRowVector

Fig 2. Implementation of GeauxDock. (A) The code repository is divided into three modules, a common
front-end module for the CPU host and two back-end modules, one for GPU and one for CPU and Xeon Phi.
(B) Compiling the source codes produces a series of architecture-specific object files. (C) Linking object files
creates three binary versions for GPU, CPU and Xeon Phi.

doi:10.1371/journal.pone.0158898.g002

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 7 / 29



(proteinColumnVector) for the PRTmatrix, ligandRowVector (KDEColumnVector) for the KDEmatrix,
and rows of MCSMatrix (columns of MCSMatrix) for theMCSmatrix.

2D CUDA thread blocks are responsible for calculations on GPU (Fig 3A, green rounded
boxes). The shape and size of CUDA thread blocks are flexible and can be tuned for the optimal

Fig 3. Two levels of parallelism in the docking kernel. (A) At the coarse-grained level, individual replicas are assigned to different CUDA thread blocks
on GPU streaming multiprocessors (SMs) and different threads on CPU/Xeon Phi cores. (B) At the fine-gained level, data points for each replica are
organized as Structure of Arrays containing Cartesian coordinates x, y, z, and parameters p associated with atoms, such as type, charge, and etc.
Parameters for neighboring atoms are placed closely in memory to ensure the best execution efficiency. (C) Data points at the fine-gained level are
accessed in parallel by CUDA threads on GPU and SIMD lanes on CPU and Xeon Phi.

doi:10.1371/journal.pone.0158898.g003

Table 2. Algorithmmapping to hardware and softwaremodels of coarse- and fine-grained parallelism in GeauxDock.

Algorithmmapping Platform Hardware model Software model

Coarse-grained parallelism

11–550 replicas CPU 4–10 cores with 2-way multi-threading 8–20 threads

Xeon Phi 60 cores with 4-way multi-threading 240 threads

GPU 16 streaming multiprocessors CUDA thread blocks

Fine-grained parallelism
~10,000 pairwise interactions CPU two 256-bit AVX SIMD instructions per cycle 8 SIMD lanes (SP)

Xeon Phi one 512-bit SIMD instruction per cycle 16 SIMD lanes (SP)

GPU 192 scalar processors with multi-threading CUDA threads

AVX–Advanced Vector Extensions; SIMD–single instruction, multiple data; SP–single-precision calculations.

doi:10.1371/journal.pone.0158898.t002

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 8 / 29



performance. Given that the CUDA warp size is fixed at 32, the x-dimension of the CUDA
thread block is best defined as a multiple of 32. Also, the maximum number of 1,024 threads
per CUDA thread block restricts the y-dimension, for example, the size of the y-dimension
cannot be greater than 32 when x-dimension is 32, because 32 × 32 = 1024. However, the
shapes of 2D interaction matrices do not always perfectly match those of CUDA thread blocks.
For instance, the x-dimension is always greater than the y-dimension in PRT and KDEmatri-
ces, whereas a typicalMCSmatrix has the y-dimension greater than the x-dimension. There-
fore, boundary conditions require a careful design of CUDA thread blocks to leave a certain
number of idle threads for the thread management. This procedure is illustrated in Fig 4,
where processing a small, 70-element data matrix (outlined in red) requires at least six cycles of
a 4 × 4 CUDA thread block (each cycle is outlined in blue). With this setup, 70 parallel threads
are fully utilized (gray cells), leaving 26 threads idle (white cells). Overall, the number of
CUDA threads is fixed at the compiling time, but the optimal shape of the thread block is
defined at the runtime, when the input data become available. Here, the objective is to find the
best combination of x- and y-dimensions consuming the least amount of computing cycles to
traverse the data matrix, where a computing cycle is defined as follows:

cycle ¼ ðceilingðdata size x=cuda threads xÞÞ � ðceilingðdata size y=cuda threads yÞÞ Eq: 1

In practice, only a handful of configurations are valid; we enumerate and evaluate these con-
figurations to find the optimal solution. As an example, using Tesla K20Xm GPU with 1,024
threads per thread block, a typical configuration for PRT, KDE,MCSmatrices is 128 × 8,
128 × 8, and 32 × 32, respectively.

Different from the GPU version, the back-end for CPU implemented in C++ with OpenMP
pragmas assigns processor threads to carry out computations for individual replicas (Fig 3A,
blue rounded boxes). In order to avoid thread migration and ensure the best cache locality, the
environment variable "OMP_PROC_BIND" is set to "true". In addition, inner loops in data

Fig 4. Example of parallel calculations for a data matrix. A small, 96-element matrix ligandColumnVector ×
proteinRowVector is outlined in red, whereas the 4 × 4 CUDA thread block iterating over the matrix is outlined in
blue. Here, at least 6 cycles are required to process the data matrix utilizing a total of 70 parallel threads (gray
cells), while the remaining 26 threads are idle (white cells). An optimal shape of CUDA thread blocks can be
constructed dynamically to improve the computational performance by reducing the number of cycles
required to traverse the data matrix.

doi:10.1371/journal.pone.0158898.g004

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 9 / 29



computations iterating over proteinColumnVector (PRTmatrix), KDEColumnVector (KDEmatrix),
and columns of MCSMatrix (MCSmatrix) are marked with vector pragmas to assist Intel com-
piler in generating an efficient, vectorized code. Note that the same CPU code can be used on
Xeon Phi since almost all performance tuning techniques for CPU apply to this accelerator as
well. The major difference is that the code for Xeon Phi is required to be offloaded to the accel-
erator, which is conceptually similar to GPU programming. The offload is accomplished using
compiler pragmas, i.e. “#pragma offload target (mic) in (data_in) out (data_out)”. However,
the present pragma-based Xeon Phi programing model was designed to offload a block of code
to only one device. The current implementation of GeauxDock works only with a single Xeon
Phi card. Although replicas could be distributed manually across multiple accelerators, one
should keep in mind that at least 240 replicas are required to effectively utilize Xeon Phi. Since
docking tasks have no more than 550 replicas, splitting the workload among multiple Xeon Phi
cards would inadvertently decrease the overall performance. In addition, any code modifica-
tion targeting the Xeon Phi platform would complicate the code maintenance. In fact, work-
load sharing at the task level represents a more practical and scalable approach, which will be
implemented in the future release of GeauxDock.

Data structure
A docking task contains complex data, including read-only protein and ligand conformations,
MMC simulation parameters, MCS, KDE and PSP force field parameters, as well as the
dynamic configuration and output data from individual replicas. GeauxDock employs the
Structure of Arrays (SoA) to store the data ensuring the best data locality. For example, the
SoA for the ligand conformation shown as S2 Code A contains elements x[L], y[L], z[L], t[L],
and c[L], representing x, y, z coordinates, the type, and electric charge for all ligand atoms,
respectively. L defines the maximum number of ligand atoms and it is set at the compiling
time. Fig 3B shows that the data associated with neighboring atoms are stored in consecutive
memory addresses in order to maximize the efficiency of memory operations required for the
fine-grained parallelization. With this design, CUDA threads on GPU and SIMD lanes on
CPU and Xeon Phi access these data in a stride-1 pattern as illustrated in Fig 3C. Data struc-
tures for protein conformations, MMC simulation parameters, and PSP, KDE and MCS force
field parameters are created in a similar fashion. These data constitute the first-level SoA pro-
viding read-only information, and are used as building blocks to construct the multiple-replica
simulation context.

To systematically assemble replicas from these raw data, we created a data structure called
"ReplicaInfo", whose purpose is to assemble a replica from the raw data using indirect refer-
ences to various arrays. The concept of ReplicaInfo is presented in Fig 5, where two example
replicas, (L1, P1, T1) and (L1, P3, T2), are created using indexes to the same ligand conformation
(L1), but different protein conformations (P1 and P3) and simulation temperatures (T1 and T2).
ReplicaInfo was designed to yield a high computational efficiency of data exchange between
replicas during parallel tempering MMC simulations [30], which requires swapping only a few
indexes rather than the associated large data arrays. Further, the ReplicaInfo structure is used
to store the temporary simulation status, including energy values and ligand orientations with
respect to the target protein pocket. Simulation logs are saved in the “Simlog” data structure,
whose entry can also be found in ReplicaInfo. We note that the ReplicaInfo can be modified
during MMC simulations, while the associated data are read-only.

In addition to the first-level SoA, we designed the second-level SoA called the “Complex”
(S2 Code B) providing the outermost container for the computation data. The elements of
Complex are various data structures, including protein and ligand conformations, MMC

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 10 / 29



simulation parameters, MCS, KDE and PSP force field parameters, ReplicaInfo, and the data
size. Essentially, a single instance of Complex SoA and Simlog hold all data associated with a
computation task. Because the memory for Complex and Simlog is allocated only once, when
either the CPU/Xeon Phi or GPU version of GeauxDock is initiated, it must be large enough to
hold data for any docking tasks from the task pool. Docking calculations for the CCDC/Astex
dataset require about 5 MB of memory for each Complex, whereas the entire Simlog would
allocate about 1.5 GB of memory. In practice, only about 100 MB of Simlog data need to be
transferred to the host and saved on disk.

Data rearrangement
Irregular code patterns caused by dynamic data may significantly affect the performance. The
docking kernel code contains conditional branches and indirect memory references, for exam-
ple, calculating a branch path depends on the distance between a ligand atom and a protein
point, which is changing in the course of MMC simulations. Although it is difficult to speed up
the code containing these dependencies, we improved the code regularity for certain cases. For
instance, incrementally sorting KDE data elements by the atomic type t helps improve the reg-
ularity of the conditional code “if (lig->t[index] = = kde->t[index])” in a loop iterating over
hundreds of KDE data points. Another example is the indirect memory reference, such as “d =
array[ligand->t[index]][protein->t[index]]”. Here, sorting ligand and protein objects by t
greatly improves the locality of accessing array elements. Altogether, data rearrangement
enhances the performance of GeauxDock by 9.6%, 12.2% and 8.2%, on CPU, Xeon Phi and
GPU, respectively.

Strength reduction
In order to further speed up calculations within the docking scoring function, the strength
reduction technique is applied to reduce its computation complexity. Original mathematical
formulas for various energy terms in the MMC kernel are divided into pre-processing and
computation groups. The pre-processing combined with data transformation is conducted
within the front-end of GeauxDock. An example is shown as S3 Code, where the indirect mem-
ory reference prtconf.r[index] is removed from the original kernel (S3 Code A) and included in

Fig 5. Data indexing for multi-replica Monte Carlo simulations. Individual replicas are multi-dimensional
objects comprising different combinations of ligand (L) and protein (P) conformations, and temperatures (T),
as well as the same set of PSP, KDE, MCS potentials and force field (FF) parameters. All these data are
read-only, labeled with tags, and accessible through indexes as depicted by arrows.

doi:10.1371/journal.pone.0158898.g005

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 11 / 29



the pre-processing stage (S3 Code B), leading not only to a better memory locality, but also to
fewer instructions in the optimized kernel. Another technique used to accelerate computations
within the docking kernel is the reduction of the arithmetic intensity. For instance, S4 Code A
shows a part of the original kernel computing the soft van der Waals potential, which includes
6 loads, 9 multiplications, 3 division and 5 power functions. To speed up the MMC kernel,
some calculations are either moved to the pre-processing step or executed between certain
blocks of the code and then reused when calculating the potential. As the result, the optimized
code shown as S4 Code B has only 2 loads, 6 multiplications, 3 divisions and no power
functions.

Architecture specific optimization
The power of accelerators can be fully utilized only when time is primarily spent on computa-
tions rather than data communication. GeauxDock is implemented based on this principle by
moving compute-intensive MMC simulations to Xeon Phi and GPU. S5 Code shows the MMC
conformational sampling in ligand docking. First, a new configuration of a ligand is generated
by randomly perturbing the present configuration. Next, the energy of the new configuration is
calculated and compared to the energy of the old configuration using the Metropolis algorithm
[31]; the new configuration is accepted with a certain probability to be used in the next itera-
tion, otherwise it is rejected. Even though some components of the docking kernel, such as
evaluating the Metropolis criterion, are less suitable for the parallelization on GPU and Xeon
Phi, this approach yields a better overall performance than offloading parts of the docking ker-
nel. For instance, offloading only energy calculations could potentially generate an excessive
communication between the host and the accelerator. In that case, advanced optimization tech-
niques such as the asynchronous kernel execution and data copying between multiple tasks
would have to be applied for a better performance. However, because extra communication is
avoided in the MMC kernel, the code requires no further optimization of data transfer.

For GPU, the memory is carefully managed within the GeauxDock code with heavily reused
variables, such as interaction distances, placed in registers. Moreover, the shared memory is used
for those frequently reused data, such as ligand coordinates and energy parameters, which may
have an irregular access pattern. Large arrays with the stride-1 parallel access pattern are defined
as SoA, sorted for improved regularity, and saved in the global memory. Importantly, level 1 data
cache on Tesla K20XmGPU does not buffer the global memory traffic by default. The docking
kernel has a good reuse pattern for PRT and KDEmatrices, therefore, inserting _ldg intrinsic
enables the level 1 data cache mechanisms to enhance memory operations. This technique
improves the GPU performance by 4% for PRT and KDEmatrices. In contrast, the cache optimi-
zation cannot be applied to computations for theMCSmatrix, which have no global data reuse at
all.

Since the docking kernel invokes reduction operations, partial results in each CUDA thread
need to be added to a scalar value. Here, a simple implementation stores temporary data in the
shared memory, where the amount of the required memory scales linearly with the number of
CUDA threads. In the early version of GeauxDock, the capacity of the shared memory limited
the maximum number of CUDA threads per thread block to 768. Since using more CUDA
threads per block generally delivers a better performance on Tesla K20Xm GPU, the current
docking kernel uses __shfl and __shfl_xor intrinsic instructions for reduction operations. This
technique enables a direct data exchange between CUDA threads without consuming the
shared memory. Not only is the new reduction code 3× faster, but it also allows to use 1,024
CUDA threads per block improving the overall performance by 40%. Finally, many elementary
functions, exp, log, sin, cos, etc., are frequently used in the docking kernel. The CUDAmath

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 12 / 29



library offers accelerated versions of these math functions [19], which are enabled by the
“-use_fast_math” compiler flag. This tuning yields a 30% performance boost, however, the fast
math intrinsic for GPU is not guaranteed to be fully compatible with the IEEE floating point
standard. Nonetheless, a careful comparison of the results against the CPU code shows that the
error rate is smaller than 0.0001%.

Performance evaluation
The performance of MMC kernels in GeauxDock is evaluated on several computing platforms
using diverse input data. We conducted benchmarking calculations using four Linux computers
listed in Table 3, including a mainstream PC desktop, a PC desktop with the latest consumer
grade GPU, a heterogeneous HPC cluster node with both GPU and Xeon Phi accelerators, and
an HPC cluster node with two GPU cards. We set the optimization level to “-O3” with the fol-
lowing additional flags for the Intel compiler: “-fno-fnalias -ansi-alias -fargument-noalias” (to
safely remove pointer aliases), “-ipo” (to enable interprocedural optimization), “-vec-threshold0”
(to enable vectorization whenever possible), and “-fma” (to enable the fused-multiplication-add
code generation). Architectural events listed in Table 4 were recorded by hardware counters
using the Performance Application Programming Interface (PAPI) library version 5.4.0 [32]. In
addition, we implemented timers directly in the code in order to measure the execution time of
an arbitrary segment of the code. We noticed that time measurements have minor fluctuations of
~5%, therefore, all timings are reported as the average over 8 independent runs.

Benchmarking dataset
Benchmarking calculations are carried out for a single target protein, the pp60(c-src) SH2
domain complexed with ace-malonyl Tyr-Glu-(N,N-dipentyl amine) (PDB-ID: 1a07) [33] and
a set of 204 drug compounds selected from the CCDC/Astex dataset [34]. 1a07 represents a
typical docking target with 344 protein effective points and an ensemble of 11 protein confor-
mations. Depending on the number of rotatable bonds, up to 50 conformations are generated
for ligands, thus the ensemble-based docking employs up to 550 replicas (11 × 50) of individual
systems. In addition to this default protocol, we test the code scalability using a varying number

Table 3. Hardware and software specification of four computing platforms used to evaluate the performance of GeauxDock.

Platform Processor Accelerator Compiler

D1 (desktop) 1 × Intel Core i7-2600, 4c, 8t, 3.4GHz, Turbo - Intel 14.0.2

D2 (desktop) 1 × Intel Xeon E5-2620, 6c, 12t, 2.0GHz, Turbo 1 × GeForce GTX 980 GCC 4.4.7, CUDA 7.0

C1 (HPC cluster) 2 × Intel Xeon E5-2680 v2, 10c, 10t, 2.8GHz, Turbo 1 × Tesla K20Xm, 1 × Intel Xeon Phi 7120P Intel 14.0.2, CUDA 6.5

C2 (HPC cluster) 2 × Intel Xeon E5-2670, 8c, 8t, 2.6GHz, Turbo 2 × Tesla K20Xm Intel 14.0.2, CUDA 5.5

HPC–high-performance computing; c–the number of cores; t–the number of threads; Turbo–a dynamic frequency scaling to modify the CPU clock rate

based on the number of active cores and thermal conditions.

doi:10.1371/journal.pone.0158898.t003

Table 4. PAPI preset events used to assess the code performance.

PAPI event Description

PAPI_LI_DCM Number of level 1 data cache misses

PAPI_BR_MSP Number of branch mispredictions

PAPI_TOT_INS Total number of instructions

PAPI_TOT_CYCLES Total number of CPU cycles

doi:10.1371/journal.pone.0158898.t004

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 13 / 29



of replicas at multiple temperatures. Other parameters affecting the computational complexity
are the number of non-hydrogen ligand atoms and the number of points to compute the evolu-
tion-based components of the GeauxDock force field, KDE and MCS. Although both KDE and
MCS scoring terms are used to calculate various restraints derived from homology rather than
physical interactions, these points are iterable from the computing point of view. Therefore,
KDE and MCS interacting points are equivalent to ligand atoms and protein effective points in
the physics-based components of the GeauxDock force field.

Results and Discussion

Dataset and simulation characteristics
The distributions of the number of replicas, ligand atoms, as well as KDE and MCS points are
shown in Fig 6. GeauxDock employs multiple replicas to account for the flexibility of protein-
ligand complexes, where each replica contains a unique combination of protein and ligand
conformations. The highest peak in Fig 6A at around 550 replicas corresponds to highly flexi-
ble compounds with multiple rotatable bonds, whereas the smaller peak at around 11 replicas
represents those rigid complexes having only a single conformer. Given that the hydrogen
atoms are omitted when counting atoms, the range between 6 and 62 heavy atoms presented in
Fig 6B agrees well with the qualifying range for drug molecules according to the extended ver-
sion of Lipinski’s rule-of-five [35]. Because KDE points and rows in MCSMatrix are calculated
using template-bound ligands detected by the eFindSite algorithm [28,36] their distributions
(Fig 6C and 6D, respectively) depend on the number and size of ligands extracted from holo-
templates.

Another important simulation parameter is the number of MMC cycles. We found that
1,000 MMC cycles is sufficient for production runs to converge. Since these calculations
require 4.8 to 61 minutes on various platforms, the average wall time for the docking kernel is
1.4 seconds on the fastest machine (platform D2, Table 3) and 18 seconds on the slowest com-
puter (platform D1, Table 3). Because the number of replicas (up to 550) is multiplied by the
number of temperatures (up to 240) in our benchmarks, and several versions of the docking
code needed to be tested, the time required to complete simulations could be hundreds times
longer than that for production runs. Therefore, shorter simulations with 100 MMC cycles are
used for benchmarking purposes.

Performance of docking kernel with an ample coarse-grained parallelism
The execution time for docking kernels includes not only computations but also time required
for the data transfer to and from accelerator devices. Moreover, the kernel performance can be
affected by the ensemble size (the number of replicas), because those docking systems contain-
ing rigid ligands provide insufficient coarse-grained parallelism to fully utilize computing
resources. On that account, we first need to determine the ideal performance as well as a per-
formance penalty caused by the meager coarse-grained parallelism. To address this problem,
we conducted a series of simulations providing a sufficient number of replicas to deliver an
ample coarse-grained parallelism. Specifically, we used 400 replicas for a dual CPU with 20
cores and 20 threads, 2,400 replicas for Xeon Phi with 60 cores and 240 threads, and 280 repli-
cas for GPU with 14 streaming multiprocessors and 14 CUDA thread blocks.

The performance of docking kernels on CPU is assessed using the C1 computing system
(Table 3). We first evaluate the serial performance by enabling only 1 thread on a single proces-
sor core. Using the total number of CPU cycles according to the PAPI event PAPI_TOT_-
CYCLES (Table 4) and the computing time measured by either the PAPI timer or our timer,
the average dynamic CPU clock rate is 3.58 GHz ±0.02. Fig 7 shows several characteristics

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 14 / 29



assessing the overall computational performance of the docking code. Computing PRT and
KDEmatrices are the major components of the docking kernel (Fig 8A and 8D). Since the max-
imum reuse distances [37] for these data (300 and 9000, respectively) are small enough to fit L1

Fig 6. Distribution of various parameters affecting docking time. The number of (A) replicas, (B) ligand non-hydrogen atoms, (C) KDE points, and (D)
rows in the MCSmatrix are shown for the dataset of 204 CCDC/Astex compounds. KDE (Kernel Density Estimation) and MCS (Maximum Common
Substructure) points are used to calculate evolution-based components of the docking force field.

doi:10.1371/journal.pone.0158898.g006

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 15 / 29



data cache, the cache efficiency in GeauxDock is very high. Indeed, in most cases, the number
of L1 data cache misses per 103 instructions is less than 7 (Fig 7A), which is lower compared to
a broad distribution of 5–30 misses reported for thoroughly tuned SPEC CPU2006 benchmark
kernels [38] tested on the same CPUmicroarchitecture. Applying an additional loop tiling
transformation [37] to further reduce the reuse distance does not improve the performance.
Similarly, the number of branch mispredictions per 103 instructions for the SPEC CPU2006
kernels is between 1 and 10 [38], therefore, the docking code is superior with no more than 2
branch mispredictions (Fig 7B). Moreover, GeauxDock achieves an average instruction
throughput rate of about 2, which is notably higher than 1.43 instructions per cycle reported
for the most efficient SPEC CPU2006 kernel [38]. This comparison with the SPEC CPU2006
benchmark suite demonstrates that the serial, CPU version of the docking kernel in Geaux-
Dock is indeed highly optimized.

Next, using the optimized serial CPU code as a baseline, we measure the performance of the
parallel versions of GeauxDock on a dual multi-core CPU, Xeon Phi and GPU using the C1
computing system (Table 3). Enabling 20 threads on a dual CPU triggers the dynamic fre-
quency scaling and decreases the average CPU clock rate to 3.07 GHz ±0.11. Fig 9A shows that
the average speedup of multi-threaded GeauxDock over its serial version is 17.22× ±0.06,
which actually corresponds to the maximum theoretical speedup accounting for the lower
clock rate (20 × 3.07 GHz / 3.58 GHz). Compared to the serial code, the parallel docking kernel
runs from 22× to 56× faster on Xeon Phi 7120P (Fig 9B) and 10× to 38× faster on Tesla
K20Xm GPU (Fig 9C). One should bear in mind that the simulation time depends on not only
the data size, but also the relative amount of PRT, KDE andMCS computations. Further, the
irregular portions of the docking code are handled differently by various devices because of
their architectural characteristics causing variations across the dataset. As we mentioned in the
introduction section when discussing hardware design, the simpler computing units of Xeon
Phi and GPU are more susceptible to dynamic branches than sophisticated CPU cores.

Performance of docking kernel on real data
Next, we test the parallel performance of each platform against realistic workloads. Figs 9D and
8F show that multi-threaded CPU and GPU versions of the docking kernel generally maintain
their high performance on real data. In contrast, the performance of Xeon Phi is significantly

Fig 7. Performance characteristics for a single-threaded docking kernel on CPU. The number of (A) level 1 data cache misses per 103 instructions, (B)
branch mispredictions per 103 instructions, and (C) instructions per cycle.

doi:10.1371/journal.pone.0158898.g007

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 16 / 29



Fig 8. Time breakdowns for docking kernels running on different platforms. Kernel implementations for (A, D,G) multi-core CPU, (B, E, H) Xeon Phi,
and (C, F, I) GPU are tested. Three major operations compute the following interaction matrices: proteinColumnVector × ligandRowVector (PRT, green),
KDEColumnVector × ligandRowVector (KDE, red), and MCSMatrix × ligandColumnVector (MCS, blue). Purple areas correspond to the remaining operations. KDE
(Kernel Density Estimation) and MCS (Maximum Common Substructure) points are used to calculate evolution-based components of the docking force
field, whereas the PRTmatrix is used to calculate the majority of physics-based potentials. Results collected for the dataset of 204 CCDC/Astex compounds
are sorted on the x-axis with respect to increasing time of computing (A, B, C) PRT, (D, E, F) KDE, and (G, H, I)MCSmatrices.

doi:10.1371/journal.pone.0158898.g008

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 17 / 29



affected by the lack of an ample coarse-grained parallelism (Fig 9E). Although the co-processor
is twice as fast as a dual CPU in 71.1% of the cases (a speedup of 17× and more), Xeon Phi per-
forms about twice as slow as a dual CPU for the remaining docking systems. This double peak
pattern matches the bimodal distribution of the number of replicas shown in Fig 6A, demon-
strating that the computational throughput of Xeon Phi is significantly affected by those work-
loads providing insufficient coarse-grained parallelism.

To further investigate the effect of the number of replicas on the parallel performance, we
compiled a separate testing dataset comprising a single conformation of the target protein 1a07
and a rigid ligand adamantanone (PDB-ID: 5cpp) [39]. This docking system is replicated n
times at different temperatures to strictly control the number of replicas in docking simula-
tions. The docking time for multi-core CPU, Xeon Phi and GPU kernels are presented in Fig
10. Fig 10A and 10C show sets of horizontally parallel lines with even vertical distances, whose
width corresponds to the number of CPU cores and GPU streaming multiprocessors, respec-
tively. Here, replicas are processed in parallel by independent computing units with the execu-
tion time equal to the number of replicas divided by the core count. The width of horizontal
lines for Xeon Phi shown in Fig 10B is 240 because of the hardware multi-threading (60

Fig 9. Distribution of speedups of parallel GeauxDock over the serial CPU version. Benchmarking calculations are conducted for the dataset of 204
CCDC/Astex compounds using (A-C, red) modified input data providing an ample coarse-grained parallelism and (D-F, green) unmodified input data. Three
kernel implementations are tested for (A, D) multi-core CPU, (B, E) Xeon Phi, and (C, F) GPU.

doi:10.1371/journal.pone.0158898.g009

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 18 / 29



cores × 4 threads per core). Clearly, it is beneficial to place 4 threads on a single core in order to
fully utilize the hardware. Moreover, the kernel time for the first few data points at the begin-
ning of each horizontal line is somewhat shorter demonstrating that the co-processor perfor-
mance is affected by the global resource contention.

A reliable model for the docking performance
To further understand the performance characteristics, we analyze various components of the
docking kernel including the time spent on computing PRT, KDE, andMCS interaction matri-
ces. KDE andMCS data are used to calculate evolution-based components of the docking force
field, whereas the PRTmatrix is used to calculate physics-based potentials. The time spent on
computing the remaining operations is measured using a modified kernel, in which PRT, KDE,
and MCS calculations are disabled. Fig 8 shows time contributions from these four compo-
nents. Computing PRT contributes to 64.4%, 60.4%, and 32.1% of the total execution time on
CPU, Xeon Phi, and GPU, respectively (Fig 8A–8C). The percentage of the kernel time for
KDE is 33.9% on CPU, 28.2% on Xeon Phi, and 46.3% on GPU (Fig 8D–8F), whereas forMCS,
it is 2.7% on CPU, 5.1% on Xeon Phi, and 10.4% on GPU (Fig 8G–8I). The remaining opera-
tions make up about 10% of the total kernel time on Xeon Phi and GPU. In contrast, these
computations require almost no time on CPU because the sophisticated processor cores handle
sequential workloads (e.g. updating ligand coordinates, generating random numbers, calculat-
ing Metropolis acceptance criterion, etc.) as efficiently as highly parallel workloads. Further,
the CPU code has no data transfer between the host and the accelerator, which is required only
for Xeon Phi and GPU.

Next, we analyze the correlation between the computing time and the static data size. In
addition to the original docking code, we examine the performance impact of dynamic
branches by forcing the calculation of all operations; this modified implementation is referred
to as a "regulated" code. Fig 11 shows the correlation between the execution time and the data
size for the original program in blue and the regulated code in red. Fig 11A–11F demonstrate
that the time required to calculate the PRT (KDE) matrix strongly correlates with its size; the
coefficient of determination, R2, for the original code shown in blue is 0.996 (0.938) for CPU,
0.996 (0.987) for Xeon Phi, and 0.952 (0.981) for GPU. This correlation is somewhat weaker
for theMCSmatrix with the R2 of 0.957, 0.720 and 0.793 for CPU, Xeon Phi and GPU,

Fig 10. Performance scaling of docking kernels with different numbers of system replicas. Benchmarking calculations are performed using (A) multi-
core CPU, (B) Xeon Phi, and (C) GPU. The width of horizontal lines is 20 replicas for a dual 10-core CPU, 240 for a 60-core Xeon Phi with 4-way multi-
threading, and 14 for a 14-multiprocessor GPU.

doi:10.1371/journal.pone.0158898.g010

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 19 / 29



Fig 11. Correlation between computing time and static data size. Blue points are collected from original GeauxDock, whereas red points correspond to
a modified docking code, where dynamic branches are turned off forcing the execution of all instructions. Three major operations compute (A-C)
proteinColumnVector × ligandRowVector (PRT), (D-F) KDEColumnVector × ligandRowVector (KDE), and (G-I) MCSMatrix × ligandColumnVector (MCS) matrices. Three
kernel implementations are tested for (A, D,G) multi-core CPU, (B, E, H) Xeon Phi, and (C, F, I) GPU.

doi:10.1371/journal.pone.0158898.g011

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 20 / 29



respectively. Forcing the execution of the entire code by eliminating dynamic branches has two
major effects on the kernel performance. First, it improves the correlation between the comput-
ing time and the data size, for instance, the R2 for the KDEmatrix shown in red in Fig 11D–
11F is 0.999 for CPU and Xeon Phi, and 0.983 for GPU. Second, the regulated code is slower,
however, the relative increase of the execution time is clearly architecture-dependent. In gen-
eral, CPU skips executing most of the instructions downstream of branches because their con-
ditional outcome can be accurately predicted, which yields a better performance (Fig 11A and
11D). The performance of GPU (Fig 11C and 11F) is unaffected by branches indicating that
this accelerator always performs the predicated execution. Interestingly, the branch behavior of
Xeon Phi falls between CPU and GPU. For the PRTmatrix (Fig 11B), Xeon Phi performs the
predicated execution similar to GPU, whereas the branch prediction clearly helps reduce the
execution time on Xeon Phi for the KDEmatrix when the KDE elements are sorted (Fig 11E).
Nonetheless, the performance improvement for Xeon Phi is not as large as that for CPU
because its computing cores are simpler and the wider SIMD vectors are generally less suitable
for irregular data.

The original code improves the performance of computing PRT and KDE, however, it nega-
tively impacts the calculation of theMCS. This effect can be attributed to the irregularity and
shape of theMCS data structure containing a dense ligandColumnVector, but a sparse MCSMatrix.
Note that since proteinColumnVector (Fig 11A–11C) and KDEColumnVector (Fig 11D–11F) data
structures are 1D arrays, there is a branch pattern between different elements, which can be fur-
ther improved by data sorting. This pattern is lost in the sparse MCSMatrix × ligandColumnVector

causing a significant branch prediction penalty and longer execution times for CPU and Xeon
Phi (Fig 11G and 11H). On the GPU platform, we analyzed two versions of the generated
Streaming ASSembly (SASS) code. The original SASS code always performs predicated execution,
while the regulated SASS code uses non-predicated instructions without testing branch condi-
tions. For that reason, the regulated docking code performs better for the irregularMCS data.

As mentioned above, the correlation between the computing time and the size of theMCS
matrix also tends to be weaker than that for PRT and KDEmatrices. For instance, the R2 for
the original (regulated) code shown in blue (red) in Fig 11G–11I is 0.957 (0.946) for CPU,
0.720 (0.744) for Xeon Phi, and 0.793 (0.749) for GPU. This effect can be explained by the fact
that theMCS data matrix is limited by the number of ligand atoms, which is between 6 and 62
for the CCDC/Astex dataset (Fig 6B). Consequently, theMCSmatrix is not wide enough to
efficiently utilize vector lanes on CPU (8 elements) and on Xeon Phi (16 elements) as well as
the x-dimension of 2D CUDA thread blocks on GPU (32 elements); see Table 2. Consider a
ratio of the data size and the number of cycles:

ratio ¼ data size x=cycles Eq: 2

with the number of cycles required to traverse the x-dimension of theMCSmatrix given by:

cycles ¼ ceilingðdata size x=vector width xÞ Eq: 3

For PRT and KDEmatrices, whose data size is much larger than the vector width, the ratio
in Eq 2 is close to the vector width yielding a strong linear correlation between the computing
time and data size. In contrast, performance fluctuations caused by idle cycles created by the
underutilized vector lanes (Eq 3) slightly decrease the correlation for theMCSmatrix.

Encouragingly, the time required to compute various interaction matrices scales linearly
with the static data size. Therefore, we developed the following general linear regression model
to estimate the wall clock time for the docking kernel:

time ¼ w1PLþ w2KLþ w3MLþ c Eq: 4

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 21 / 29



where, PL, KL, andML are the sizes of PRT, KDE, andMCSmatrices, respectively. The fitted
weights and the intercept (w1/w2/w3/c) are 7.493e-5/6.213e-6/5.121e-7/-0.025 for CPU, 2.343e-
5/2.230e-6/5.937e-6/0.042 for Xeon Phi, and 4.798e-6/4.691e-6/1.783e-6/0.222 for GPU. Fig 12
shows that this model allows us to accurately predict the docking time from input data with the
R2 of 0.974 on CPU (Fig 12A), 0.994 on Xeon Phi (Fig 12B), and 0.980 on GPU (Fig 12C). For
those docking cases providing insufficient coarse-grained parallelism, we can further combine
this linear regression with the performance model for the coarse-grained scaling (Fig 10). Spe-
cifically, the linear model predicts the average computing time for individual replicas assuming
a sufficient coarse-grained parallelism. Since this value corresponds to the height of the first
horizontal bar in Fig 10, we can estimate the execution time of a real task using the number of
replicas and the repeating pattern of the regulated code.

Comparative benchmarks of high-performance computing platforms
Finally, we perform comparative benchmarks of all computing platforms listed in Table 3
using the 1a07 target protein and the dataset of 204 CCDC/Astex ligands. In these simulations,
we use the original GeauxDock code and the real data with respect to the number of protein
and ligand conformations. Timing reports include the total execution time of the docking ker-
nel for 204 tasks and the simulation wall time averaged over 8 independent docking runs for
each task. GeauxDock is specifically designed for virtual screening applications, therefore, it
reads the target protein input data only once for a given set of docking ligands. Indeed, Geaux-
Dock spends from 95.4% (GeForce GTX 980) to 99.7% (Xeon E5-2680 v2) of the total time
executing docking kernels, while loading and pre-processing input data take only about 10 sec-
onds on average (Table 5). The reference time required to complete docking calculations for
the entire dataset is 61.31 minutes using a multi-threaded CPU version running on Core i7-
2600 multi-core CPU (platform D1, Table 3). Fig 13 shows that high-performance servers and
hardware accelerators yield significant speedups over a mainstream PC desktop. GeForce GTX
980 is the fastest computing device in our tests, which achieves a 12.6× speedup and dramati-
cally reduces the wall time to only 4.84 minutes. Xeon Phi gives a 6.8× speedup corresponding
to the wall time of 9.00 minutes, whereas the performance of a single Tesla K20Xm card with
11.14 minutes of wall time is about 23% worse than Xeon Phi. It is noteworthy that we obtained
almost a perfect scaling on multiple GPU cards; using a pair of K20Xm GPUs increases the

Fig 12. Correlation between the estimated and real docking time. Simulation time is estimated from static data size using a general linear regression
model for (A) multi-core CPU, (B) Xeon Phi, and (C) GPU.

doi:10.1371/journal.pone.0158898.g012

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 22 / 29



performance by 98%, compared with a single K20Xm GPU. A dual Xeon E5-2680 CPU needs
16.99 minutes to complete docking calculations, which is about 3.6× faster than the baseline i7-
2600 CPU running at a higher clock rate.

One should keep in mind that not only the theoretical peak performance, but also the cost
and the energy consumption vary greatly for the testing platforms, particularly between con-
sumer and server grade hardware (Table 5). For instance, a single Core i7 2600 is 12× less
expensive and requires 59% less energy than a dual Xeon E5-2680 CPU, whereas GeForce GTX
980 is more than 5× lower priced and requires 27% less energy than Tesla K20Xm. For that rea-
son, in addition to evaluating a pure computational performance, we analyze the performance
with respect to the energy consumption and hardware cost. GeForce GTX 980 systematically
outperforms other computing platforms, for example, it gives a benefit of 6.5× per dollar and
7.3× per watt compared to the reference D1 platform (Fig 13). This remarkable performance
results from mapping massively parallel computations and data structure to the GPU architec-
ture. According to vendor specifications, GeForce GTX 980 has a higher core utilization and
better energy efficiency than the previous generation Tesla K20Xm. Its streaming multiproces-
sors have two-thirds of the number of scalar processors of Tesla K20Xm, yet the number of reg-
isters is the same. Moreover, the size of the shared memory on GeForce GTX 980 is twice as
large as that on Tesla K20Xm. Therefore, extra efforts were devoted to tune the CUDA docking
kernel in order to take advantage of the abundant resources on GeForce GTX 980. The perfor-
mance per dollar of K20Xm GPU is comparable to a server grade Xeon E5-2680 CPU and
Xeon Phi 7120P, but it is 2× lower than a consumer grade Core i7 processor. Due to advances
in the semiconductor technology constantly improving the energy efficiency, the performance
per watt of a server grade hardware (Xeon E5 CPU, Xeon Phi and K20Xm) is about twice as
high as that for an inexpensive, yet two years older Core i7 processor.

Case study
To demonstrate how GeauxDock samples the conformational space when searching for native
conformations, in Fig 14, we present docking trajectories for several representative examples.
In addition to the target complex 1a07 used in the profiling and benchmarking of parallel
GeauxDock, we performed docking simulations of glutathione to glutathione S-transferase
(PDB-ID: 1aqw) [40], and a non-peptidyl, active site-directed inhibitor LY178550 to human α-

Table 5. Benchmarking data for docking simulations conducted for the CCDC/Astex dataset using various computing devices.

Computing device Total wall time (kernel time)
[min]

Theoretical peak performance
[GFLOPS]

Power consumption
[watt]

Price [US
dollar]

1 × Core i7-2600 (platform D1) 61.31 (61.15) 224 95 283

2 × Xeon E5-2680 v2 (platform
C1)

16.99 (16.86) 992 230 3440

1 × Xeon Phi 71200P (platform
C1)

9.00 (8.79) 2553* 300 4129

1 × Tesla K20Xm (platform C1) 11.14 (11.01) 3936* 225 3000

2 × Tesla K20Xm (platform C2) 5.61 (5.46) 7872* 450 6000

1 × GeForce GTX 980 (platform
D2)

4.84 (4.62) 4980* 165 550

Theoretical peak performance is taken from vendor specifications (Intel for CPU and Xeon Phi, and NVIDIA for GPU). GFLOPS stands for one billion single-

precision floating-point operations per second. For devices supporting hardware fused multiply-add (FMA) instructions (marked with asterisks), 2 floating

point operations for every FMA instruction are used to calculate GFLOPS. Estimated power consumption is taken from the thermal design power (TDP)

document provided by the vendor. Price is the retail price suggested by the vendor at the time of the product release.

doi:10.1371/journal.pone.0158898.t005

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 23 / 29



thrombin (PDB-ID: 1d4p) [41]. Docking ligands were initialized at random orientations within
target binding pockets to mimic a real application, where the native conformations are
unknown. Solid lines in Fig 14A show the trajectories of the pseudo-energy E1, E2 and E3 for
1a07, 1aqw and 1d4p, respectively. In all cases, the MMC sampling reached low-energy states
with the fastest convergence for E3. On the other hand, pseudo-energy variations for E1 and E2
are smaller compared to E3, suggesting that the underlying energy surfaces for 1aqw and 1d4p
are smoother.

In general, the convergence of molecular docking simulations is complicated by the fact that
a large fraction of the search space may be sterically forbidden [13] and sophisticated scoring
functions are often too sensitive to conformational changes in the binding regions [42]. To fur-
ther investigate docking trajectories, we calculated the RMSD for each accepted MMC step
during the docking process of 1a07. Encouragingly, the dashed black line in Fig 14A shows that

Fig 13. Benchmarks of GeauxDock against the CCDC/Astex dataset. Three measures are included, a
pure computational performance, the performance divided by the energy consumption, and the performance
divided by the hardware cost. Measurements for different platforms are normalized by the performance of
Core i7-2600 CPU.

doi:10.1371/journal.pone.0158898.g013

Fig 14. Examples of docking calculations using GeauxDock. Three cases are presented, a peptide ligand and C-src tyrosine kinase (PDB-ID: 1a07,
black), glutathione and glutathione S-transferase (PDB-ID: 1aqw, green), as well as LY178550 and human α-thrombin (PDB-ID: 1d4p, red). (A) Solid lines
show the pseudo-energy plotted as a function of the accepted Metropolis Monte Carlo (MMC) step; a trajectory of the RMSD is plotted for 1a07 (dashed
black line). (B) Scatter plot of the RMSD and pseudo-energy for 1a07.

doi:10.1371/journal.pone.0158898.g014

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 24 / 29



the RMSD decreases with the decreasing pseudo-energy owing to the fact that both quantities
are strongly correlated (Fig 14B). Altogether, these results demonstrate that the scoring func-
tion in GeauxDock effectively drives docking simulations toward native-like conformations.

Comparison with other docking software
Finally, in order to compare the docking accuracy of GeauxDock to the state-of-the-art, we per-
formed benchmarking calculations of GeauxDock and AutoDock Vina [22] against the
PDBbind dataset [43]. Here, we selected a set of 158 proteins whose length is below 600 resi-
dues. We ran both programs with the default parameters using randomized starting conforma-
tions of the docking ligands. The docking box for Vina was set to an optimal size based on the
radius of gyration of query compounds, which was demonstrated to maximize docking accu-
racy [44]. First, we carried out a classical self-docking experiment, where the ligand is re-
docked to the experimental protein structure co-crystalized with that compound. The geomet-
ric center of a ligand bound in the experimental complex structure was used as the binding
pocket center for both programs. Docking accuracy is assessed by the RMSD calculated over
ligand heavy atoms. Fig 15 (Self-docking) shows that the median ligand RMSD across the
PDBbind dataset is 2.03 Å for Vina and 2.43 Å for GeauxDock. A p-value of 0.52 calculated by
the Mann-Whitney U test demonstrates that the performance difference between Vina and
GeauxDock in self-docking is statistically insignificant.

GeauxDock was designed to work with not only experimental structures, but also com-
puter-generated models. Therefore, in addition to the self-docking experiment, we used both
programs to dock ligands to the homology models of target proteins. Specifically, we con-
structed protein models for the PDBbind dataset using templates detected by HHsuite [45],
whose sequence identity to the target is<70%. Moreover, in the model-docking experiment,
we employed binding sites identified by eFindSite [28,36], so that ligand docking is performed
solely with the predicted structural data. This dataset is clearly more challenging than that used
in self-docking because of structural imperfections in the modeled target sites; the average

Fig 15. Docking accuracy of AutoDock Vina and GeauxDock on the PDBbind dataset. The performance
is assessed by ligand heavy-atom RMSD calculated against experimental binding poses. A horizontal line
inside each box is the median, boxes end at the first and the last quartile, and the whiskers span the
distribution range of 10–90%. Two boxes on the left correspond to the self-docking experiment, whereas two
boxes on the right are calculated for docking benchmarks against homology models.

doi:10.1371/journal.pone.0158898.g015

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 25 / 29



heavy-atom RMSD calculated over binding site residues is 2.51 Å ±1.62. In addition, binding
site locations are predicted with an average distance of 2.48 Å ±1.57 from the experimental
pocket center. As expected, Fig 15 (Model-docking) shows that the median RMSD values for
ligands docked by both programs tend to be higher than those obtained in the former experi-
ment. Compared to self-docking, the median ligand RMSD for Vina increased by 4.30 Å to
6.33 Å. However, the median RMSD for GeauxDock is 4.77 Å, thus, it has increased only by
2.34 Å, a value that roughly corresponds to the structural distortions of target binding sites.
Further, the p-value between both docking programs reported by the Mann-Whitney U test is
now 0.00025 clearly demonstrating that GeauxDock significantly outperforms Vina in ligand
docking against protein models.

Conclusions
In this communication, we discuss the optimization of a molecular docking code, GeauxDock.
GeauxDock features a novel scoring function and Monte Carlo-based conformational space
sampling and it is designed for large-scale virtual screening applications using heterogeneous
computer architectures. Because of its modular code framework, GeauxDock supports modern
multi-core CPU, as well as Xeon Phi and GPU accelerators. Considerable efforts were devoted
to minimize the data communication leading to at least 95% of the time spent on executing
MMC kernels. Further, we applied various tuning techniques to significantly accelerate the
docking kernel based on the performance characteristics obtained by a meticulous code profil-
ing using diverse input data. For instance, a systematic optimization of the serial CPU code
brought about not only a 6.5× speedup on a single computing core, but also a perfect scaling
with the number of cores on modern shared-memory platforms equipped with multiple sock-
ets of multi-core CPUs. Docking benchmarks conducted on many-core accelerators show that
using Xeon Phi 7120P yields 1.9× performance improvement over a dual-socket Xeon E5 CPU,
whereas the fastest GPU, GeForce GTX 980, achieves a 3.5× speedup over a dual CPU. It is
important to note that in addition to hardware capabilities, a thorough code tuning for acceler-
ator devices plays an important role in increasing the computational performance. For exam-
ple, an early version of the GeauxDock code running on Tesla K20Xm was about 30% slower
than a dual-socket Xeon E5 CPU, but after employing GPU intrinsic instructions, we were able
to make K20Xm 53% faster. In addition to the evaluation of a purely computational perfor-
mance, we examined the energy consumption and hardware costs. In conclusion, heteroge-
neous computing platforms, especially those equipped with the latest GPU cards, offer
significant advantages over traditional CPU-based systems. Using parallel codes optimized for
modern heterogeneous HPC architectures can significantly accelerate structure-based virtual
screening applications. GeauxDock is open-sourced and publicly available from our website at
www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.

Supporting Information
S1 Code. Parallel execution of energy calculations in GeauxDock. The first section lists nine
potentials included in the GeauxDock force field. Pseudo-codes for computations on proteinCo-
lumnVector × ligandRowVector, KDEColumnVector × ligandRowVector, and MCSMatrix × ligandColumn-

Vector data structures are shown in the following sections.
(PDF)

S2 Code. Data structures in GeauxDock. Data structures for (A) ligand conformation (first-
level Structure of Arrays) and (B) ligand-protein complex (second-level Structure of Arrays).
(PDF)

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 26 / 29

http://www.brylinski.org/geauxdock
https://figshare.com/articles/geauxdock_tar_gz/3205249
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0158898.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0158898.s002


S3 Code. Strength reduction improving memory locality. An example of data structure and
the corresponding computation (A) before and (B) after the strength reduction.
(PDF)

S4 Code. Reduction of the arithmetic intensity. Part of the docking kernel (A) before and (B)
after the strength reduction.
(PDF)

S5 Code. Conformational sampling in GeauxDock. A pseudo-code for the Metropolis Monte
Carlo algorithm used to sample the conformational space of protein-ligand complexes.
(PDF)

Acknowledgments
The authors are grateful for discussions and comments from the members of the Technologies
for Extreme Scale Computing (TESC) team formed within the Louisiana Alliance for Simula-
tion-Guided Materials Applications (LA-SiGMA). Portions of this research were conducted
with high performance computational resources provided by Louisiana State University
(HPC@LSU, http://www.hpc.lsu.edu) and the Louisiana Optical Network Institute (LONI,
http://www.loni.org).

Author Contributions
Conceived and designed the experiments: YF MB. Performed the experiments: YF YD. Ana-
lyzed the data: YF YD DMK. Contributed reagents/materials/analysis tools: YF WPF MB.
Wrote the paper: YF MB. Wrote the program: YF. Coordinated the project: JMMJ JR MB.

References
1. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool to discover chemistry for

biology. J Chem Inf Model. 2012; 52: 1757–68. doi: 10.1021/ci3001277 PMID: 22587354

2. Reymond J-L, Awale M. Exploring chemical space for drug discovery using the chemical universe data-
base. ACS Chem Neurosci. 2012; 3: 649–657. doi: 10.1021/cn3000422 PMID: 23019491

3. Ripphausen P, Nisius B, Peltason L, Bajorath J. Quo vadis, virtual screening? A comprehensive survey
of prospective applications. J Med Chem. 2010; 53: 8461–8467. doi: 10.1021/jm101020z PMID:
20929257

4. Clark DE. What has virtual screening ever done for drug discovery? Expert Opin Drug Discov. 2008; 3:
841–51. doi: 10.1517/17460441.3.8.841 PMID: 23484962

5. Karp PD, Berger B, Kovats D, Lengauer T, Linial M, Sabeti P, et al. ISCB Ebola Award for Important
Future Research on the Computational Biology of Ebola Virus. PLoS Comput Biol. 2015; 11. doi: 10.
1371/journal.pcbi.1004087

6. Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH. Structure-based virtual screening for drug discovery: a
problem-centric review. AAPS J. 2012; 14: 133–41. doi: 10.1208/s12248-012-9322-0 PMID: 22281989

7. Cavasotto CN, Phatak SS. Homology modeling in drug discovery: current trends and applications.
Drug Discov Today. 2009; 14: 676–683. doi: 10.1016/j.drudis.2009.04.006 PMID: 19422931

8. Ferrara P, Jacoby E. Evaluation of the utility of homology models in high throughput docking. J Mol
Model. 2007; 13: 897–905. doi: 10.1007/s00894-007-0207-6 PMID: 17487515

9. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank.
Nucleic Acids Res. 2000; 28: 235–242. doi: 10.1093/nar/28.1.235 PMID: 10592235

10. Krüger DM, Jessen G, Gohlke H. How Good Are State-of-the-Art Docking Tools in Predicting Ligand
Binding Modes in Protein–Protein Interfaces? J Chem Inf Model. 2012; 52: 2807–2811. doi: 10.1021/
ci3003599 PMID: 23072688

11. Totrov M, Abagyan R. Flexible ligand docking to multiple receptor conformations: a practical alternative.
Curr Opin Struct Biol. 2008; 18: 178–184. doi: 10.1016/j.sbi.2008.01.004 PMID: 18302984

12. Lill MA. Efficient incorporation of protein flexibility and dynamics into molecular docking simulations.
Biochemistry. 2011; 50: 6157–6169. doi: 10.1021/bi2004558 PMID: 21678954

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 27 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0158898.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0158898.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0158898.s005
http://www.hpc.lsu.edu/
http://www.loni.org/
http://dx.doi.org/10.1021/ci3001277
http://www.ncbi.nlm.nih.gov/pubmed/22587354
http://dx.doi.org/10.1021/cn3000422
http://www.ncbi.nlm.nih.gov/pubmed/23019491
http://dx.doi.org/10.1021/jm101020z
http://www.ncbi.nlm.nih.gov/pubmed/20929257
http://dx.doi.org/10.1517/17460441.3.8.841
http://www.ncbi.nlm.nih.gov/pubmed/23484962
http://dx.doi.org/10.1371/journal.pcbi.1004087
http://dx.doi.org/10.1371/journal.pcbi.1004087
http://dx.doi.org/10.1208/s12248-012-9322-0
http://www.ncbi.nlm.nih.gov/pubmed/22281989
http://dx.doi.org/10.1016/j.drudis.2009.04.006
http://www.ncbi.nlm.nih.gov/pubmed/19422931
http://dx.doi.org/10.1007/s00894-007-0207-6
http://www.ncbi.nlm.nih.gov/pubmed/17487515
http://dx.doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235
http://dx.doi.org/10.1021/ci3003599
http://dx.doi.org/10.1021/ci3003599
http://www.ncbi.nlm.nih.gov/pubmed/23072688
http://dx.doi.org/10.1016/j.sbi.2008.01.004
http://www.ncbi.nlm.nih.gov/pubmed/18302984
http://dx.doi.org/10.1021/bi2004558
http://www.ncbi.nlm.nih.gov/pubmed/21678954


13. Merlitz H, Wenzel W. Comparison of stochastic optimization methods for receptor–ligand docking.
Chem Phys Lett. 2002; 362: 271–277. doi: 10.1016/S0009-2614(02)01035-7

14. Board OAR. OpenMP Application Programming Interface. 2015; Available: www.openmp.org/mp-
documents/openmp-4.5.pdf

15. ForumMPI. MPI: A Message-Passing Interface Standard. 2015; Available: http://www.mpi-forum.org/
docs/docs.html

16. Sutter H. The free lunch is over: A fundamental turn toward concurrency in software. Dr Dobb’s J. 2005;
30: 202–210.

17. Esmaeilzadeh H, Blem E, St. Amant R, Sankaralingam K, Burger D. Dark silicon and the end of multi-
core scaling. Proceeding 38th Annu Int Symp Comput Archit—ISCA ‘11. ACM Press; 2011; 365. doi:
10.1145/2000064.2000108

18. FengWC, Feng X, Ge R. Green supercomputing comes of age. IT Prof. 2008; 10: 17–23. doi: 10.1109/
MITP.2008.8

19. Nvidia. CUDA C Programming Guide. 2016; Available: http://docs.nvidia.com/cuda/cuda-c-
programming-guide/

20. Stone JE, Gohara D, Shi G. OpenCL: A parallel programming standard for heterogeneous computing
systems. Comput Sci Eng. 2010; 12: 66–73. PMID: 21037981

21. Jeffers J, Reinders J. Intel Xeon Phi coprocessor high-performance programming. Morgan Kaufmann;
2013.

22. Trott O, Olson A. AutoDock Vina: improving the speed and accuracy of docking with a new scoring
function, efficient optimization, and multithreading. J Comput Chem. 2010; 31: 455–461. doi: 10.1002/
jcc.21334.AutoDock PMID: 19499576

23. Simonsen M, Pedersen CNS, Christensen MH. GPU-accelerated high-accuracy molecular docking
using guided differential evolution: real world applications. Proc 13th Annu Conf Genet Evol Comput.
2011; 1803–1810.

24. Korb O, Stützle T, Exner TE. Accelerating molecular docking calculations using graphics processing
units. J Chem Inf Model. 2011; 51: 865–76. doi: 10.1021/ci100459b PMID: 21434638

25. Guerrero GD, Perez-S´nchez HE, Cecilia JM, Garcia JM. Parallelization of Virtual Screening in Drug
Discovery on Massively Parallel Architectures. 2012 20th Euromicro Int Conf Parallel, Distrib Network-
based Process. 2012; 588–595. doi: 10.1109/PDP.2012.26

26. Simon N AM-S, James R P, Richard B S, Ibarra Avila. High performance in silico virtual drug screening
on many-core processors. Int J High Perform Comput Appl. 2014; 29: 119–134. doi: 10.1177/
1094342014528252

27. Ding Y, Fang Y, Feinstein WP, Ramanujam J, Koppelman DM, Moreno J, et al. GeauxDock: A novel
approach for mixed-resolution ligand docking using a descriptor-based force field. J Comput Chem.
2015; 36: 2013–2026. doi: 10.1002/jcc.24031 PMID: 26250822

28. Brylinski M, Feinstein WP. eFindSite: improved prediction of ligand binding sites in protein models
using meta-threading, machine learning and auxiliary ligands. J Comput Aided Mol Des. 2013; 27:
551–567. doi: 10.1007/s10822-013-9663-5 PMID: 23838840

29. Brylinski M, Skolnick J. Q-Dock: Low-resolution flexible ligand docking with pocket-specific threading
restraints. J Comput Chem. 2008; 29: 1574–1588. doi: 10.1002/jcc.20917 PMID: 18293308

30. Earl DJ, DeemMW. Parallel tempering: theory, applications, and new perspectives. Phys ChemChem
Phys. 2005; 7: 3910–3916. doi: 10.1039/B509983H PMID: 19810318

31. Katzgraber HG. Introduction to Monte Carlo Methods. arXiv. 2009; arXiv:0905.1629

32. Mucci PJ, Browne S, Deane C, Ho G. PAPI: A Portable Interface to Hardware Performance Counters.
Proc Dep Def HPCMPUsers Gr Conf. 1999; 7–10.

33. Charifson PS, Shewchuk LM, RocqueW, Hummel CW, Jordan SR, Mohr C, et al. Peptide ligands
of pp60c-src SH2 domains: a thermodynamic and structural study. Biochemistry. 1997; 36: 6283–6293.
doi: 10.1021/bi970019n PMID: 9174343

34. Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WTM, Mortenson PN, et al. Diverse,
high-quality test set for the validation of protein-ligand docking performance. J Med Chem. 2007; 50:
726–41. doi: 10.1021/jm061277y PMID: 17300160

35. Ghose AK, Viswanadhan VN, Wendoloski JJ. A Knowledge-Based Approach in Designing Combinato-
rial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characteriza-
tion of Known Drug Databases. J Comb Chem. 1999; 1: 55–68. doi: 10.1021/cc9800071 PMID:
10746014

36. Feinstein WP, Brylinski M. eFindSite: Enhanced Fingerprint-Based Virtual Screening Against Predicted
Ligand Binding Sites in Protein Models. Mol Inform. 2014; 33: 135–150. doi: 10.1002/minf.201300143

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 28 / 29

http://dx.doi.org/10.1016/S0009-2614(02)01035-7
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://dx.doi.org/10.1145/2000064.2000108
http://dx.doi.org/10.1109/MITP.2008.8
http://dx.doi.org/10.1109/MITP.2008.8
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.ncbi.nlm.nih.gov/pubmed/21037981
http://dx.doi.org/10.1002/jcc.21334.AutoDock
http://dx.doi.org/10.1002/jcc.21334.AutoDock
http://www.ncbi.nlm.nih.gov/pubmed/19499576
http://dx.doi.org/10.1021/ci100459b
http://www.ncbi.nlm.nih.gov/pubmed/21434638
http://dx.doi.org/10.1109/PDP.2012.26
http://dx.doi.org/10.1177/1094342014528252
http://dx.doi.org/10.1177/1094342014528252
http://dx.doi.org/10.1002/jcc.24031
http://www.ncbi.nlm.nih.gov/pubmed/26250822
http://dx.doi.org/10.1007/s10822-013-9663-5
http://www.ncbi.nlm.nih.gov/pubmed/23838840
http://dx.doi.org/10.1002/jcc.20917
http://www.ncbi.nlm.nih.gov/pubmed/18293308
http://dx.doi.org/10.1039/B509983H
http://www.ncbi.nlm.nih.gov/pubmed/19810318
http://dx.doi.org/10.1021/bi970019n
http://www.ncbi.nlm.nih.gov/pubmed/9174343
http://dx.doi.org/10.1021/jm061277y
http://www.ncbi.nlm.nih.gov/pubmed/17300160
http://dx.doi.org/10.1021/cc9800071
http://www.ncbi.nlm.nih.gov/pubmed/10746014
http://dx.doi.org/10.1002/minf.201300143


37. Beyls K, D’Hollander E. Reuse distance as a metric for cache behavior. Proceedings of the IASTED
Conference on Parallel and Distributed Computing and systems. 2001. pp. 350–360. 10.1.1.114.2405

38. Blem E, Menon J, Sankaralingam K. A detailed analysis of contemporary arm and x86 architectures.
UW-Madison Tech Rep. 2013;

39. Raag R, Poulos TL. The structural basis for substrate-induced changes in redox potential and spin
equilibrium in cytochrome P-450CAM. Biochemistry. 1989; 28: 917–922. doi: 10.1021/bi00428a077
PMID: 2713354

40. Prade L, Huber R, Manoharan TH, Fahl WE, Reuter W. Structures of class pi glutathione S-transferase
from human placenta in complex with substrate, transition-state analogue and inhibitor. Structure.
1997; 5: 1287–1295. doi: 10.1016/S0969-2126(97)00281-5 PMID: 9351803

41. Chirgadze NY, Sall DJ, Klimkowski VJ, Clawson DK, Briggs SL, Hermann R, et al. The crystal structure
of human α-thrombin complexed with LY178550, a nonpeptidyl, active site-directed inhibitor. Protein
Sci. 1997; 6: 1412–1417. doi: 10.1002/pro.5560060705 PMID: 9232642

42. Rognan D. Beware of Machine Learning-Based Scoring Functions-On the Danger of Developing Black
Boxes. J Chem Inf Model. 2014; 54: 2807–2815. doi: 10.1021/ci500406k PMID: 25207678

43. Li Y, Liu Z, Li J, Han L, Liu J, Zhao Z, et al. Comparative assessment of scoring functions on an updated
benchmark: 1. Compilation of the test set. J Chem Inf Model. 2014; 54: 1700–1716. doi: 10.1021/
ci500080q PMID: 24716849

44. Feinstein WP, Brylinski M. Calculating an optimal box size for ligand docking and virtual screening
against experimental and predicted binding pockets. J Cheminform. 2015; 7: 18. doi: 10.1186/s13321-
015-0067-5 PMID: 26082804

45. Remmert M, Biegert A, Hauser A, Soding J. HHblits: lightning-fast iterative protein sequence searching
by HMM-HMM alignment. Nat Methods. 2012; 9: 173–175. doi: 10.1038/nmeth.1818

Virtual Screening on Heterogeneous Systems

PLOSONE | DOI:10.1371/journal.pone.0158898 July 15, 2016 29 / 29

http://dx.doi.org/10.1021/bi00428a077
http://www.ncbi.nlm.nih.gov/pubmed/2713354
http://dx.doi.org/10.1016/S0969-2126(97)00281-5
http://www.ncbi.nlm.nih.gov/pubmed/9351803
http://dx.doi.org/10.1002/pro.5560060705
http://www.ncbi.nlm.nih.gov/pubmed/9232642
http://dx.doi.org/10.1021/ci500406k
http://www.ncbi.nlm.nih.gov/pubmed/25207678
http://dx.doi.org/10.1021/ci500080q
http://dx.doi.org/10.1021/ci500080q
http://www.ncbi.nlm.nih.gov/pubmed/24716849
http://dx.doi.org/10.1186/s13321-015-0067-5
http://dx.doi.org/10.1186/s13321-015-0067-5
http://www.ncbi.nlm.nih.gov/pubmed/26082804
http://dx.doi.org/10.1038/nmeth.1818

