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Abstract: Computer-aided design is one of the critical components of modern drug 
discovery. Drug development is routinely streamlined using computational ap-
proaches to improve hit identification and lead selection, enhance bioavailability, and 
reduce toxicity. A mounting body of genomic knowledge accumulated during the last 
decade or so presents great opportunities for pharmaceutical research. However, new 
challenges also arose because processing this large volume of data demands unprece-
dented computing resources. On the other hand, the state-of-the-art heterogeneous 
systems deliver petaflops of peak performance to accelerate scientific discovery. In 
this communication, we review modern parallel accelerator architectures, mainly fo-
cusing on Intel Xeon Phi many-core devices. Xeon Phi is a relatively new platform 
that features tens of computing cores with hundreds of threads offering massively parallel capabilities 
for a broad range of application. We also discuss common parallel programming frameworks targeted to 
this accelerator, including OpenMP, OpenCL, MPI and HPX. Recent advances in code development for 
many-core devices are described to demonstrate the advantages of heterogeneous implementations over 
the traditional, serial computing. Finally, we highlight selected algorithms, eFindSite, a ligand binding 
site predictor, a force field for bio-molecular simulations, and BUDE, a structure-based virtual screen-
ing engine, to demonstrate how modern drug discovery is accelerated by heterogeneous systems 
equipped with parallel computing devices. 
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INTRODUCTION 

Computer-aided Drug Discovery 

Due to extremely high costs associated with drug devel-
opment, integrating computational approaches with bench-
top experiments holds a significant promise to speed up the 
discovery of novel biopharmaceuticals. The importance of 
computer modeling techniques has dramatically increased 
over the past years on account of advances in algorithm de-
velopment as well as the constantly increasing processing 
power of modern computer architectures. Contemporary 
high-performance computing (HPC) platforms facilitate 
large-scale applications of existing modeling tools to address 
various problems in modern drug discovery. However, new 
hardware also creates an urgent need for the development of 
codes to more efficiently utilize HPC resources available to 
the scientific community. In this communication, we review 
selected modeling techniques that are commonly used at the 
outset of drug development, including protein structure mod-
eling, ligand binding site prediction, and receptor-based  
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virtual screening. We also discuss how Intel Xeon Phi, cut-
ting-edge computer architecture, is likely to accelerate the 
process of pharmaceutical discovery as exemplified by sev-
eral studies recently reported in the literature. 

Protein Structure Modeling 

Drug targets are typically selected by disease linkage 
studies that give evidence of an association between biologi-
cal targets and certain disease states [1, 2]. The atomic-level 
structure of a drug target is then used to either select from 
existing chemical libraries or design from scratch small 
molecules that are capable of modulating its function. Ide-
ally, a three-dimensional structure of the target macromole-
cule solved by X-ray crystallography or NMR spectroscopy 
is available for rational drug discovery. However, in the ab-
sence of the experimental structure, protein homology mod-
eling can be used to construct a theoretical model of the drug 
target using one of many currently available software pack-
ages, e.g. Modeller [3], SWISS-MODEL [4], Rosetta [5], 
and I-TASSER [6]. 

There are many examples of a successful application of 
homology modeling in structure-based drug discovery. For 
instance, potential candidates for new antibiotics have been 
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recently identified by virtual screening of a large chemical 
library against the homology model of VEB-1 β-lactamase, 
an important microbial target, for which no clinically effec-
tive inhibitors are currently available [7]. Another study re-
ports a successful homology modeling of α1A adrenorecep-
tor followed by a hierarchical virtual screening procedure 
guided by various 2D filters and 3D pharmacophore models 
[8]. Out of 80 diverse compounds identified by the structure-
based modeling, 37 compounds exhibit binding affinity, Ki, 
values better than 10 µM with the most active compound 
binding to the target receptor at Ki of 1.4 nM. Furthermore, a 
new protocol was developed specifically for the template-
based modeling of G-protein coupled receptors (GPCRs) and 
validated using CXCR7 chemokine receptor, an appealing 
drug target for cancer chemotherapy [9]. Encouragingly, 
structure-based virtual screening against the homology 
model of CXCR7 resulted in 21 ligands with novel scaffolds, 
whose experimentally confirmed half maximal inhibitory 
concentration, IC50, values are between 1.29 and 11.4 µM. 
These studies demonstrate that template-based protein struc-
ture modeling is an important component of modern com-
puter-aided drug discovery. It can be used to generate reli-
able three-dimensional models for a large number of poten-
tial drug targets whose structures will not be solved experi-
mentally in the near future. 

Identification of Ligand Binding Sites 

Drug binding site prediction is another computational 
method commonly used in structure-based drug discovery. 
Here, the goal is to identify those surface regions of pharma-
cologically relevant proteins that can be targeted by small 
molecules in order to modulate their molecular functions. 
Although, in many cases, the target sites are known from 
experiments, drugs can interact with alternative surface loca-
tions that are distinct from the primary binding sites. For 
example, allosteric modulators of cell-surface receptors offer 
greater selectivity over those compounds interacting with the 
binding site for endogenous agonists [10]. Consequently, the 
past couple of decades have seen a rapid development of 
techniques for the identification of new target sites for phar-
macotherapy (see [11] for a recent comprehensive review). 
Structure-based methods, such as LIGSITE [12], Fpocket 
[13] and SURFNET [14], predict binding sites by searching 
for pockets and cavities in a protein structure, whereas en-
ergy-based approaches, such as Q-SiteFinder [15], FTSite 
[16] and PocketFinder [17], locate binding residues by ana-
lyzing interaction energies with small molecular probes. De-
spite a high accuracy of pocket detection for experimentally 
solved macromolecular structures, using protein models still 
renders significant challenges due to inevitable structural 
imperfections in their atomic coordinates. 

To address this problem, a number of evolution/structure-
based approaches for ligand binding site prediction have 
been developed. For instance, COFACTOR [18] employs 
global and local structure alignments of structural analogs in 
order to predict various aspects of protein function. First, the 
structures of template proteins selected from the Protein Data 
Bank (PDB) [19] are globally aligned onto the target using 
TM-align [20]. Next, the best local geometric and sequence 
match between the target and template structures is calcu-
lated taking into account the evolutionary conservation of 

functional sites. Binding site prediction is followed by the 
annotation of target proteins with Enzyme Commission 
numbers (for enzymes) and molecular function according to 
the Gene Ontology classification [21]. In fact, COFACTOR 
has been used to support the structural and functional charac-
terization of a novel molluskan ortholog of TNF receptor-
associated factor from Haliotis discus [22], glucose dehy-
drogenase from Leclercia sp. [23], trehalose-6-phosphate 
phosphatase from Mycobacterium tuberculosis [24], and a 
cysteine-rich protein enriched in salivary glands [25]. Other 
evolution/structure-based methods for ligand-binding site 
prediction include 3DLigandSite [26], FINDSITE [27, 28], 
and recently developed eFindSite [29, 30], which is dis-
cussed later in the text.  

Molecular Docking and Virtual Screening 

Virtual screening is perhaps the single most recognizable 
computational technique in drug discovery. Its primary ap-
plication is to select a handful of potential lead candidates 
from a vast organic chemical space that is estimated to con-
tain at least 1060 molecules of interest to drug developers 
[31]. Early similarity-based approaches to virtual screening 
using molecular fingerprints [32], geometric hashing [33], 
and topo-geometrical features [34] are increasingly being 
replaced by molecular docking techniques, which generally 
offer higher prospects to discover compounds with novel 
chemical scaffolds [35]. Molecular docking predicts the 
atomic details of the preferred binding pose of a drug candi-
date with respect to its protein target [36]. Subsequently, the 
strength of association between these molecules, also re-
ferred to as binding affinity, is estimated from molecular 
interactions. A number of algorithms for ligand docking have 
been developed, e.g. AutoDock [37], DOCK [38], Q-Dock 
[39], GOLD [40], eSimDock [41], and ICM [42]. The main 
differences among individual methods are the implementa-
tion of scoring functions and techniques for conformational 
space sampling. There are many reports documenting suc-
cessful applications of molecular docking in biopharmaceu-
tical discovery; see [43-45] for examples. 

In contrast to simple ligand-based methods, docking 
techniques are computationally challenging. The first diffi-
culty stems from a large conformational space of interactions 
between small organic compounds and their macromolecular 
targets, viz. there is a large number of possible arrangements 
to form a complex structure [46]. Second, the conformational 
space grows exponentially with the size of the interacting 
molecules because of the increasing number of degrees of 
freedom [47]. Therefore, addressing the docking problem 
requires efficient sampling algorithms that cover the relevant 
conformational space, as well as sensitive scoring functions 
to effectively discriminate between native and non-native 
binding poses. Finally, virtual screening applications rou-
tinely involve performing molecular docking calculations for 
a large number of drug candidates; for instance, the ZINC 
database of commercially available molecules in ready-to-
dock formats contains millions of purchasable compounds 
[48]. On that account, structure-based virtual screening heav-
ily depends on the availability of computing resources. 

Strikingly, virtual screening by molecular docking consti-
tutes highly parallel computational procedures. At the 
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coarse-grain level, a substantial number of drug molecules 
are subjected to independent docking simulations that can be 
processed in parallel. At the fine-grain level, most scoring 
functions for the modeling of molecular complexes build 
upon non-bonded pairwise interactions between protein and 
ligand atoms in the form of statistical potentials [49, 50] and 
classical physics-based energy terms [38, 42], which can be 
efficiently parallelized. Moreover, many sampling tech-
niques offer a possibility for a medium-grained paralleliza-
tion as well. For instance, parallel implementations of the 
Ant Colony Optimization [51], Replica Exchange Molecular 
Dynamics [52], and Genetic Algorithms [53] have been de-
veloped. Consequently, the emerging massively parallel 
technologies have a great potential to accelerate large-scale 
virtual screening applications using molecular docking. 

High-performance Computing Using Accelerators 

High-performance parallel computing is an effective so-
lution for solving large and complex problems. It has a capa-
bility to deliver reliable results within a reasonable time 
frame for memory, computing and data-intensive applica-
tions. Unlike traditional serial execution using single core 
CPUs, multi-core computer architectures allow programs to 
run in parallel using multiple processor cores on a single 
chip to reduce the computation time. Moreover, these units 
can be assembled into shared and distributed memory com-
puting systems. Collectively, thousands of cores from differ-
ent nodes being deployed together further improve the com-
putational throughput. For example, a dual 18-core CPUs 
featuring Hyper Threading can execute 72 parallel tasks con-
currently, thus using 10 of such computing units delivers as 
many as 720 threads for parallel jobs. Potentially, the time-
to-completion can be significantly shortened as the scale of 
parallelization increases. Compared to multi-core architec-
tures, many-core hardware accelerators deliver even greater 
parallel processing capabilities. These devices can consid-
erably enhance the overall performance of applications fea-
turing a high ratio of computation to data access. Currently, 
the most popular parallel accelerators include NVIDIA 
GPUs (Graphic Process Unit), Intel Xeon Phi coprocessor 
and AMD APU (Accelerated Processing Units). 

GPUs with hundreds of small cores were specifically de-
signed by NVIDIA to concurrently handle multiple calcula-
tions in video games. Later on, the GPU technology has 
evolved to a general purpose GPU-accelerated platform, 
where GPUs are utilized along with CPUs to speed up vari-
ous applications [54]. These advances in the parallel comput-
ing architecture demand adequate programming models for a 
full utilization of the hardware potential. For instance, 
CUDA (Compute Unified Device Architecture) is a pro-
graming model that gives a full low-level control of the par-
allel processing on GPUs [55]. OpenACC was designed in 
2010 as a compiler directive-based standard aiming to ease 
coding efforts [56]. Conceptually, the computation-intensive 
sections of a source code can be offloaded to the GPU, 
where parallel tasks are grouped into grids, blocks and 
warps. The workload is eventually divided among individual 
threads that make up the basic computing units on the GPU 
for parallel calculations to enhance the overall performance. 
As such, GPU-accelerated computing has made steady 
headway to achieve a shorter time-to-completion through the 

efficient code parallelization. Much scientific research has 
already benefited from the GPU technology, which was suc-
cessfully applied to protein sequence [57] and structure 
alignments [58], Brownian dynamics [59], spin model simu-
lations [60] as well as the modeling of in vivo diffusion [61]. 

AMD is another hardware vendor offering massively 
parallel devices that has been pursuing the heterogeneous 
system architecture (HSA), where CPU and GPU cores use a 
common programing language and share the same workload 
and memory space. For example, GPU-based Radeon fea-
tures up to 12 compute cores, which are equivalent to 8 
GPUs attached to 4 CPUs [62]. Although AMD GPUs ac-
count for a relatively small market share compared to 
NVIDIA GPUs, these devices support a wide range of pro-
jects. For example, the Berkeley Open Infrastructure for 
Network Computing platform running on AMD GPUs has 
been used to accelerate numerous codes, such as the Binary 
Radio Pulsa Search application, a part of the astronomy pro-
ject Einstein@Home [63], as well as MilkyWay@Home that 
creates a highly accurate 3D model of the Milky Way galaxy 
[64]. Carrizo APU is the newest parallel hardware platform 
designed by AMD to avoid data flow bottlenecks by placing 
CPU and GPU cores on a single chip [65]. This high-density 
design is expected to bring significant reductions in the die 
area as well as the power consumption. 

Intel Xeon Phi is a relatively new member of the accel-
erator family featuring Many Integrated Cores (MIC). The 
coprocessor offers tens of general-purpose x86 cores and 
hundreds of computing threads for parallel tasks. In addition, 
the Xeon Phi coprocessor is uniquely equipped with wide, 
512-bit vector processors allowing powerful parallel SIMD 
(Single Instruction, Multiple Data) execution [66]. Unlike 
the GPU technology, Intel Xeon Phi coprocessor is designed 
to work as a commodity CPU, so that programming tools 
traditionally used for multi-core CPUs can also be seam-
lessly used on a coprocessor. To make code porting rela-
tively easy, compiler pragma-based approach was introduced 
as one the important components of the parallel program-
ming for the MIC architecture. In contrast to laborious code 
re-writing for the GPU platform, parallel MIC programming 
requires considerably fewer modifications, although a thor-
ough code optimization is mandatory to achieve the high 
performance. In this review, we focus primarily on the Intel 
Xeon Phi accelerator as a parallel platform for computer-
aided drug discovery, mainly because of its high portability 
and relatively short code porting cycles. 

INTEL XEON PHI ARCHITECTURE 

Coprocessor Design 

Intel Xeon Phi is a massively parallel architecture featur-
ing many integrated cores to effectively accelerate compute-
intensive applications. Systems equipped with Xeon Phi 
cards have two key components, processor(s) and coproces-
sor(s) connected via the PCIe bus [66]. Each coprocessor 
comprises up to 61 in-order processor cores, where each core 
has 4 hardware threads switchable in a round-robin fashion 
to hide latency. Moreover, each core has a wide 512-bit 
SIMD vector that allows for simultaneous operations on 8 
double precision or 16 integer instructions. When only a sin-
gle precision is needed, the number of concurrently executed 
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vector instructions is doubled, therefore, a 61-core coproces-
sor is capable of executing 3,840 (60×4×16) single-precision 
instructions at a time. In fact, the Xeon Phi coprocessor pro-
vides more parallelism than the Xeon processor, which fea-
tures 16 cores with 2 threads per core and narrower 256-bit 
SIMD vectors. In terms of the memory organization, the 
coprocessor provides 8 GB global memory as well as 32 kB 
Level 1 (L1) and 256 kB Level 2 (L2) data cache for each 
coprocessor core; individual cores are interconnected and 
remotely accessible via a fast bi-directional ring [67]. The 
memory architecture of Xeon Phi allows the L1 and L2 data 
cache of each coprocessor core to be shared, however, mem-
ory sharing is not permitted between the processor and the 
coprocessor. 

Thread Affinity 

Intel Xeon Phi supports multi-threading at 4 hardware 
threads per core, providing up to 244 threads. The physical 
distribution of these threads, or thread affinity, can have a 
considerable impact on the parallel performance [68]; three 
types of thread affinity are available, compact, balanced and 
scatter. Specifically, the compact thread affinity minimizes 
the number of cores to be utilized, whereas for the scatter 
and balanced settings, the maximum number of cores are 
allocated in a round-robin or a uniform fashion, respectively. 
The thread affinity is controlled by environment variables, 
for example, using export MIC_KMP_AFFINITY=compact 
instructs the coprocessor to pack threads densely next to each 
other on a single core before moving on to the next one. 

Programming Models 

Intel Xeon Phi runs a light version of Linux operating 
system called BusyBox. Parallel tasks on the coprocessor can 
be processed using either the native mode, where the entire 
application is executed on the coprocessor, or the offload 
mode, which offloads only parts of the code to the accelera-
tor. For example, adding the -mmic compiler flag generates a 
native binary that can be executed directly on the coproces-
sor. However, the offload mode is often more suitable for 
those applications having serial portions of the code. Here, 
functions and variables that need to be accessed by the co-
processor are marked by directive pragmas, e.g. #pragma 
offload target (mic) defines sections of the code to be off-
loaded to the coprocessor for parallel execution. Note that 

the full utilization of the accelerator often requires tuning the 
data transfer protocols in order to establish an efficient 
communication between the processor and the coprocessor. 

Parallel Capabilities 

The accelerator architecture delivers two layers of paral-
lelism at the coarse- and fine-grained level to achieve a high 
parallel performance (Fig. 1). Both the multi-core processor 
and the many-core coprocessor provide a convenient coarse-
grained parallel capability through individual computing 
cores, as it is shown in Fig. (1A). For instance, the Intel 
Xeon Sandy Bridge microarchitecture features 2-8 comput-
ing cores with 2 threads per core, whereas high-end Intel 
Xeon Phi accelerators equipped with 61 cores and 4 threads 
per core provide up to 244 threads. Practically, 240 threads 
are available on the accelerator since the 61st core is usually 
reserved for operating system and I/O operations. This level 
of parallelism can be exploited using pragma-based pro-
gramming frameworks that effectively allocate individual 
threads to handle concurrent tasks. In contrast, the fine-
grained level of parallelism is accomplished by executing 
data-level SIMD instructions (Fig. 1B). The Intel Xeon Phi 
SE10P coprocessor has a 512-bit wide SIMD vector unit per 
core capable of processing multiple data at a time, e.g. 8 
double-precision floating-point operations can be executed 
simultaneously. Moreover, 4 threads per core permit inter-
leaving of up to 4 such SIMD operations to hide latency. In 
comparison, the Intel Xeon E5-2680 processor also offers 
data level parallelism yet with narrower 256-bit wide SIMD 
vectors and only 2 threads per core. Overall, the fine-grained 
parallelism can significantly boost the performance, there-
fore, an effective utilization of SIMD resources through a 
proper code vectorization is critical to fully benefit from the 
Xeon Phi platform [69]. 

Large-scale Production Systems 

Similar to other accelerator architectures, Intel Xeon Phi 
is designed to provide massively parallel capabilities to meet 
the demands of large-scale scientific computing. In the past 
several years, a number of supercomputers equipped with 
Intel Xeon Phi cards have been put into production around 
the world. For example, Tianhe-2, deployed in 2013 at the 
National Supercomputer Center in Guangzhou, is the fastest 
Xeon Phi-based supercomputer in the world with an impres-

 
Fig. (1). Levels of parallelism on Intel Xeon and Xeon Phi. (A) The coarse-grained parallelism provided by multiple processor cores and 
many coprocessor cores. A compiler is instructed to generate binaries for a given architecture. (B) The fine-grained parallelism provided by 
wide SIMD execution slots within each core. 
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sive number of 16,000 computer nodes. Each node features 
two Intel Ivy Bridge Xeon processors and three Intel Xeon 
Phi coprocessors capable of providing the aggregate peak 
performance of 33.86 PFLOPS [70]. Beacon system operated 
by the National Institute for Computational Sciences at the 
University of Tennessee, Knoxville is an energy efficient 
cluster composed of 48 compute nodes with two 8-core Intel 
Xeon E5-2670 processors and four Intel Xeon Phi 5110P 
coprocessors delivering up to 210 TFLOPS of computational 
performance [71]. The Stampede at the Texas Advanced 
Computer Center is a supercomputer available to the scien-
tific community through the Extreme Science and Engineer-
ing Discovery Environment (XSEDE). Stampede is built 
with 6,400 Dell DCS Zeus nodes, the majority of which are 
equipped with two Intel Xeon E5-2680 Sandy Bridge proc-
essors and either one or two Intel Xeon Phi SE10P coproces-
sors. The aggregate peak performance of the processors is 
over 2 PFLOPS, while the coprocessors deliver an additional 
aggregate peak performance of over 7 PFLOPS [72]. Finally, 
SuperMIC at the Louisiana State University is a recently 
deployed system containing a total of 382 nodes, each with 
two 10-core Intel Ivy Bridge-EP processors [73]. Among 
those, 360 nodes have two Intel Xeon Phi 7120P coproces-
sors. SuperMIC delivers the theoretical peak performance of 
over 925 TFLOPS and, similar to Stampede, it is also avail-
able to the scientific community through XSEDE. 

APPLICATION PROGRAMMING INTERFACES 

Although Intel Xeon and Xeon Phi units have different 
designs, to a certain degree, they share a similar x86-based 
architecture. This is an important feature of the coprocessor, 
because programming techniques developed for the proces-
sor can also be used on the accelerator. In this section, we 
review selected parallel programming frameworks relevant 
to the code development for the coprocessor, including MPI, 
OpenMP, OpenCL, and HPX. 

MPI 

The Message Passing Interface (MPI) is a widely used 
parallel programming model for distributed memory archi-
tectures. Each processor has an access to its own memory 
and different processors are connected through high-speed 
communication links, such as InfiniBand. MPI provides a set 
of language-independent communication protocols for paral-
lel computing, featuring point-to-point message passing as 
well as collective operations via user-specified processors 
[74]. Specifically, processes are typically created by discrete 
processors/computing nodes executing different sections of 
the code. Each process has its own local variables and the 
memory space; the parallelism is achieved by establishing 
communications between processes by sending and receiving 
messages. Expanded from the original support for distributed 
memory architectures, MPI is now adapted to include shared 
memory symmetric multiprocessing (SMPs) as a hybrid pro-
gramming model. Thus far, the MPI standard has been im-
plemented by several groups, such as the open source 
MPICH [75] developed at the Argonne National Laboratory 
and Open MPI supported by a consortium of academic, re-
search, and industry partners [76]. MPI is widely used to 
parallelize serial applications in drug design; for instance, 

MPI-based parallelization of AudoDock4 was used in virtual 
screening of large databases of compounds [77]. 

MPI application programming interface (API) provides 
well-defined object-like constructors, destructors and user-
defined data types allowing for heterogeneous communica-
tions as well as an efficient data description and exchange. 
Because of its vendor-independent portability and flexibility, 
MPI is regarded as the “industry standard” for the message 
passing programming on high-performance computing plat-
forms. MPI can be easily compiled for the Intel Xeon Phi 
architecture with special flags, e.g. compiling a simple 
hello_world.c source code using mpicc –mmic –o 
hello_world.MIC generates a native executable for the co-
processor. Once the executable is copied to the coprocessor 
and the environment variable I_MPI_MIC is set to 1, an MPI 
launcher can be used to start the MPI-based application on 
the accelerator, e.g. mpiexec –f mpi_hosts hello_world.MIC. 
Nonetheless, the communication bottleneck caused by the 
heavy data traffic between the processors and coprocessors 
can limit the performance of MPI-based applications. In ad-
dition, debugging may be challenging and, in contrast to 
other programming models, such as OpenMP, substantial 
coding efforts are often required in order to port a serial code 
to the accelerator. 

OpenMP 

OpenMP is a widely adopted standard developed in the 
1990’s for parallel programming on multi-threaded shared-
memory systems, where a single address space is accessed 
with unique memory locations by different processes/cores. 
It features compiler-specific pragmas to identify sections of 
the code that need to be parallelized and instruct how data is 
transferred and distributed across different computing units. 
OpenMP has been implemented as C/C++/Fortran compiler 
extensions allowing parallelism to be added using prag-
mas/directives (#pragma omp in C/C++ and $OMP in For-
tran) to a serial codes without the need for significant code 
conversions [78]. OpenMP pragmas are designed to facilitate 
and coordinate various parallelization components, e.g. 
spawning threads, dividing computation among threads, and 
synchronizing work among threads. In addition to compiler 
directives, a runtime library including callable functions as 
well as environment variables can be easily used to control 
the code execution at either the runtime or the compilation 
time. Specifically, a typical format of a directive pragma is 
composed of a directive name followed by clauses. For in-
stance, #pragma omp parallel for instructs the compiler to 
create a set of threads to handle the parallel execution of a 
block of code within a loop. OpenMP is particularly effec-
tive in parallelizing for-loops, where each thread is assigned 
to execute a single iteration of the loop. Using environment 
variables, such as OMP_NUM_THREADS, the maximum 
number of threads to conduct the parallel computation can be 
set at the runtime. In addition, a similar effect can be 
achieved during the compilation using the library function 
omp_set_num_threads(). 

Pragma-based OpenMP makes the parallelization of se-
rial codes relatively easy and allows for a gradual paralleliza-
tion by progressively adding pragmas to the code and testing 
its parallel performance. Another critical feature is that 
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pragmas are ignored if the code is compiled without 
OpenMP-specific flags; the parallelized code will be exe-
cuted as the original serial version. Due to minimal code 
conversions and the compiler capacity, the maintenance of 
both serial and parallel versions is greatly simplified. Conse-
quently, the open source community and major vendors, in-
cluding IBM, Intel, Oracle and the Portland Group, endorse 
and actively support OpenMP making OpenMP-based appli-
cations platform-independent [79]. Since OpenMP offers a 
portable programming model for shared memory architec-
tures, it is well suited for Intel Xeon Phi as well. Not surpris-
ingly, a growing body of research use the coprocessors 
across a variety of scientific fields [68, 80-86]. Unfortu-
nately, the shared memory requirement of OpenMP limits its 
application to single nodes. Nonetheless, combining 
OpenMP with MPI expands the parallelization scale beyond 
a single node with MPI typically managing inter-node paral-
lelization and OpenMP used as the intra-node programming 
method [87-89]. 

OpenCL 

On account of the expanding family of parallel accelera-
tors, cross-platform coding has become the central issue in 
the development of portable software. To address this prob-
lem, Open Computing Language (OpenCL) was developed 
as a cross-platform framework for parallel programming on 
heterogeneous accelerators. Codes implemented in OpenCL 
can be executed across different hardware platforms, there-
fore, it offers a unique portability. Many vendors, such as 
Intel, AMD, NVIDIA, Altera Corp., and IBM, support 
OpenCL for their hardware [90], which stimulates the devel-
opment of OpenCL-based applications [91]. OpenCL defines 
a set of APIs in C-like language to control a host processor 
and a variety of parallel devices and accelerators. A typical 
parallel application comprises a C/C++ code for the host and 
a collection of kernels and special functions written in 
OpenCL for the accelerators. The parallelism is achieved at 
different levels, including SIMT (Single Instruction Multiple 
Threads), work-items, which are the smallest execution 
units, and work-groups in the order of increasing degree of 
coarse-grained parallelization level. In addition, OpenCL can 
be used in conjunction with other parallel frameworks; for 
example, the FEASTFLOW code was implemented using 
both OpenCL and OpenMP [69]. Combined with OpenMP 
and MPI, OpenCL has also been applied to conduct direct 
numerical simulations of turbulent flows on AMD, NVIDIA 
and Intel accelerators [92]. In contrast to other parallel 
frameworks, researchers who do not already have an exten-
sive programming experience may find OpenCL quite diffi-
cult to learn due to its complex syntax and unique data struc-
tures and functions. 

HPX 

The parallel implementations of scientific applications 
for multi- and many-core devices greatly improve their over-
all performance. Nevertheless, workload starvation, latencies 
and overheads create unprecedented bottlenecks in parallel 
computing, hindering the scalability at peta and exaflop lev-
els. In order to address these problems, the Ste||ar group at 
Louisiana State University developed High Performance 
ParalleX (HPX), which is an open source runtime system 

based on ParalleX [93]. HPX effectively leverages asyn-
chrony to support large-scale multi-core computations by 
improving the communication between inter- and intra-node 
processes [94]. In addition to the standard C++ local asyn-
chronous functions, HPX also provides remote asynchronous 
mechanisms through Actions, Futures and Dataflow con-
structs. When scaling goes beyond tens of thousands of 
cores, many applications create significant latencies compli-
cating the communication between processes, therefore, new 
methods for indexing the address space become essential. To 
deal with this challenge, HPX offers an effective mechanism 
called Active Global Address Space to manage remote re-
sources allowing for the dynamic suspension of remote 
threads and re-assigning different resources to active tasks 
when necessary [95]. HPX was recently demonstrated to 
outperform MPI in 3D N-body simulations with local inter-
actions [96]. Furthermore, unlike many other parallel frame-
works, HPX provides C++ APIs, which are convenient to 
those programmers, who already have some experience de-
veloping parallel C++ codes for multi-core and multi-
threaded heterogeneous architectures. Nevertheless, pro-
gramming in HPX usually requires a relatively steep learning 
curve; the Ste||ar group has been working diligently to ad-
dress this issue in order to ease porting efforts. 

PERFORMANCE BENCHMARKS FOR INTEL XEON 
PHI 

The availability of Intel Xeon Phi accelerators in many 
contemporary high-performance computing systems draws 
attention of a broad research community to this new architec-
ture. Consequently, numerous studies have been recently 
published describing early experience of researchers porting 
scientific codes to Xeon Phi and reporting preliminary per-
formance benchmarks [69, 80-86, 88, 89, 97, 98]. In Table 1, 
we list several evaluations selected from the current litera-
ture sorted by the performance of accelerator threads with 
respect to that of the host processor. Note that results de-
scribed in individual papers often are irreconcilable because 
of different clock speeds and hardware architecture used in 
benchmarks, hyper-threading settings, programming models, 
and code optimization and tuning techniques. Nonetheless, 
these reports are published within the past couple of years 
and cover numerous areas of modern research in physics, 
math, engineering, finance and medicine, exemplifying a 
continuously growing interest in heterogeneous computing 
using Xeon Phi. 

An impressive speedup was achieved in optimizing a 
Lattice Quantum Chromodynamics (LQCD) code for the 
coprocessor with the OpenMP parallelization [88]. By ex-
ploiting cache-blocking techniques, an inter-core communi-
cation and the hardware support for irregular memory ac-
cesses, the Dslash kernel for the matrix vector-vector multi-
plication in LQCD was demonstrated to sustain 280 
GFLOPS on the coprocessor. This corresponds to nearly 
80% of the achievable performance and leads to impressive 
speedups over Xeon CPU of 1.9× and 2.2-2.4× using 5110P 
and 7110P cards, respectively. Moreover, accelerating an 
iterative algorithm for solving large sparse linear equations, 
PQMRCGSTAB, yields one of the highest improvements 
reported for Xeon Phi [83]. Thorough optimizations includ-
ing data prefetching to hide data latency, reusing vector 
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Table 1. Accelerating scientific codes using Intel Xeon Phi. 

Reference System (Intel Xeon) Testing System (Intel Xeon Phi) 
Code (Domain) 

Modela Coresb Threadsb Modela Coresb Threadsb 
Speedupc Ref. 

Lattice Quantum Chromodynamics 
(Physics) d 

E5-2670 
@2.60 

8 (16) 16 (32) 
7110P 
@1.1 

61 (60) 244 (60) 
2.4× 

(128%) 
[88] 

Lattice Quantum Chromodynamics 
(Physics) e 

E5-2670 
@2.60 

8 (16) 16 (32) 
7110P 
@1.1 

61 (60) 244 (60) 
2.2× 

(117%) 
[88] 

Lattice Quantum Chromodynamics 
(Physics) d 

E5-2670 
@2.60 

8 (16) 16 (32) 
5110P 

@1.053 
60 (60) 240 (60) 

1.9× 
(101%) 

[88] 

Lattice Quantum Chromodynamics 
(Physics) e 

E5-2670 
@2.60 

8 (16) 16 (32) 
5110P 

@1.053 
60 (60) 240 (60) 

1.9× 
(101%) 

[88] 

PQMRCGSTAB (Math) f 
E5-2670 
@2.60 

8 (8) 16 (8) 
5110P 

@1.053 
60 (60) 240 (60) 

5.6× 
(75%) 

[83] 

FEASTFLOW (Engineering) g 
E5-2658 
@2.10 

8 (16) 16 (16) 
5120D 
@1.053 

60 (60) 240 (128) 
4.7× 

(59%) 
[69] 

3D MPDATA (Geophysics) h 
E5-2697 
@2.70 

12 (24) 24 (48) 
7120P 

@1.238 
61 (61) 244 (244) 

2.0× 
(39%) 

[84] 

3D MPDATA (Geophysics) h 
E5-2697 
@2.70 

12 (24) 24 (48) 
3120A 
@1.1 

57 (57) 228 (228) 
1.7× 

(36%) 
[84] 

Sparse-matrix matrix multiplication 
(Math) i 

E5-2670 
@2.60 

8 (16) 16 (32) 
SE10P 
@1.1 

61 (60) 244 (240) 
2.2× 

(29%) 
[81] 

Sparse-matrix vector multiplication 
(Math) i 

E5-2670 
@2.60 

8 (16) 16 (32) 
SE10P 
@1.1 

61 (60) 244 (240) 
2.1× 

(28%) 
[81] 

Microscopy Image Analysis (Medicine) j 
E5-2680 
@2.70 

8 (16) 16 (16) 
SE10P 
@1.1 

61 (60) 244 (120) 
2.1× 

(28%) 
[82] 

Sparse-matrix matrix multiplication 
(Math) i 

X5680 
@3.33 

6 (12) 12 (12) 
SE10P 
@1.1 

61 (60) 244 (240) 
4.5× 

(23%) 
[81] 

Sparse-matrix vector multiplication 
(Math) i 

X5680 
@3.33 

6 (12) 12 (12) 
SE10P 
@1.1 

61 (60) 244 (240) 
4.2× 

(21%) 
[81] 

NINA (Medicine) 
E5-2620 
@2.00 

8 (16) 16 (16) 
5110P 

@1.053 
60 (60) 240 (177) 

2.2× 
(20%) 

[85] 

Leukocyte Tracking (Medicine) k 
E5-2620 
@2.00 

6 (12) 12 (12) 
5110P 

@1.053 
60 (40) 240 (40) 

0.5× 
(20%) 

[86] 

miniMD (Atomistic Simulations) l 
E5-2660 
@2.20 

8 (16) 16 (32) 
5110P 

@1.053 
60 (60) 240 (240) 

1.4× 
(19%) 

[98] 

3D MPDATA (Geophysics) h 
E5-2643 
@3.30 

4 (8) 8 (16) 
7120P 

@1.238 
61 (61) 244 (244) 

2.9× 
(19%) 

[84] 

3D MPDATA (Geophysics) h 
E5-2643 
@3.30 

4 (8) 8 (16) 
3120A 
@1.1 

57 (57) 228 (228) 
2.5× 

(18%) 
[84] 

Monte Carlo LIBOR Swaption Portfolio 
Pricer (Finance) m 

E5-2670 
@2.60 

8 (8) 16 (16) 
5110P 

@1.053 
60 (60) 240 (240) 

2.3× 
(15%) 

[97] 

FEASTFLOW (Engineering) n 
E5-2658 
@2.10 

8 (16) 16 (16) 
5120D 
@1.053 

60 (60) 240 (128) 
1.2× 

(15%) 
[69] 

Microscopy Image Analysis (Medicine) o 
E5-2680 
@2.70 

8 (16) 16 (16) 
SE10P 
@1.1 

61 (60) 244 (120) 
1.0× 

(13%) 
[82] 

Microscopy Image Analysis (Medicine) p 
E5-2680 
@2.70 

8 (16) 16 (16) 
SE10P 
@1.1 

61 (60) 244 (180) 
1.3× 

(12%) 
[82] 
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(Table 1) contd…. 

Reference System (Intel Xeon) Testing System (Intel Xeon Phi) 
Code (Domain) 

Modela Coresb Threadsb Modela Coresb Threadsb 
Speedupc Ref. 

NAS Parallel Benchmarks (Computer 
Science) q 

E5-2620 
@2.00 

8 (16) 16 (32) 
5110P 

@1.053 
60 (60) 240 (240) 

0.6× 
(8%) 

[85] 

Monte Carlo Pricing of American Op-
tions (Finance) m 

E5-2670 
@2.60 

8 (8) 16 (16) 
5110P 

@1.053 
60 (60) 240 (240) 

0.9× 
(6%) 

[97] 

iMOOSE (Engineering) 
E5-2620 
@2.00 

8 (16) 16 (16) 
5110P 

@1.053 
60 (60) 240 (240) 

0.8× 
(5%) 

[85] 

FIRE (Image Recognition) 
E5-2620 
@2.00 

8 (16) 16 (32) 
5110P 

@1.053 
60 (60) 240 (234) 

0.4× 
(5%) 

[85] 

Conjugate Gradient solver (Math) r 
X7550 
@2.00 

8 (128)s 16 (128)s 
SE10P 
@1.09 

61 (61) 244 (244) 
0.6× 
(3%) 

[80] 

NestedCP Tasking (Engineering) 
E5-2620 
@2.00 

8 (16) 16 (32) 
5110P 

@1.053 
60 (60) 240 (240) 

0.2× 
(3%) 

[85] 

CP2K (Atomistic Simulations) t 
E5-2678W 

@3.10 
8 (16) 16 (16) 

5110P 
@1.053 

60 (60) 240 (240) 
0.2× 
(1%) 

[89] 

The performance of individual codes on the coprocessor (testing system) is compared to that on the host processor (reference system): a the (co)processor model and @the base fre-
quency in GHz, b the number of physical cores and computing threads per processor (numbers in parentheses were used in benchmarking simulations to calculate speedups),  
and c speedups as reported in the original publication (numbers in parentheses show the percentage of the performance of a single processor thread achieved by a single co-processor 
thread). Simulation details for those studies that report a series of benchmarking calculations with different parameters: d for the Wilson Dslash kernel, compressed gauge fields, and 
the V=32×40×24×96 case; e for the Conjugate Gradient solver, compressed gauge fields, and the V=32×40×24×96 case; f for a 3200×3200 matrix; g for vector operation (axpy, vec-
torized); h for 500 time steps and the grid of size 1022×512×63; i against the ldoor matrix; j for Gradient Stats with regular data access; k without code modifications; l for 2048K 
atoms at a cut-off of 2.5Å and with Advanced Vector Extensions enabled on the processor; m for 512K paths; n for sparse matrix-vector multiplication against the Hamrle3 matrix 
(spmv, manual vectorization); o for Connected Component Labeling with atomic functions; p for FillHoles with irregular data access; q for an embarrassingly parallel (EP) kernel;  
r 1000 iterations; s symmetric multiprocessing using the Bull Coherence Switch technology; t for the average time using the POPT version on the processor and the PSMP version on 
the co-processor. 

registers, and the SIMD-friendly reduction deliver a speedup 
close to a factor of 6 compared to an 8-core processor solv-
ing the same linear equation problems. 

Code parallelization and vectorization significantly im-
pact the coprocessor performance as demonstrated for the 
software package FEASTFLOW for the modeling of techni-
cal flows, fluid-structure interactions, chemical reactions, 
and the multiphase flow behavior [69]. A parallel, vectorized 
code running on Xeon Phi gives a speedup of 41.9× (11.4×) 
compared to a serial un-vectorized coprocessor (processor) 
version, whereas the speedup over the best parallel code exe-
cuted on CPU is 4.7×. A similar approach exploiting the task 
parallelism to utilize hundreds of logical cores on the co-
processor, and the data parallelism to efficiently use 512-bit 
vector processing units, significantly increased the perform-
ance of the multi-dimensional positive definite advection 
transport algorithm (MPDATA) [84]. This algorithm used in 
the code for numerical weather prediction executed on the 
top-notch 7120P model performs double precision stencil 
computations 2 and 2.9 times faster than dual-socket ma-
chines equipped with 12-core (at 2.70 GHz) and 4-core (at 
3.30 GHz) processors, respectively. 

Xeon Phi was also evaluated for its application in compu-
tational finance [97]. The accelerator-ported implementation 
of the LIBOR Swaption Portfolio Pricer, an embarrassingly 
parallel Monte-Carlo algorithm, deployed on a 5110P card 
outperforms a multi-core dual-processor machine 2.3 times. 

However, another financial application for the pricing of 
American put options using Monte-Carlo simulations with 
cross-path dependencies runs faster on the commodity multi-
core CPU than on the coprocessor, indicating that speedups 
are heavily application-dependent [97]. Similar conclusions 
arose from comparative benchmarks of several algorithms 
including the Flexible Image Retrieval Engine that identifies 
sets of similar images to a query image in a database [85]. 
Here, despite a good scalability on Xeon Phi systems be-
tween 50 and 113, a processor core significantly outperforms 
a coprocessor core by a factor of 8-12. 

Application-dependent improvements were also reported 
for Molecular Dynamics (MD) simulations that are one more 
example of highly CPU-intensive codes. CP2K is a state-of-
the-art program for atomistic simulations of solid state, liq-
uid, molecular, and biological systems. Notwithstanding a 
50% increase in its performance on Xeon Phi, running the 
same MD calculations on a 16-core CPU node still yields 
better timings [89]. On the other hand, a single 5110P card is 
1.4× faster than a dual-socket, eight-core Intel Xeon server 
in performing MD simulations using miniMD, a simplified 
version of the popular LAMMPS package [98]. Compared to 
the original serial code, the optimized parallel version exe-
cuted simultaneously on the host processor and the accelera-
tor brings about a 10-fold increase in computational speed. 
These real world applications once again demonstrate that, 
adding Xeon Phi yields considerable performance improve-
ments for highly parallel workloads. 
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Several interesting examples of the application of Intel 
Xeon Phi in biology and medicine have also been reported. 
In microscopy image analysis, low-dimensional spatial 
datasets captured by high-resolution microscopy scanners for 
whole slide tissue specimens are subjected to an advanced 
image processing. Among many common operations in this 
domain, object segmentation and feature computation are the 
most CPU expensive algorithms, thus there is a dire need to 
improve the performance of these codes. Using a 61-core 
Xeon Phi and the parallel OpenMP implementation yields 
satisfactory speedups for algorithms with regular data access; 
for instance, the Gradient Stats code runs 2.1 times faster on 
the coprocessor than on a 16-core CPU-based system [82]. 
However, only moderate improvements were reported for 
those algorithms with irregular data access patterns and rely-
ing on atomic instructions. 

Leukocyte Tracking is another medical imaging applica-
tion, where white blood cells are tracked in in vivo video 
microscopy of blood vessels to help investigate the inflam-
mation process. It was demonstrated that the execution of 
Leukocyte Tracking on Xeon Phi using 40 threads is twice as 
slow as on a traditional CPU-based system with 12 threads; a 
single coprocessor thread is about 5 times slower than a 
processor thread. However, the small number of 36 leuko-
cytes used in this study does not provide sufficient parallel-
ism to fully utilize the hardware resources of the coproces-
sor. Further optimization of the code using vectorization and 
the first- and second-level multi-threading significantly im-
proved the performance, indicating that the manual vectori-
zation and a massive parallelism are required in order to take 
full advantage of the computing capabilities of Xeon Phi. 

APPLICATION OF INTEL XEON PHI TO DRUG 
DISCOVERY 

Although a wide variety of applications using Intel Xeon 
Phi have been developed in physics, mathematics and statics, 
the repository of codes for drug design in pharmaceutical 
research is still relatively limited. Here we review three ap-
plications that have been recently ported to the accelerator, 
eFindSite, a structural bioinformatics tool for the prediction 
of ligand-protein binding sites in proteins, a classical force 
field used in bio-molecular simulations, and a virtual screen-
ing algorithm, Bristol University Docking Engine. 

Ligand Binding Site Prediction 

A drug binding to the specific site on a target protein 
triggers a series of cellular reactions leading to the desired 
therapeutic effect. In drug design, the knowledge of ligand 
binding sites is essential for conducting virtual screening 
experiments to identify potential lead compounds. In this 
regard, we recently developed eFindSite, an algorithm for 
evolution/structure-based identification of ligand binding 
sites in proteins. eFindSite was designed to maximize the 
accuracy of binding pocket detection at the improved toler-
ance to the structural deformation in protein models. Such a 
high tolerance to structure imperfections, especially at ligand 
binding sites, is particularly important for proteome-scale 
applications using computer-generated protein models. Since 
eFindSite employs information extracted from ligand-bound 
templates to detect binding sites, template-to-target structure 

alignments are one of its key components. Briefly, using a 
sensitive meta-threading technique [99, 100], weakly ho-
mologous templates bound to ligands are identified in the 
PDB [19] and structurally aligned to the target. Next the 
template-bound ligands are clustered into putative binding 
sites, which are then ranked using machine learning. Typi-
cally, eFindSite takes about 30 minutes to detect binding 
sites for a protein [30] with 88% of the computing time con-
sumed by structure alignments calculations [68]. Therefore, 
we decided to parallelize structure alignments in order to 
speed up the entire prediction process. 

The workflow for the parallel version of eFindSite is 
shown in Fig. (2). Here, the target protein is a bacterial pep-
tide deformylase responsible for the removal of the N-
terminal formyl group from newly synthesized proteins 
(PDB-ID: 1lru, chain A) [101]. Compounds that bind to this 
enzyme and block the protein synthesis could be used as 
antibiotics to inhibit bacterial growth. Binding site prediction 
using eFindSite comprises three distinct stages, the pre-
processing of ligand-bound templates identified by eThread 
[99, 100] (Fig. 2A), template-to-target structure alignments 
(Fig. 2B), and the post-processing calculations including 
pocket clustering and ranking (Fig. 2C). Fig. (2C) also 
shows that the top-ranked binding site (a blue ball) was accu-
rately predicted, because it overlaps with a naturally occur-
ring antibiotic actinonin (red sticks) bound to the target 
structure (green ribbons) in the experimental complex struc-
ture. As indicated in Fig. (2B), structure alignment calcula-
tions are parallelized using OpenMP for the processor and 
the coprocessor. 

Specifically, each template-to-target structure alignment 
is either mapped to a hardware thread on the processor or 
offloaded to the coprocessor. OpenMP pragmas with the 
dynamic scheduling are used to parallelize the for-loop itera-
tion over the template library. Parts of the eFindSite code 
that handle pre and post-alignment calculations are written in 
C++, however, structure alignments are implemented in For-
tran 77 with many thread-unsafe common blocks. Therefore, 
common blocks are marked using OpenMP pragmas as pri-
vate in order to avoid memory conflicts during the parallel 
execution of structure alignments. For example, !$omp 
threadprivate (/block_name/) are used to mark all common 
blocks in Fortran 77 subroutines. In addition, the execution 
of portions of the code on the coprocessor requires data 
transfer. Since the data is copied only once and shared by all 
structure alignment threads, there is virtually no overhead 
caused by moving data back and forth. Finally, subroutines 
and variables offloaded to the coprocessor are marked with, 
respectively, !dir$ attributes offload:mic::subroutine_name 
and !dir$ attributes offload:mic:variable_name. 

In order to fully utilize the parallel power of nodes 
equipped with Intel Xeon Phi cards, a dynamic workload 
balancing mechanism is implemented to launch parallel tasks 
to both processor and coprocessor concurrently. Up to 4 par-
allel tasks, each with 4 threads, on the processor and up to 10 
parallel tasks, each with 24 threads, on the coprocessor are 
executed in parallel. This way, two 8-core Xeon processors 
and one 61-core Xeon Phi accelerator remain fully utilized. 
Encouragingly, the OpenMP-based version of eFindSite 
yields a 17.6× speedup over the serial version. Specifically, 
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processing a dataset of 501 proteins that would take 36.8 
hours on a single processor core can now be completed in 
2.1 hours on a single Stampede node. This dramatically im-
proved performance of eFindSite is particularly important for 
its large-scale applications, such as drug repositioning, where 
tens of thousands of proteins need to be targeted. From the 
programming standpoint, eFindSite represents typical scien-
tific software written by domain scientists using different 
languages and styles. The parallelization of eFindSite dem-
onstrates that with minor code modifications, a complex 
C++/Fortran77 code could be ported to Intel Xeon Phi yield-
ing satisfactory speedups. Thus, adapting scientific software 
for the Intel Xeon Phi architecture is relatively straightfor-
ward yet very rewarding. 

Parallelization of Molecular Force Fields 

Most molecular docking algorithms used in structure-
based virtual screening model protein-drug systems as sets of 
interacting particles that correspond to either individual at-
oms [102-105] or pseudo-atoms representing multi-atom 
moieties, such as aromatic rings and functional groups [39, 
106-108]. A variety of force fields include non-bonded inter-
actions between particles, such as electrostatic and van der 
Waals, as important components of scoring functions. It has 
been estimated that computing these interactions, often over 
long distances, makes up 80-95% of the total execution time 
[109]. Since the calculation of non-bonded interactions is 
easily parallelizable, significant speedups of molecular dock-
ing can be expected by moving these operations to massively 
parallel accelerators. Indeed, a recent study demonstrated 
that Intel Xeon Phi is well-suited for the acceleration of non-
bonded electrostatic interaction kernels [110]. Particularly 
for large systems composed of 226 protein and 216 ligand 

atoms, the performance of Xeon Phi is comparable to that of 
NVIDIA Tesla K20x GPU. Note that the latter features two 
times higher peak performance for single-precision opera-
tions than Xeon Phi; using double-precision computations, 
the performance of Xeon Phi is expected to be even closer to 
that of K20x. 

Calculating all-against-all pairwise non-bonded interac-
tions involves iterating over all ligand and protein atoms 
inside a double loop. These calculations can be significantly 
accelerated using SIMD instructions that are capable of per-
forming the same operation simultaneously on multiple data 
points. However, an appropriate construction of data struc-
tures is critical for the parallel performance and the full utili-
zation of the SIMD units. In molecular docking, ligand and 
protein atoms are described in terms of their positions and 
parameters. In Fig. (3), we illustrate two possible models for 
the memory allocation for ligand caffeine. Fig. (3A) shows 
the chemical structure of caffeine that is composed of 14 
heavy atoms. Fig. (3B) exemplifies the Array of Structures 
(AoS) memory layout for caffeine, where each atom is repre-
sented by its Cartesian x, y and z coordinates, and an arbi-
trary parameter p, which can carry a partial charge (for elec-
trostatic interactions), or the atomic radius (for van der 
Waals interactions). Since, the parameters for each atom are 
stored contiguously, computing leads to horizontal opera-
tions that consume multiple SIMD execution slots but pro-
duce only a single result. In other words, the AoS format 
may cause data elements required for a single computation, 
e.g. x1, y1, z1 and p1, to be located far from each other in 
memory, thus falling into separate cache-lines. This ineffi-
cient pattern typically results in a poor cache utilization se-
verely limiting the parallel performance. 

 
Fig. (2). Parallel implementation of eFindSite. (A) Pre-processing: for a given target protein (green cartoon) template proteins (shown in 
orange, pink, and cyan) are selected from the eFindSite library. (B) The computation of template-target structure alignments is parallelized 
using OpenMP for processor and coprocessor units. (C) Post-processing: ligand-binding sites are predicted. A blue ball represents the top-
ranked pocket, whereas a bound ligand molecule in the crystal structure is shown as red sticks. Results from eFindSite can be subsequently 
used for binding residue prediction, functional annotation, and virtual screening. Numbers in parentheses inside pentagons at the bottom 
correspond to the percentage of the total wall time for a serial execution. 
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In contrast, the Structure of Arrays (SoA) memory layout 

allows for a more efficient use of the SIMD instructions. 
This is shown for caffeine in Fig. (3C), where the data is 
ready for computation in an optimal vertical arrangement. 
The SoA format takes advantage of all SIMD elements 
available, i.e. computations involving multiple atoms are 
performed simultaneously using multiple SIMD execution 
slots producing a unique result for each slot. This leads to a 
better utilization of the coprocessor bandwidth and cache. 
Consequently, calculating electrostatic non-bonded interac-
tions on Xeon Phi using SoA is almost twice as fast as for 
the AoS. As demonstrated for a model system comprising 
10,240,000 protein and 8,192 ligand atoms, using all 240 
threads available on the coprocessor completes the calcula-
tions in 4,159 and 6,848 ms for the SoA and AoS 
implementations, respectively [110]. 

Optimally arranged data structures also significantly im-
proved the computational throughput of similar calculations 
involving simple rotations and translations of 1,500×1,500 
grid points [111]. The SoA model on the 1.09 GHz Xeon Phi 
SE10P coprocessor with the new 512-bit Intel Initial Many 
Core Instruction vectorization achieves a single- (double-) 
precision performance of 483.6 (199.9) GFLOPS. For com-
parison, the fastest implementation of the same algorithm on 
2.7GHz Xeon E5-2680 processor using 256-bit Advanced 
Vector Extensions (AVX) yields 257.7 (111.6) GFLOPS. 
Therefore, SIMD capable hardware offers a great platform 
for the development of molecular force field codes domi-
nated by non-bonded interaction calculations, however, the 
selection of suitable data structures is mandatory in order to 
maximize the accelerator performance. 

Virtual Screening 

The Bristol University Docking Engine (BUDE), an al-
gorithm that simulates the binding of drug candidates to their 
macromolecular targets, was one of the first projects to speed 
up molecular docking in structure-based virtual screening by 
using massively parallel accelerators [112, 113]. The force 
field implemented in BUDE comprises physicochemical 

potentials developed for ab initio protein folding simulations 
[114]. The conformational space is efficiently explored using 
the Evolutionary Monte Carlo protocol with six translational 
and rotational degrees of freedom. The docking procedure 
first constructs a set of configurations uniformly covering the 
search space, which are subsequently used to seed the sub-
populations of protein-drug configurations. The system pro-
gressively evolves exploring the conformational space in 
order to locate the global energy minimum that is finally 
taken as the predicted binding pose. The docking procedure 
involves generating a large number of configurations, whose 
binding affinity towards the receptor protein is evaluated by 
a scoring function. Therefore, virtual screening applications 
employing hundreds of thousands to even millions of drug 
candidates require a significant acceleration of docking 
simulations for individual compounds. 

In this spirit, a port of BUDE for heterogeneous comput-
ing was developed using OpenCL. This particular program-
ing model was chosen because OpenCL offers high perform-
ance portability, so that the same code can be deployed 
across a variety of hardware architectures. Moreover, the 
application of docking algorithms, such as BUDE, in struc-
ture-based virtual screening exploits different degrees of 
parallelism at both data and task levels, which is supported 
by OpenCL. Since the vast majority of the computations in 
BUDE are related to the evaluation of binding energy for a 
given drug-protein configuration, this part of the code was 
implemented as a single, highly optimized OpenCL kernel. 
Special attention was paid to the elimination of branches, 
which are known to severely impact the performance of par-
allel codes. Here, conditional branches in the energy evalua-
tion kernel were converted into the combination of predi-
cated selection and multiplication, which eliminate the con-
trol flow from the code. Furthermore, the memory footprint 
of the force field was significantly reduced to more effi-
ciently align with memory interfaces of current accelerator 
devices. Similar to the implementation of molecular force 
field described in the preceding section, the AoS data layout 
used for transformation descriptors was replaced with a 
SIMD-friendly SoA format. Other optimizations include 

 
Fig. (3). Comparison of Structure of Arrays and Array of Structures data layouts. (A) Chemical structure of caffeine with individual heavy 
atoms numbered and colored by the atom type (carbon – green, nitrogen – blue, oxygen – red). (B) Array of Structures memory layout. (C) 
Structure of Arrays memory layout; SIMD execution slots are represented by black waves. In B and C, each heavy atom is associated with 
four data points: Cartesian coordinates x, y and z, and an arbitrary parameter p. 
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storing force field parameters in the fast on-chip memory, 
removing parameter redundancy and building some constant 
values directly into the energy kernel, as well as increasing 
data reuse within the OpenCL kernel to improve arithmetic 
intensity. 

Tested on Xeon Phi SE10P, BUDE achieved an effi-
ciency of 32% of peak performance with sustained 680 
GFLOPS. Since the code was primarily optimized for 
NVIDIA GPUs, further modifications to the kernel would be 
necessary in order to improve the performance of BUDE on 
Xeon Phi devices. The same code executed on the host dual-
processor with a total of 32 cores (Xeon E5-2687W clocked 
at 3.1 GHz) achieved the sustained efficiency of 44% and 
350 GFLOPS. Compared to the baseline Fortran implemen-
tation utilizing 32 hardware threads, executing the OpenCL 
version on the processor and coprocessor delivers 1.3× and 
2× speedups, respectively. Although we reviewed only the 
performance of BUDE on Xeon Phi, this study is an example 
of a remarkably successful implementation of a molecular 
docking code that features high performance portability tar-
geting various many-core platforms. In contrast to other ap-
proaches that often move only computationally intensive 
portions of the code to the device, the entire molecular dock-
ing algorithm was ported to the accelerator. Finally, as a 
unique feature of BUDE, the same OpenCL code was dem-
onstrated to sustain a high fraction of peak performance of 
about 40% across a variety of hardware architectures.  

CONCLUSION 

Modern drug discovery is no longer performed exclu-
sively in wet labs; computer-aided drug design has become 
an integral component of almost every aspect of drug devel-
opment. The exponential growth of genomic knowledge re-
sulting from continuous advances in gene sequencing tech-
nologies holds a significant promise for the pharmaceutical 
industry to develop better and safer therapeutics. It has also 
created new challenges because processing these vast 
datasets for drug design requires an unprecedented comput-
ing power. Consequently, massively parallel accelerators 
have a great potential to accelerate scientific discovery. 
Here, we reviewed a new heterogeneous computing platform 
equipped with many-core Intel Xeon Phi coprocessors, fo-
cusing on the application of these devices to modern com-
puter-aided drug discovery. Specifically, we highlighted 
various algorithms used in drug binding site prediction, bio-
molecular simulations, and structure-based virtual screening 
to demonstrate that significant speedups can be achieved by 
porting serial codes to the accelerator. In contrast to other 
parallel architectures, coding for Intel Xeon Phi is relatively 
straightforward with fairly short programming cycles, how-
ever, a thorough code optimization is mandatory to fully 
utilize the parallel capability of this many-core platform. 
Special attention should be drawn to a proper code vectoriza-
tion, since making use of SIMD executions is essential to 
bring out the full potential of the coprocessor. There is no 
doubt that the heterogeneous parallel computing using many-
core devices is vital to accelerate the computational compo-
nents of modern drug discovery pipelines, thus we expect a 
vigorous development of new algorithms and codes for the 
coming years. 
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