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Protein–protein interactions orchestrate virtually all cellular processes, therefore, their exhaustive explo-
ration is essential for the comprehensive understanding of cellular networks. A reliable identification of
interfacial residues is vital not only to infer the function of individual proteins and their assembly into
biological complexes, but also to elucidate the molecular and physicochemical basis of interactions
between proteins. With the exponential growth of protein sequence data, computational approaches
for detecting protein interface sites have drawn an increased interest. In this communication, we discuss
the major features of eFindSitePPI, a recently developed template-based method for interface residue pre-
diction available at http://brylinski.cct.lsu.edu/efindsiteppi. We describe the requirements and installa-
tion procedures for the stand-alone version, and explain the content and format of output data.
Furthermore, the functionality of the eFindSitePPI web application that is designed to provide a simple
and convenient access for the scientific community is presented with illustrative examples. Finally, we
discuss common problems encountered in predicting protein interfaces and set forth directions for the
future development of eFindSitePPI.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

A wide range of biological processes are regulated by specific
protein–protein interactions (PPIs) [1]. Anomalous interactions
between endogenous proteins may severely disrupt cellular home-
ostasis, resulting in many disease states including cancer [2],
Huntington’s disease [3], cystic fibrosis [4], Alzheimer’s disease
[5] and cardiovascular disease [6]. Furthermore, interactions
between host and pathogen proteins are essential components of
viral and bacterial infections [7,8]. On that account, modulating
PPIs is an important therapeutic strategy [9,10] with significant
efforts devoted to identify, characterize and target PPIs involved
in pathological states. A number of experimental techniques to
detect PPIs have been developed, which can be broadly divided
into in vitro (e.g., tandem affinity purification, affinity chromatog-
raphy, co-immunoprecipitation, and protein-fragment comple-
mentation assays) and in vivo (e.g., yeast two-hybrid and
synthetic lethality) methods [11]. Nonetheless, many of these
approaches have important limitations including the high costs
and long times of experiments, noisy data sets, and often high false
positive and negative rates [12]. Because of the large diversity of
PPIs, the successful design of novel therapeutics may also require
atomic-level details on pharmacologically relevant complexes.
Therefore, computational methods are increasingly becoming
important to help and guide site-specific mutagenesis experiments
[13–15] and to support the reconstruction of across-proteome pro-
tein interaction networks [16]. A diverse collection of algorithms
are currently available to complement experimental efforts in
studying PPIs, including homology-based approaches that employ
sequence [17] and structure alignments [18], phylogenetic profil-
ing [19], co-evolution methods [20], domain-pair exclusion analy-
sis [21], interface residue prediction [22], and macromolecular
docking [23].

The knowledge of even approximate locations of protein bind-
ing sites has a broad range of applications supporting further
experimental and computational studies such as site-directed
mutagenesis and complex structure assembly. Consequently, the
prediction of interfacial sites and residues is a progressing area of
research with a significant number of methods developed to date
[24]. To improve the state-of-the-art in PPI interface prediction,
particularly using computer-generated protein models, we
recently developed eFindSitePPI, an evolution/structure-based
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method for the identification of PPI residues from weakly homolo-
gous template structures [25]. eFindSitePPI integrates sensitive
meta-threading techniques with structure alignments and
machine learning to locate putative interfacial sites in target pro-
teins. A comprehensive comparative analysis of the performance
of eFindSitePPI with ProMate [26], PredUS [27], cons-PPISP [28],
WHISCY [29], PriSE [30] and PINUP [31] demonstrated that
eFindSitePPI is highly accurate and outperforms many other inter-
face prediction methods using not only experimental structures,
but also computer-generated protein models [25,32]. We found
that although structure-based prediction algorithms perform bet-
ter than sequence-based methods, their accuracy strongly depends
on the quality of query protein structures. However, in contrast to
other structure-based algorithms, eFindSitePPI tolerates small and
moderate distortions in the input target structures. Furthermore,
we also showed that combining the outputs from various predic-
tion methods typically outperforms the best single algorithm,
therefore, consensus predictions by meta-predictors are likely to
significantly improve the accuracy of interface residue prediction
[32].

eFindSitePPI is available as a web server and a stand-alone soft-
ware package at http://brylinski.cct.lsu.edu/efindsiteppi. The web
application provides the scientific community with a
user-friendly interface for job submission as well as the interpreta-
tion of results and data download. The stand-alone package can be
installed locally for high throughput computations. In this commu-
nication, we describe the major features of eFindSitePPI and present
a typical procedure for PPI interface prediction.
Fig. 1. General flowchart of eFindSitePPI. The prediction process starts with the
query structure (A). Using a set of dimer templates, individual surface residues in
the query protein are assigned a series of structure- (green), residue- (blue) and
sequence-based (orange) features (B). These feature vectors are subsequently
passed to machine learning (C) that assigns query residues with the final interfacial
probability scores (D).
2. Calculation

A detailed description of the algorithm implemented in
eFindSitePPI as well as training and testing procedures are provided
in the original paper [25]. A concise protocol is presented in Fig. 1.
For a given query protein (Fig. 1A), eFindSitePPI employs a collec-
tion of evolutionary and structurally related templates identified
by meta-threading using eThread to calculate several
residue-level features. These features characterizing interfacial
residues can be broadly classified into three categories:
sequence-, structure- and residue-based (Fig. 1B). Specifically, each
surface residue is assigned (1) a relative accessible area, (2) a gen-
eric interface propensity, (3) sequence entropy, (4) a
position-specific interface propensity, and (5) the fraction of tem-
plates that have an equivalent residue at the protein–protein inter-
face. It is well known that individual features cannot
unambiguously distinguish between interfacial and
non-interfacial residues [33]. To address this issue, eFindSitePPI

combines individual attributes using non-linear machine learning
models, Support Vector Machines (SVM) [34] and a Naïve Bayes
Classifier (NBC) [35] (Fig. 1C). Both classifiers assign each surface
residue in the query protein with a calibrated probability of being
at the protein–protein interface (Fig. 1D).

The performance of eFindSitePPI was benchmarked on a dataset
of 1905 proteins dimers [25]. We used three structural forms for
each receptor, a crystal structure and computer-generated high-
and moderate-quality models. Although the accuracy of
eFindSitePPI decreases from experimental to modeled structures,
we demonstrated that it tolerates to some extent distortions in
theoretical target structures [25]. Therefore, in many cases, inter-
face residues can be fairly accurately inferred even from
moderate-quality models. In a subsequent study, we carried out
comparative benchmarks of eFindSitePPI and nine other web ser-
vers against the same dataset of different quality target structures
[32]. The results indicate that eFindSitePPI is one of the best
performing on-line services for PPI prediction, particularly using
computer-generated structures.
3. Web server

The web application of eFindSitePPI features a user interface
comprising three major components, job submission, status check
and results page. The webserver itself is implemented in PHP using
Drupal, an open source content management system. Below, we
briefly describe the major components of the eFindSitePPI

webserver.
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3.1. Job submission

eFindSitePPI has a simple and intuitive user interface. Using the
‘‘New submission’’ option, users can upload a three-dimension
structure of the target protein in the Protein Data Bank (PDB)
[36] format. In the absence of an experimentally determined struc-
ture of a target protein, users can upload a computer-generated
model as well. In addition, the results of protein structure model-
ing using eThread can be transferred directly to eFindSitePPI using
the ‘‘Use eThread model’’ option. eFindSitePPI webserver accepts
proteins 50–600 residues long containing a single polypeptide
chain.
Fig. 2. ROC plots assessing the accuracy of interface residue prediction by
eFindSitePPI. The performance using templates identified by eThread is compared
to those using single threading methods, COMPASS, HHpred, SP3 and Sparks2. TPR –
true positive rate, FPR – false positive rate; gray area corresponds to predictions no
better than random.
3.2. Job processing

Once a job is submitted, the user is redirected to a webpage
reporting the job status (queued, running, finished) and the auto-
matically generated unique ticket number. The status page is auto-
matically refreshed every hour until the job is completed.
Moreover, users can check the status of their jobs anytime using
the ‘‘Job tracking’’ box available from the right sidebar. Note that
the simulation time of eFindSitePPI depends on several factors
including the length of the query protein, the number of templates,
and the workload on our computer cluster. Typically, the results
should be ready within 1–3 days.

Prior to the PPI prediction, the query structure undergoes a
quick quality check. Because energy calculations and surface defi-
nition may be significantly affected by problems with atomic coor-
dinates, the program ctrip from the Jackal modeling package [37] is
used to reconstruct side chains and add missing atoms.
Furthermore, if multiple configurations or rotamers for any residue
are present in the PDB file, one configuration is selected by ctrip
based on predetermined distance geometry constraints. As a result,
a modified version of the submitted PDB file is generated and used
as the actual input for eFindSitePPI; this file is available for down-
load from the result web page.

In addition to the PDB file containing the query structure,
eFindSitePPI requires two other input files, a query sequence profile
and a list of structurally and evolutionary related templates. Users
interested in the stand-alone version of eFindSitePPI can obtain
these files from most protein threading programs; the web server
generates them automatically. For the webserver, sequence pro-
files are calculated using Sparks2 [38] and the list of templates is
compiled using meta-threading by eThread [39]. Sequence profiles
for the stand-alone version of eFindSitePPI can be calculated by
PROFILpro [40], whereas the list of templates can be compiled
using any protein threading program, e.g., HHpred [41],
COMPASS [42], SP3 or Sparks2 [38]. For example, Fig. 2 shows
Receiver Operating Characteristics (ROC) plots evaluating the per-
formance of eFindSitePPI using templates identified by several
threading programs. The ROC plots clearly suggest that the perfor-
mance of eFindSitePPI using different threading methods is fairly
comparable, thus users have the flexibility to pick any threading
method of their choice.
3.3. Output

eFindSitePPI reports a list of putative interface residues and
interaction types. This data is available for download as three sep-
arate files, a PDB file containing the query structure after the qual-
ity check, a text file with the detailed information on the predicted
interface residues, and a file that contains structure alignment
between the query and template proteins. Moreover, a log file is
displayed on the results page to reveal any errors encountered dur-
ing the prediction process.
3.3.1. Interface data
Putative interface residues are identified based on probability

scores calculated using a set of structure and sequence features.
The interface prediction file contains various scores assigned to
all surface residues with those contributing to putative interfaces
marked by asterisks. This file is divided into several sections shown
in Fig. 3, which can be easily parsed using the following keywords:

LIBRARY: The version of the template library used by
eFindSitePPI (Fig. 3A).

CONFDNC: The prediction confidence, which can be high, med-
ium or low (Fig. 3A). Note that representative benchmarking calcu-
lations show that these confidence estimates correlate with the
prediction accuracy. The average Matthew’s Correlation
Coefficient (MCC) of interface residue prediction for high-,
moderate- and low-confidence cases is 0.62, 0.39 and 0.13, respec-
tively [25].

RESIDUE: This section provides the probability for each
solvent-accessible residue in the query protein to be at the inter-
face (Fig. 3A); seven columns contain the following information:

1. Confidently predicted interface residues are marked by <*>.
2. Surface residue index (12).
3. Residue 3-letter code (GLU).
4. Residue number (18).
5. The fraction of templates with an interface residue at the struc-

turally aligned position (0.85714).
6. Probability score from SVM (0.64595).
7. Probability score from NBC (0.998953).

TEMPLTE: This section provides information on template pro-
teins and their alignments to the query (Fig. 3B); seven columns
contain the following information:

1. PDB-ID of the template (1B7BA).
2. The number of residues in the template (307).
3. TM-score to the query structure (0.734).
4. Ca-RMSD in Å of the aligned region (3.16).
5. The number of residues aligned by Fr-TM-align (220).



Fig. 3. Prediction data included in the output files generated by eFindSitePPI. (A) The version of eFindSitePPI library, the prediction confidence, and the list of surface residues
assigned various scores. (B) The list of template dimers used to predict interface residues and their global similarities to the query protein. (C) Translation vectors and rotation
matrices to structurally align template proteins onto the query. (D) The list of putative interaction types for the predicted interface residues. (E) A sample structure alignment
between a template and the query protein.
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6. The global sequence identity to the target (0.252).
7. The sequence identity calculated over residues aligned by

Fr-TM-align (0.139).

ROTMTRX: This section keeps record of a space-separated trans-
lation vector (3 values) and rotation matrix (9 values) that can be
used to structurally align each template onto the query (Fig. 3C).
The superposition of template atoms can be perform using the fol-
lowing transformations:

xsup ¼ value1þ value2� xlib þ value3� ylib þ value4� zlib

ysup ¼ value5þ value6� xlib þ value7� ylib þ value8� zlib

zsup ¼ value9þ value10� xlib þ value11� ylib þ value12� zlib

where the original coordinates of template atoms in the eFindSitePPI

library are marked by a subscript lib and those superposed onto the
query are marked by a subscript sup. Value1 to value12 correspond
to numerical values in each column (from left to right) of the
ROTMTRX section.

INTRCTN: Predicted residue interactions are listed in this sec-
tion (Fig. 3D); five columns contain the following information:

1. The interaction type (HBND – hydrogen bond, SALT – salt bridge,
HYFB – hydrophobic interaction, AROM – aromatic interaction).

2. Confidently predicted interactions are marked by <
⁄
>.

3. Residue 3-letter code (GLU).
4. Residue number (69).
5. Interaction probability score (0.200000).
3.3.2. Structure alignments
Template-to-target structure alignments constructed by

Fr-TM-align are reported in a PIR-like format. Fig. 3E shows an
example of a single alignment (the sequences are cut short for
demonstration), where the first row provides several values sepa-
rated by spaces:

1. PDB-ID of the template (3SBXG).
2. The template length (177).
3. The alignment length (144).
4. TM-score to the query (0.401).
5. Ca-RMSD in Å calculated over aligned residues (4.87).
6. The sequence identity over aligned residues (0.280).

The second and forth lines show the aligned sequences of the
query and the template, respectively, whereas the third line high-
lights the aligned residue positions (.) and those residue pairs
whose Ca atoms are aligned within a distance of 5Å (:).
Asterisks (⁄) separate alignments for individual templates.
3.3.3. On-line visualization of the results
In addition to numerical results that can be downloaded from

the results web page, the eFindSitePPI web server features a graph-
ical interface displaying the prediction data using a web browser.
Fig. 4 shows a snapshot of the results web page generated for an
example protein, glutathione isopentenyl phosphate kinase
(PDB-ID: 3ll9, chain B) [43]. The first section (Fig. 4A) lists general
information on the query, such as the user assigned target ID, auto-
matically generated job ticket, the version of eFindSitePPI template



Fig. 4. Screenshot of the eFindSitePPI results web page. (A) Job information including a unique ticket that can be used to track the job and retrieve results, the version of
eFindSitePPI library, the number of predicted interface residues, and the overall prediction confidence. (B) A molecular viewer showing putative interface residues and
interactions mapped onto the query structure. (C) The list of putative binding residues and interactions. (D) Links to the downloadable files generated by the eFindSitePPI web
server.
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library, the number of identified interface residues, and the predic-
tion confidence. Interface residues and specific molecular interac-
tions are visualized using a Java applet, AstexViewer [44]
(Fig. 4B). This section also includes a set of radio buttons corre-
sponding to the predicted interaction types such as hydrogen
bonds, salt bridges, hydrophobic interactions and aromatic con-
tacts for putative interfacial residues. Once a particular interaction
type is selected, the corresponding interface residues are high-
lighted as sticks with a transparent surface and labeled. This fea-
ture allows users to easily map prediction data to the submitted
query structure. The lists of predicted interface residues and
molecular interactions are reported below (Fig. 4C). Finally, the last
section provides hyperlinks to numerical data that can be down-
loaded for a local analysis (Fig. 4D).
4. Standalone software package

Interface residue prediction across large protein datasets typi-
cally requires high-throughput computations, therefore, we offer
a stand-alone version of eFindSitePPI that can be installed locally
on any machine running Linux operating system. Below, we pro-
vide installation instructions and describe parameters that can be
modified when using individual programs included in the
eFindSitePPI stand-alone package.
4.1. Installation and requirements

eFindSitePPI software is implemented in Perl. Local installation
breaks down into three steps. First, the following Perl modules
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from the Comprehensive Perl Archive Network (CPAN) need to be
installed: File::Temp, File::Slurp, File::Copy, Compress::Zlib,
AI::NaiveBayes1, List::Util, Algorithm::NeedlemanWunsch,
Benchmark, Cwd, and YAML. Next, users should obtain and install
several programs that are free for academic and non-commercial
use: LIBSVM [34] for machine learning, NACCESS [45] for the calcu-
lation of accessible surface area, Fr-TM-align [46] for structure
alignments, and a protein threading program to compile a list of
evolutionarily related templates and to construct sequence profiles
for a query protein. Finally, users can download and install the lat-
est version of eFindSitePPI software and the template library.
4.2. Programs

eFindSitePPI software distribution includes two programs,
efindsiteppi and efindsiteppi_map. Each program can be executed
without arguments to display help information and the list of
available options; below is the full description of these programs.
4.2.1. efindsiteppi
This is the main program that predicts interfacial sites, residues,

and interactions for a given query structure from protein threading
data. efindsiteppi requires the following arguments:

– s query_structure, where query_structure is either
experimental or computer-generated structure of the query
protein in the PDB format.

– t template_list, where template_list is the list of tem-
plate proteins complied by threading software.

– e seq_prf, where seq_prf is the query sequence profile also
generated by threading software.

– o output_name, where output_name is used to save interface
prediction results in two output files with different extensions.

In addition to these mandatory arguments, efindsiteppi offers
several optional parameters to modify various prediction
thresholds:

- b seq_cut, where seq_cut is a sequence identity threshold
between the query and template proteins. Note that this argu-
ment should be used only for benchmarks. The default value
is 1.0, which means that all identified templates will be used
to predict interfacial residues.

- m tm_score, where tm_score is a TM-score threshold between
the query and template proteins. The default value is 0.4, which
means that only these template structures whose TM-score to
query is P0.4 will be used.

- x template_max, where template_max is the maximum
number of templates used in the prediction procedure; the
default number if 1000.

efindsiteppi generates two output files, output_name.sites.dat
containing detailed information on the predicted interface residues
and interactions, the list of templates, rotation matrices to align
templates onto the query, the prediction confidence, etc., and out-

put_name.alignments.dat reporting structure alignments con-
structed by fr-TM-align.
4.2.2. efindsiteppi_map
This script prepares a mapping file linking threading templates

to protein dimer templates used by eFindSitePPI. Essentially, it
offers a possibility to run eFindSitePPI with any protein threading
software. The mandatory arguments to efindsiteppi_map are:
- t thread_lib, where thread_lib is a complete threading
library in FASTA format.

- p efindsiteppi_lib, where efindsiteppi_lib is the
eFindSitePPI library in FASTA format.

- o output_file, where output_file is the mapping file link-
ing threading and eFindSitePPI libraries.

Furthermore, an optional argument –a proc_num can be set to
the desired number of processors to be used; by default, proc_num
is set to 1. Note that in order to use efindsiteppi_map, users need to
have NCBI BLAST installed with formatdb and blastall programs
available from the default search path. efindsiteppi_map generates
only one output file, which is a mapping file required by
efindsiteppi.
5. Possible bottlenecks

eFindSitePPI does not provide PPI predictions for all protein tar-
gets, therefore, we would like to make users aware of possible
causes. The main reason is usually the absence of structurally
related weakly homologous templates in their bound conforma-
tional state. Note that this is a general limitation of
template-based approaches, however, we may expect the coverage
of suitable targets to continuously expand given the exponential
growth of structure databases. When suitable quaternary template
structures cannot be identified for a query protein, alternative
methods can be used. For example PrISE [30] is a recently devel-
oped interface prediction method that exploits local surface simi-
larities by utilizing a repository of structural elements extracted
from complexes in the PDB. Apart from the availability of evolu-
tionarily and structurally related templates, the performance of
eFindSitePPI also depends of two other factors; the first is the qual-
ity of a query structure. Previous benchmarking calculations
demonstrated that eFindSitePPI to some extent tolerates distortions
in modeled query structures, nonetheless, the accuracy of
eFindSitePPI is still better for experimentally determined structures
compared to computer-generated models. The second factor is the
type of association formed by the query protein. Similar to other
prediction programs, e.g., ET [47] and iJET [48], the overall perfor-
mance of eFindSitePPI for homo-complexes is notably better than
that for hetero-complexes. This is because homo-complexes often
have a nearly perfect symmetric organization at the interface in
contrast to smaller, asymmetric interfaces formed by
hetero-complexes. Less frequently, eFindSitePPI may give poor pre-
dictions for ‘‘promiscuous’’ proteins interacting with a diverse set
of substrates at multiple interfaces. Such ambiguous cases are
problematic in general for many template-based PPI prediction
methods. Nevertheless, our benchmarks show that meaningful
predictions can be obtained for the majority of cases.
6. Future work

eFindSitePPI is an actively maintained project that undergoes
regular updates and improvements extending its functionality.
The current implementation employs a general template library
that is used to predict PPI residues for both homo- and
hetero-complexes. However, since hetero-dimers are largely
underrepresented in the PDB, the template library is dominated
by homo-dimer structures. In turn, this may decrease the perfor-
mance of PPI residue prediction for hetero-dimer targets. To
address this issue, future work includes the development of sepa-
rate template libraries for homo- and hetero-dimers. We will use
higher sequence identity thresholds to account for the large diver-
sity of hetero-complexes observed in the PDB. Furthermore,
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machine learning models in eFindSitePPI will be re-trained sepa-
rately for homo- and hetero-interfaces in order to improve the
accuracy of PPI annotations for both types of assemblies. In addi-
tion to the prediction of interface residues and specific molecular
interactions currently featured by eFindSitePPI, we plan to cover
other functional aspects as well. For instance, further annotations
will include the identification of hot-spot residues, which are crit-
ical for the design of pharmaceuticals targeting protein–protein
interfaces [49,50]. Finally, we are going to support a number of
widely used protein threading/fold recognition programs for tem-
plate identification, including HHpred [41], PSI-BLAST [51],
RaptorX [52], and SparksX [53]. The prediction procedures in
eFindSitePPI will be customized allowing users to select threading
software of their choice.
7. Availability

eFindSitePPI is freely available to the scientific community at
http://brylinski.cct.lsu.edu/efindsiteppi. Researchers interested in
eFindSitePPI can either use the web server or install the software
locally for high-throughput computations. Moreover, the web site
offers a manual that provides detailed installation instructions
and includes illustrative examples and step-by-step tutorials.
Large benchmarking datasets and the corresponding numerical
results are also available for download to facilitate comparative
studies with other prediction methods.
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