
Send Orders for Reprints to reprints@benthamscience.ae

 Current Drug Targets, 2016, 17, 1595-1609 1595

REVIEW ARTICLE

 1389-4501/16 $58.00+.00 © 2016 Bentham Science Publishers

Structure-based Drug Discovery Accelerated by Many-core Devices

Wei Feinstein1 and Michal Brylinski2,3,*

1High Performance Computing, Louisiana State University, Baton Rouge, LA 70803, USA; 2Department of Biological
Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; 3Center for Computation & Technology, Louisiana
State University, Baton Rouge, LA 70803, USA

A R T I C L E H I S T O R Y

Received: May 26, 2015
Revised: October 07, 2015
Accepted: November 20, 2015

DOI:
10.2174/138945011766616011211
2854

Abstract: Computer-aided design is one of the critical components of modern drug
discovery. Drug development is routinely streamlined using computational ap-
proaches to improve hit identification and lead selection, enhance bioavailability, and
reduce toxicity. A mounting body of genomic knowledge accumulated during the last
decade or so presents great opportunities for pharmaceutical research. However, new
challenges also arose because processing this large volume of data demands unprece-
dented computing resources. On the other hand, the state-of-the-art heterogeneous
systems deliver petaflops of peak performance to accelerate scientific discovery. In
this communication, we review modern parallel accelerator architectures, mainly fo-
cusing on Intel Xeon Phi many-core devices. Xeon Phi is a relatively new platform
that features tens of computing cores with hundreds of threads offering massively parallel capabilities
for a broad range of application. We also discuss common parallel programming frameworks targeted to
this accelerator, including OpenMP, OpenCL, MPI and HPX. Recent advances in code development for
many-core devices are described to demonstrate the advantages of heterogeneous implementations over
the traditional, serial computing. Finally, we highlight selected algorithms, eFindSite, a ligand binding
site predictor, a force field for bio-molecular simulations, and BUDE, a structure-based virtual screen-
ing engine, to demonstrate how modern drug discovery is accelerated by heterogeneous systems
equipped with parallel computing devices.

Keywords: Xeon phi, parallel accelerators, drug discovery, eFindSite, BUDE, programming frameworks.

INTRODUCTION

Computer-aided Drug Discovery

Due to extremely high costs associated with drug devel-
opment, integrating computational approaches with bench-
top experiments holds a significant promise to speed up the
discovery of novel biopharmaceuticals. The importance of
computer modeling techniques has dramatically increased
over the past years on account of advances in algorithm de-
velopment as well as the constantly increasing processing
power of modern computer architectures. Contemporary
high-performance computing (HPC) platforms facilitate
large-scale applications of existing modeling tools to address
various problems in modern drug discovery. However, new
hardware also creates an urgent need for the development of
codes to more efficiently utilize HPC resources available to
the scientific community. In this communication, we review
selected modeling techniques that are commonly used at the
outset of drug development, including protein structure mod-
eling, ligand binding site prediction, and receptor-based

*Address correspondence to this author at the Department of Biological
Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
Tel/Fax: +1 225 578 4003; E-mail: michal@brylinski.org

virtual screening. We also discuss how Intel Xeon Phi, cut-
ting-edge computer architecture, is likely to accelerate the
process of pharmaceutical discovery as exemplified by sev-
eral studies recently reported in the literature.

Protein Structure Modeling

Drug targets are typically selected by disease linkage
studies that give evidence of an association between biologi-
cal targets and certain disease states [1, 2]. The atomic-level
structure of a drug target is then used to either select from
existing chemical libraries or design from scratch small
molecules that are capable of modulating its function. Ide-
ally, a three-dimensional structure of the target macromole-
cule solved by X-ray crystallography or NMR spectroscopy
is available for rational drug discovery. However, in the ab-
sence of the experimental structure, protein homology mod-
eling can be used to construct a theoretical model of the drug
target using one of many currently available software pack-
ages, e.g. Modeller [3], SWISS-MODEL [4], Rosetta [5],
and I-TASSER [6].

There are many examples of a successful application of
homology modeling in structure-based drug discovery. For
instance, potential candidates for new antibiotics have been

Please provide
corresponding author(s)

photograph
size should be 4" x 4" inches

1596 Current Drug Targets, 2016, Vol. 17, No. 13 Feinstein and Brylinski

recently identified by virtual screening of a large chemical
library against the homology model of VEB-1 β-lactamase,
an important microbial target, for which no clinically effec-
tive inhibitors are currently available [7]. Another study re-
ports a successful homology modeling of α1A adrenorecep-
tor followed by a hierarchical virtual screening procedure
guided by various 2D filters and 3D pharmacophore models
[8]. Out of 80 diverse compounds identified by the structure-
based modeling, 37 compounds exhibit binding affinity, Ki,
values better than 10 µM with the most active compound
binding to the target receptor at Ki of 1.4 nM. Furthermore, a
new protocol was developed specifically for the template-
based modeling of G-protein coupled receptors (GPCRs) and
validated using CXCR7 chemokine receptor, an appealing
drug target for cancer chemotherapy [9]. Encouragingly,
structure-based virtual screening against the homology
model of CXCR7 resulted in 21 ligands with novel scaffolds,
whose experimentally confirmed half maximal inhibitory
concentration, IC50, values are between 1.29 and 11.4 µM.
These studies demonstrate that template-based protein struc-
ture modeling is an important component of modern com-
puter-aided drug discovery. It can be used to generate reli-
able three-dimensional models for a large number of poten-
tial drug targets whose structures will not be solved experi-
mentally in the near future.

Identification of Ligand Binding Sites

Drug binding site prediction is another computational
method commonly used in structure-based drug discovery.
Here, the goal is to identify those surface regions of pharma-
cologically relevant proteins that can be targeted by small
molecules in order to modulate their molecular functions.
Although, in many cases, the target sites are known from
experiments, drugs can interact with alternative surface loca-
tions that are distinct from the primary binding sites. For
example, allosteric modulators of cell-surface receptors offer
greater selectivity over those compounds interacting with the
binding site for endogenous agonists [10]. Consequently, the
past couple of decades have seen a rapid development of
techniques for the identification of new target sites for phar-
macotherapy (see [11] for a recent comprehensive review).
Structure-based methods, such as LIGSITE [12], Fpocket
[13] and SURFNET [14], predict binding sites by searching
for pockets and cavities in a protein structure, whereas en-
ergy-based approaches, such as Q-SiteFinder [15], FTSite
[16] and PocketFinder [17], locate binding residues by ana-
lyzing interaction energies with small molecular probes. De-
spite a high accuracy of pocket detection for experimentally
solved macromolecular structures, using protein models still
renders significant challenges due to inevitable structural
imperfections in their atomic coordinates.

To address this problem, a number of evolution/structure-
based approaches for ligand binding site prediction have
been developed. For instance, COFACTOR [18] employs
global and local structure alignments of structural analogs in
order to predict various aspects of protein function. First, the
structures of template proteins selected from the Protein Data
Bank (PDB) [19] are globally aligned onto the target using
TM-align [20]. Next, the best local geometric and sequence
match between the target and template structures is calcu-
lated taking into account the evolutionary conservation of

functional sites. Binding site prediction is followed by the
annotation of target proteins with Enzyme Commission
numbers (for enzymes) and molecular function according to
the Gene Ontology classification [21]. In fact, COFACTOR
has been used to support the structural and functional charac-
terization of a novel molluskan ortholog of TNF receptor-
associated factor from Haliotis discus [22], glucose dehy-
drogenase from Leclercia sp. [23], trehalose-6-phosphate
phosphatase from Mycobacterium tuberculosis [24], and a
cysteine-rich protein enriched in salivary glands [25]. Other
evolution/structure-based methods for ligand-binding site
prediction include 3DLigandSite [26], FINDSITE [27, 28],
and recently developed eFindSite [29, 30], which is dis-
cussed later in the text.

Molecular Docking and Virtual Screening

Virtual screening is perhaps the single most recognizable
computational technique in drug discovery. Its primary ap-
plication is to select a handful of potential lead candidates
from a vast organic chemical space that is estimated to con-
tain at least 1060 molecules of interest to drug developers
[31]. Early similarity-based approaches to virtual screening
using molecular fingerprints [32], geometric hashing [33],
and topo-geometrical features [34] are increasingly being
replaced by molecular docking techniques, which generally
offer higher prospects to discover compounds with novel
chemical scaffolds [35]. Molecular docking predicts the
atomic details of the preferred binding pose of a drug candi-
date with respect to its protein target [36]. Subsequently, the
strength of association between these molecules, also re-
ferred to as binding affinity, is estimated from molecular
interactions. A number of algorithms for ligand docking have
been developed, e.g. AutoDock [37], DOCK [38], Q-Dock
[39], GOLD [40], eSimDock [41], and ICM [42]. The main
differences among individual methods are the implementa-
tion of scoring functions and techniques for conformational
space sampling. There are many reports documenting suc-
cessful applications of molecular docking in biopharmaceu-
tical discovery; see [43-45] for examples.

In contrast to simple ligand-based methods, docking
techniques are computationally challenging. The first diffi-
culty stems from a large conformational space of interactions
between small organic compounds and their macromolecular
targets, viz. there is a large number of possible arrangements
to form a complex structure [46]. Second, the conformational
space grows exponentially with the size of the interacting
molecules because of the increasing number of degrees of
freedom [47]. Therefore, addressing the docking problem
requires efficient sampling algorithms that cover the relevant
conformational space, as well as sensitive scoring functions
to effectively discriminate between native and non-native
binding poses. Finally, virtual screening applications rou-
tinely involve performing molecular docking calculations for
a large number of drug candidates; for instance, the ZINC
database of commercially available molecules in ready-to-
dock formats contains millions of purchasable compounds
[48]. On that account, structure-based virtual screening heav-
ily depends on the availability of computing resources.

Strikingly, virtual screening by molecular docking consti-
tutes highly parallel computational procedures. At the

Structure-based Drug Discovery Accelerated by Many-core Devices Current Drug Targets, 2016, Vol. 17, No. 13 1597

coarse-grain level, a substantial number of drug molecules
are subjected to independent docking simulations that can be
processed in parallel. At the fine-grain level, most scoring
functions for the modeling of molecular complexes build
upon non-bonded pairwise interactions between protein and
ligand atoms in the form of statistical potentials [49, 50] and
classical physics-based energy terms [38, 42], which can be
efficiently parallelized. Moreover, many sampling tech-
niques offer a possibility for a medium-grained paralleliza-
tion as well. For instance, parallel implementations of the
Ant Colony Optimization [51], Replica Exchange Molecular
Dynamics [52], and Genetic Algorithms [53] have been de-
veloped. Consequently, the emerging massively parallel
technologies have a great potential to accelerate large-scale
virtual screening applications using molecular docking.

High-performance Computing Using Accelerators

High-performance parallel computing is an effective so-
lution for solving large and complex problems. It has a capa-
bility to deliver reliable results within a reasonable time
frame for memory, computing and data-intensive applica-
tions. Unlike traditional serial execution using single core
CPUs, multi-core computer architectures allow programs to
run in parallel using multiple processor cores on a single
chip to reduce the computation time. Moreover, these units
can be assembled into shared and distributed memory com-
puting systems. Collectively, thousands of cores from differ-
ent nodes being deployed together further improve the com-
putational throughput. For example, a dual 18-core CPUs
featuring Hyper Threading can execute 72 parallel tasks con-
currently, thus using 10 of such computing units delivers as
many as 720 threads for parallel jobs. Potentially, the time-
to-completion can be significantly shortened as the scale of
parallelization increases. Compared to multi-core architec-
tures, many-core hardware accelerators deliver even greater
parallel processing capabilities. These devices can consid-
erably enhance the overall performance of applications fea-
turing a high ratio of computation to data access. Currently,
the most popular parallel accelerators include NVIDIA
GPUs (Graphic Process Unit), Intel Xeon Phi coprocessor
and AMD APU (Accelerated Processing Units).

GPUs with hundreds of small cores were specifically de-
signed by NVIDIA to concurrently handle multiple calcula-
tions in video games. Later on, the GPU technology has
evolved to a general purpose GPU-accelerated platform,
where GPUs are utilized along with CPUs to speed up vari-
ous applications [54]. These advances in the parallel comput-
ing architecture demand adequate programming models for a
full utilization of the hardware potential. For instance,
CUDA (Compute Unified Device Architecture) is a pro-
graming model that gives a full low-level control of the par-
allel processing on GPUs [55]. OpenACC was designed in
2010 as a compiler directive-based standard aiming to ease
coding efforts [56]. Conceptually, the computation-intensive
sections of a source code can be offloaded to the GPU,
where parallel tasks are grouped into grids, blocks and
warps. The workload is eventually divided among individual
threads that make up the basic computing units on the GPU
for parallel calculations to enhance the overall performance.
As such, GPU-accelerated computing has made steady
headway to achieve a shorter time-to-completion through the

efficient code parallelization. Much scientific research has
already benefited from the GPU technology, which was suc-
cessfully applied to protein sequence [57] and structure
alignments [58], Brownian dynamics [59], spin model simu-
lations [60] as well as the modeling of in vivo diffusion [61].

AMD is another hardware vendor offering massively
parallel devices that has been pursuing the heterogeneous
system architecture (HSA), where CPU and GPU cores use a
common programing language and share the same workload
and memory space. For example, GPU-based Radeon fea-
tures up to 12 compute cores, which are equivalent to 8
GPUs attached to 4 CPUs [62]. Although AMD GPUs ac-
count for a relatively small market share compared to
NVIDIA GPUs, these devices support a wide range of pro-
jects. For example, the Berkeley Open Infrastructure for
Network Computing platform running on AMD GPUs has
been used to accelerate numerous codes, such as the Binary
Radio Pulsa Search application, a part of the astronomy pro-
ject Einstein@Home [63], as well as MilkyWay@Home that
creates a highly accurate 3D model of the Milky Way galaxy
[64]. Carrizo APU is the newest parallel hardware platform
designed by AMD to avoid data flow bottlenecks by placing
CPU and GPU cores on a single chip [65]. This high-density
design is expected to bring significant reductions in the die
area as well as the power consumption.

Intel Xeon Phi is a relatively new member of the accel-
erator family featuring Many Integrated Cores (MIC). The
coprocessor offers tens of general-purpose x86 cores and
hundreds of computing threads for parallel tasks. In addition,
the Xeon Phi coprocessor is uniquely equipped with wide,
512-bit vector processors allowing powerful parallel SIMD
(Single Instruction, Multiple Data) execution [66]. Unlike
the GPU technology, Intel Xeon Phi coprocessor is designed
to work as a commodity CPU, so that programming tools
traditionally used for multi-core CPUs can also be seam-
lessly used on a coprocessor. To make code porting rela-
tively easy, compiler pragma-based approach was introduced
as one the important components of the parallel program-
ming for the MIC architecture. In contrast to laborious code
re-writing for the GPU platform, parallel MIC programming
requires considerably fewer modifications, although a thor-
ough code optimization is mandatory to achieve the high
performance. In this review, we focus primarily on the Intel
Xeon Phi accelerator as a parallel platform for computer-
aided drug discovery, mainly because of its high portability
and relatively short code porting cycles.

INTEL XEON PHI ARCHITECTURE

Coprocessor Design

Intel Xeon Phi is a massively parallel architecture featur-
ing many integrated cores to effectively accelerate compute-
intensive applications. Systems equipped with Xeon Phi
cards have two key components, processor(s) and coproces-
sor(s) connected via the PCIe bus [66]. Each coprocessor
comprises up to 61 in-order processor cores, where each core
has 4 hardware threads switchable in a round-robin fashion
to hide latency. Moreover, each core has a wide 512-bit
SIMD vector that allows for simultaneous operations on 8
double precision or 16 integer instructions. When only a sin-
gle precision is needed, the number of concurrently executed

1598 Current Drug Targets, 2016, Vol. 17, No. 13 Feinstein and Brylinski

vector instructions is doubled, therefore, a 61-core coproces-
sor is capable of executing 3,840 (60×4×16) single-precision
instructions at a time. In fact, the Xeon Phi coprocessor pro-
vides more parallelism than the Xeon processor, which fea-
tures 16 cores with 2 threads per core and narrower 256-bit
SIMD vectors. In terms of the memory organization, the
coprocessor provides 8 GB global memory as well as 32 kB
Level 1 (L1) and 256 kB Level 2 (L2) data cache for each
coprocessor core; individual cores are interconnected and
remotely accessible via a fast bi-directional ring [67]. The
memory architecture of Xeon Phi allows the L1 and L2 data
cache of each coprocessor core to be shared, however, mem-
ory sharing is not permitted between the processor and the
coprocessor.

Thread Affinity

Intel Xeon Phi supports multi-threading at 4 hardware
threads per core, providing up to 244 threads. The physical
distribution of these threads, or thread affinity, can have a
considerable impact on the parallel performance [68]; three
types of thread affinity are available, compact, balanced and
scatter. Specifically, the compact thread affinity minimizes
the number of cores to be utilized, whereas for the scatter
and balanced settings, the maximum number of cores are
allocated in a round-robin or a uniform fashion, respectively.
The thread affinity is controlled by environment variables,
for example, using export MIC_KMP_AFFINITY=compact
instructs the coprocessor to pack threads densely next to each
other on a single core before moving on to the next one.

Programming Models

Intel Xeon Phi runs a light version of Linux operating
system called BusyBox. Parallel tasks on the coprocessor can
be processed using either the native mode, where the entire
application is executed on the coprocessor, or the offload
mode, which offloads only parts of the code to the accelera-
tor. For example, adding the -mmic compiler flag generates a
native binary that can be executed directly on the coproces-
sor. However, the offload mode is often more suitable for
those applications having serial portions of the code. Here,
functions and variables that need to be accessed by the co-
processor are marked by directive pragmas, e.g. #pragma
offload target (mic) defines sections of the code to be off-
loaded to the coprocessor for parallel execution. Note that

the full utilization of the accelerator often requires tuning the
data transfer protocols in order to establish an efficient
communication between the processor and the coprocessor.

Parallel Capabilities

The accelerator architecture delivers two layers of paral-
lelism at the coarse- and fine-grained level to achieve a high
parallel performance (Fig. 1). Both the multi-core processor
and the many-core coprocessor provide a convenient coarse-
grained parallel capability through individual computing
cores, as it is shown in Fig. (1A). For instance, the Intel
Xeon Sandy Bridge microarchitecture features 2-8 comput-
ing cores with 2 threads per core, whereas high-end Intel
Xeon Phi accelerators equipped with 61 cores and 4 threads
per core provide up to 244 threads. Practically, 240 threads
are available on the accelerator since the 61st core is usually
reserved for operating system and I/O operations. This level
of parallelism can be exploited using pragma-based pro-
gramming frameworks that effectively allocate individual
threads to handle concurrent tasks. In contrast, the fine-
grained level of parallelism is accomplished by executing
data-level SIMD instructions (Fig. 1B). The Intel Xeon Phi
SE10P coprocessor has a 512-bit wide SIMD vector unit per
core capable of processing multiple data at a time, e.g. 8
double-precision floating-point operations can be executed
simultaneously. Moreover, 4 threads per core permit inter-
leaving of up to 4 such SIMD operations to hide latency. In
comparison, the Intel Xeon E5-2680 processor also offers
data level parallelism yet with narrower 256-bit wide SIMD
vectors and only 2 threads per core. Overall, the fine-grained
parallelism can significantly boost the performance, there-
fore, an effective utilization of SIMD resources through a
proper code vectorization is critical to fully benefit from the
Xeon Phi platform [69].

Large-scale Production Systems

Similar to other accelerator architectures, Intel Xeon Phi
is designed to provide massively parallel capabilities to meet
the demands of large-scale scientific computing. In the past
several years, a number of supercomputers equipped with
Intel Xeon Phi cards have been put into production around
the world. For example, Tianhe-2, deployed in 2013 at the
National Supercomputer Center in Guangzhou, is the fastest
Xeon Phi-based supercomputer in the world with an impres-

Fig. (1). Levels of parallelism on Intel Xeon and Xeon Phi. (A) The coarse-grained parallelism provided by multiple processor cores and
many coprocessor cores. A compiler is instructed to generate binaries for a given architecture. (B) The fine-grained parallelism provided by
wide SIMD execution slots within each core.

Structure-based Drug Discovery Accelerated by Many-core Devices Current Drug Targets, 2016, Vol. 17, No. 13 1599

sive number of 16,000 computer nodes. Each node features
two Intel Ivy Bridge Xeon processors and three Intel Xeon
Phi coprocessors capable of providing the aggregate peak
performance of 33.86 PFLOPS [70]. Beacon system operated
by the National Institute for Computational Sciences at the
University of Tennessee, Knoxville is an energy efficient
cluster composed of 48 compute nodes with two 8-core Intel
Xeon E5-2670 processors and four Intel Xeon Phi 5110P
coprocessors delivering up to 210 TFLOPS of computational
performance [71]. The Stampede at the Texas Advanced
Computer Center is a supercomputer available to the scien-
tific community through the Extreme Science and Engineer-
ing Discovery Environment (XSEDE). Stampede is built
with 6,400 Dell DCS Zeus nodes, the majority of which are
equipped with two Intel Xeon E5-2680 Sandy Bridge proc-
essors and either one or two Intel Xeon Phi SE10P coproces-
sors. The aggregate peak performance of the processors is
over 2 PFLOPS, while the coprocessors deliver an additional
aggregate peak performance of over 7 PFLOPS [72]. Finally,
SuperMIC at the Louisiana State University is a recently
deployed system containing a total of 382 nodes, each with
two 10-core Intel Ivy Bridge-EP processors [73]. Among
those, 360 nodes have two Intel Xeon Phi 7120P coproces-
sors. SuperMIC delivers the theoretical peak performance of
over 925 TFLOPS and, similar to Stampede, it is also avail-
able to the scientific community through XSEDE.

APPLICATION PROGRAMMING INTERFACES

Although Intel Xeon and Xeon Phi units have different
designs, to a certain degree, they share a similar x86-based
architecture. This is an important feature of the coprocessor,
because programming techniques developed for the proces-
sor can also be used on the accelerator. In this section, we
review selected parallel programming frameworks relevant
to the code development for the coprocessor, including MPI,
OpenMP, OpenCL, and HPX.

MPI

The Message Passing Interface (MPI) is a widely used
parallel programming model for distributed memory archi-
tectures. Each processor has an access to its own memory
and different processors are connected through high-speed
communication links, such as InfiniBand. MPI provides a set
of language-independent communication protocols for paral-
lel computing, featuring point-to-point message passing as
well as collective operations via user-specified processors
[74]. Specifically, processes are typically created by discrete
processors/computing nodes executing different sections of
the code. Each process has its own local variables and the
memory space; the parallelism is achieved by establishing
communications between processes by sending and receiving
messages. Expanded from the original support for distributed
memory architectures, MPI is now adapted to include shared
memory symmetric multiprocessing (SMPs) as a hybrid pro-
gramming model. Thus far, the MPI standard has been im-
plemented by several groups, such as the open source
MPICH [75] developed at the Argonne National Laboratory
and Open MPI supported by a consortium of academic, re-
search, and industry partners [76]. MPI is widely used to
parallelize serial applications in drug design; for instance,

MPI-based parallelization of AudoDock4 was used in virtual
screening of large databases of compounds [77].

MPI application programming interface (API) provides
well-defined object-like constructors, destructors and user-
defined data types allowing for heterogeneous communica-
tions as well as an efficient data description and exchange.
Because of its vendor-independent portability and flexibility,
MPI is regarded as the “industry standard” for the message
passing programming on high-performance computing plat-
forms. MPI can be easily compiled for the Intel Xeon Phi
architecture with special flags, e.g. compiling a simple
hello_world.c source code using mpicc –mmic –o
hello_world.MIC generates a native executable for the co-
processor. Once the executable is copied to the coprocessor
and the environment variable I_MPI_MIC is set to 1, an MPI
launcher can be used to start the MPI-based application on
the accelerator, e.g. mpiexec –f mpi_hosts hello_world.MIC.
Nonetheless, the communication bottleneck caused by the
heavy data traffic between the processors and coprocessors
can limit the performance of MPI-based applications. In ad-
dition, debugging may be challenging and, in contrast to
other programming models, such as OpenMP, substantial
coding efforts are often required in order to port a serial code
to the accelerator.

OpenMP

OpenMP is a widely adopted standard developed in the
1990’s for parallel programming on multi-threaded shared-
memory systems, where a single address space is accessed
with unique memory locations by different processes/cores.
It features compiler-specific pragmas to identify sections of
the code that need to be parallelized and instruct how data is
transferred and distributed across different computing units.
OpenMP has been implemented as C/C++/Fortran compiler
extensions allowing parallelism to be added using prag-
mas/directives (#pragma omp in C/C++ and $OMP in For-
tran) to a serial codes without the need for significant code
conversions [78]. OpenMP pragmas are designed to facilitate
and coordinate various parallelization components, e.g.
spawning threads, dividing computation among threads, and
synchronizing work among threads. In addition to compiler
directives, a runtime library including callable functions as
well as environment variables can be easily used to control
the code execution at either the runtime or the compilation
time. Specifically, a typical format of a directive pragma is
composed of a directive name followed by clauses. For in-
stance, #pragma omp parallel for instructs the compiler to
create a set of threads to handle the parallel execution of a
block of code within a loop. OpenMP is particularly effec-
tive in parallelizing for-loops, where each thread is assigned
to execute a single iteration of the loop. Using environment
variables, such as OMP_NUM_THREADS, the maximum
number of threads to conduct the parallel computation can be
set at the runtime. In addition, a similar effect can be
achieved during the compilation using the library function
omp_set_num_threads().

Pragma-based OpenMP makes the parallelization of se-
rial codes relatively easy and allows for a gradual paralleliza-
tion by progressively adding pragmas to the code and testing
its parallel performance. Another critical feature is that

1600 Current Drug Targets, 2016, Vol. 17, No. 13 Feinstein and Brylinski

pragmas are ignored if the code is compiled without
OpenMP-specific flags; the parallelized code will be exe-
cuted as the original serial version. Due to minimal code
conversions and the compiler capacity, the maintenance of
both serial and parallel versions is greatly simplified. Conse-
quently, the open source community and major vendors, in-
cluding IBM, Intel, Oracle and the Portland Group, endorse
and actively support OpenMP making OpenMP-based appli-
cations platform-independent [79]. Since OpenMP offers a
portable programming model for shared memory architec-
tures, it is well suited for Intel Xeon Phi as well. Not surpris-
ingly, a growing body of research use the coprocessors
across a variety of scientific fields [68, 80-86]. Unfortu-
nately, the shared memory requirement of OpenMP limits its
application to single nodes. Nonetheless, combining
OpenMP with MPI expands the parallelization scale beyond
a single node with MPI typically managing inter-node paral-
lelization and OpenMP used as the intra-node programming
method [87-89].

OpenCL

On account of the expanding family of parallel accelera-
tors, cross-platform coding has become the central issue in
the development of portable software. To address this prob-
lem, Open Computing Language (OpenCL) was developed
as a cross-platform framework for parallel programming on
heterogeneous accelerators. Codes implemented in OpenCL
can be executed across different hardware platforms, there-
fore, it offers a unique portability. Many vendors, such as
Intel, AMD, NVIDIA, Altera Corp., and IBM, support
OpenCL for their hardware [90], which stimulates the devel-
opment of OpenCL-based applications [91]. OpenCL defines
a set of APIs in C-like language to control a host processor
and a variety of parallel devices and accelerators. A typical
parallel application comprises a C/C++ code for the host and
a collection of kernels and special functions written in
OpenCL for the accelerators. The parallelism is achieved at
different levels, including SIMT (Single Instruction Multiple
Threads), work-items, which are the smallest execution
units, and work-groups in the order of increasing degree of
coarse-grained parallelization level. In addition, OpenCL can
be used in conjunction with other parallel frameworks; for
example, the FEASTFLOW code was implemented using
both OpenCL and OpenMP [69]. Combined with OpenMP
and MPI, OpenCL has also been applied to conduct direct
numerical simulations of turbulent flows on AMD, NVIDIA
and Intel accelerators [92]. In contrast to other parallel
frameworks, researchers who do not already have an exten-
sive programming experience may find OpenCL quite diffi-
cult to learn due to its complex syntax and unique data struc-
tures and functions.

HPX

The parallel implementations of scientific applications
for multi- and many-core devices greatly improve their over-
all performance. Nevertheless, workload starvation, latencies
and overheads create unprecedented bottlenecks in parallel
computing, hindering the scalability at peta and exaflop lev-
els. In order to address these problems, the Ste||ar group at
Louisiana State University developed High Performance
ParalleX (HPX), which is an open source runtime system

based on ParalleX [93]. HPX effectively leverages asyn-
chrony to support large-scale multi-core computations by
improving the communication between inter- and intra-node
processes [94]. In addition to the standard C++ local asyn-
chronous functions, HPX also provides remote asynchronous
mechanisms through Actions, Futures and Dataflow con-
structs. When scaling goes beyond tens of thousands of
cores, many applications create significant latencies compli-
cating the communication between processes, therefore, new
methods for indexing the address space become essential. To
deal with this challenge, HPX offers an effective mechanism
called Active Global Address Space to manage remote re-
sources allowing for the dynamic suspension of remote
threads and re-assigning different resources to active tasks
when necessary [95]. HPX was recently demonstrated to
outperform MPI in 3D N-body simulations with local inter-
actions [96]. Furthermore, unlike many other parallel frame-
works, HPX provides C++ APIs, which are convenient to
those programmers, who already have some experience de-
veloping parallel C++ codes for multi-core and multi-
threaded heterogeneous architectures. Nevertheless, pro-
gramming in HPX usually requires a relatively steep learning
curve; the Ste||ar group has been working diligently to ad-
dress this issue in order to ease porting efforts.

PERFORMANCE BENCHMARKS FOR INTEL XEON
PHI

The availability of Intel Xeon Phi accelerators in many
contemporary high-performance computing systems draws
attention of a broad research community to this new architec-
ture. Consequently, numerous studies have been recently
published describing early experience of researchers porting
scientific codes to Xeon Phi and reporting preliminary per-
formance benchmarks [69, 80-86, 88, 89, 97, 98]. In Table 1,
we list several evaluations selected from the current litera-
ture sorted by the performance of accelerator threads with
respect to that of the host processor. Note that results de-
scribed in individual papers often are irreconcilable because
of different clock speeds and hardware architecture used in
benchmarks, hyper-threading settings, programming models,
and code optimization and tuning techniques. Nonetheless,
these reports are published within the past couple of years
and cover numerous areas of modern research in physics,
math, engineering, finance and medicine, exemplifying a
continuously growing interest in heterogeneous computing
using Xeon Phi.

An impressive speedup was achieved in optimizing a
Lattice Quantum Chromodynamics (LQCD) code for the
coprocessor with the OpenMP parallelization [88]. By ex-
ploiting cache-blocking techniques, an inter-core communi-
cation and the hardware support for irregular memory ac-
cesses, the Dslash kernel for the matrix vector-vector multi-
plication in LQCD was demonstrated to sustain 280
GFLOPS on the coprocessor. This corresponds to nearly
80% of the achievable performance and leads to impressive
speedups over Xeon CPU of 1.9× and 2.2-2.4× using 5110P
and 7110P cards, respectively. Moreover, accelerating an
iterative algorithm for solving large sparse linear equations,
PQMRCGSTAB, yields one of the highest improvements
reported for Xeon Phi [83]. Thorough optimizations includ-
ing data prefetching to hide data latency, reusing vector

Structure-based Drug Discovery Accelerated by Many-core Devices Current Drug Targets, 2016, Vol. 17, No. 13 1601

Table 1. Accelerating scientific codes using Intel Xeon Phi.

Reference System (Intel Xeon) Testing System (Intel Xeon Phi)
Code (Domain)

Modela Coresb Threadsb Modela Coresb Threadsb
Speedupc Ref.

Lattice Quantum Chromodynamics
(Physics) d

E5-2670
@2.60

8 (16) 16 (32)
7110P
@1.1

61 (60) 244 (60)
2.4×

(128%)
[88]

Lattice Quantum Chromodynamics
(Physics) e

E5-2670
@2.60

8 (16) 16 (32)
7110P
@1.1

61 (60) 244 (60)
2.2×

(117%)
[88]

Lattice Quantum Chromodynamics
(Physics) d

E5-2670
@2.60

8 (16) 16 (32)
5110P

@1.053
60 (60) 240 (60)

1.9×
(101%)

[88]

Lattice Quantum Chromodynamics
(Physics) e

E5-2670
@2.60

8 (16) 16 (32)
5110P

@1.053
60 (60) 240 (60)

1.9×
(101%)

[88]

PQMRCGSTAB (Math) f
E5-2670
@2.60

8 (8) 16 (8)
5110P

@1.053
60 (60) 240 (60)

5.6×
(75%)

[83]

FEASTFLOW (Engineering) g
E5-2658
@2.10

8 (16) 16 (16)
5120D
@1.053

60 (60) 240 (128)
4.7×

(59%)
[69]

3D MPDATA (Geophysics) h
E5-2697
@2.70

12 (24) 24 (48)
7120P

@1.238
61 (61) 244 (244)

2.0×
(39%)

[84]

3D MPDATA (Geophysics) h
E5-2697
@2.70

12 (24) 24 (48)
3120A
@1.1

57 (57) 228 (228)
1.7×

(36%)
[84]

Sparse-matrix matrix multiplication
(Math) i

E5-2670
@2.60

8 (16) 16 (32)
SE10P
@1.1

61 (60) 244 (240)
2.2×

(29%)
[81]

Sparse-matrix vector multiplication
(Math) i

E5-2670
@2.60

8 (16) 16 (32)
SE10P
@1.1

61 (60) 244 (240)
2.1×

(28%)
[81]

Microscopy Image Analysis (Medicine) j
E5-2680
@2.70

8 (16) 16 (16)
SE10P
@1.1

61 (60) 244 (120)
2.1×

(28%)
[82]

Sparse-matrix matrix multiplication
(Math) i

X5680
@3.33

6 (12) 12 (12)
SE10P
@1.1

61 (60) 244 (240)
4.5×

(23%)
[81]

Sparse-matrix vector multiplication
(Math) i

X5680
@3.33

6 (12) 12 (12)
SE10P
@1.1

61 (60) 244 (240)
4.2×

(21%)
[81]

NINA (Medicine)
E5-2620
@2.00

8 (16) 16 (16)
5110P

@1.053
60 (60) 240 (177)

2.2×
(20%)

[85]

Leukocyte Tracking (Medicine) k
E5-2620
@2.00

6 (12) 12 (12)
5110P

@1.053
60 (40) 240 (40)

0.5×
(20%)

[86]

miniMD (Atomistic Simulations) l
E5-2660
@2.20

8 (16) 16 (32)
5110P

@1.053
60 (60) 240 (240)

1.4×
(19%)

[98]

3D MPDATA (Geophysics) h
E5-2643
@3.30

4 (8) 8 (16)
7120P

@1.238
61 (61) 244 (244)

2.9×
(19%)

[84]

3D MPDATA (Geophysics) h
E5-2643
@3.30

4 (8) 8 (16)
3120A
@1.1

57 (57) 228 (228)
2.5×

(18%)
[84]

Monte Carlo LIBOR Swaption Portfolio
Pricer (Finance) m

E5-2670
@2.60

8 (8) 16 (16)
5110P

@1.053
60 (60) 240 (240)

2.3×
(15%)

[97]

FEASTFLOW (Engineering) n
E5-2658
@2.10

8 (16) 16 (16)
5120D
@1.053

60 (60) 240 (128)
1.2×

(15%)
[69]

Microscopy Image Analysis (Medicine) o
E5-2680
@2.70

8 (16) 16 (16)
SE10P
@1.1

61 (60) 244 (120)
1.0×

(13%)
[82]

Microscopy Image Analysis (Medicine) p
E5-2680
@2.70

8 (16) 16 (16)
SE10P
@1.1

61 (60) 244 (180)
1.3×

(12%)
[82]

1602 Current Drug Targets, 2016, Vol. 17, No. 13 Feinstein and Brylinski

(Table 1) contd….

Reference System (Intel Xeon) Testing System (Intel Xeon Phi)
Code (Domain)

Modela Coresb Threadsb Modela Coresb Threadsb
Speedupc Ref.

NAS Parallel Benchmarks (Computer
Science) q

E5-2620
@2.00

8 (16) 16 (32)
5110P

@1.053
60 (60) 240 (240)

0.6×
(8%)

[85]

Monte Carlo Pricing of American Op-
tions (Finance) m

E5-2670
@2.60

8 (8) 16 (16)
5110P

@1.053
60 (60) 240 (240)

0.9×
(6%)

[97]

iMOOSE (Engineering)
E5-2620
@2.00

8 (16) 16 (16)
5110P

@1.053
60 (60) 240 (240)

0.8×
(5%)

[85]

FIRE (Image Recognition)
E5-2620
@2.00

8 (16) 16 (32)
5110P

@1.053
60 (60) 240 (234)

0.4×
(5%)

[85]

Conjugate Gradient solver (Math) r
X7550
@2.00

8 (128)s 16 (128)s
SE10P
@1.09

61 (61) 244 (244)
0.6×
(3%)

[80]

NestedCP Tasking (Engineering)
E5-2620
@2.00

8 (16) 16 (32)
5110P

@1.053
60 (60) 240 (240)

0.2×
(3%)

[85]

CP2K (Atomistic Simulations) t
E5-2678W

@3.10
8 (16) 16 (16)

5110P
@1.053

60 (60) 240 (240)
0.2×
(1%)

[89]

The performance of individual codes on the coprocessor (testing system) is compared to that on the host processor (reference system): a the (co)processor model and @the base fre-
quency in GHz, b the number of physical cores and computing threads per processor (numbers in parentheses were used in benchmarking simulations to calculate speedups),
and c speedups as reported in the original publication (numbers in parentheses show the percentage of the performance of a single processor thread achieved by a single co-processor
thread). Simulation details for those studies that report a series of benchmarking calculations with different parameters: d for the Wilson Dslash kernel, compressed gauge fields, and
the V=32×40×24×96 case; e for the Conjugate Gradient solver, compressed gauge fields, and the V=32×40×24×96 case; f for a 3200×3200 matrix; g for vector operation (axpy, vec-
torized); h for 500 time steps and the grid of size 1022×512×63; i against the ldoor matrix; j for Gradient Stats with regular data access; k without code modifications; l for 2048K
atoms at a cut-off of 2.5Å and with Advanced Vector Extensions enabled on the processor; m for 512K paths; n for sparse matrix-vector multiplication against the Hamrle3 matrix
(spmv, manual vectorization); o for Connected Component Labeling with atomic functions; p for FillHoles with irregular data access; q for an embarrassingly parallel (EP) kernel;
r 1000 iterations; s symmetric multiprocessing using the Bull Coherence Switch technology; t for the average time using the POPT version on the processor and the PSMP version on
the co-processor.

registers, and the SIMD-friendly reduction deliver a speedup
close to a factor of 6 compared to an 8-core processor solv-
ing the same linear equation problems.

Code parallelization and vectorization significantly im-
pact the coprocessor performance as demonstrated for the
software package FEASTFLOW for the modeling of techni-
cal flows, fluid-structure interactions, chemical reactions,
and the multiphase flow behavior [69]. A parallel, vectorized
code running on Xeon Phi gives a speedup of 41.9× (11.4×)
compared to a serial un-vectorized coprocessor (processor)
version, whereas the speedup over the best parallel code exe-
cuted on CPU is 4.7×. A similar approach exploiting the task
parallelism to utilize hundreds of logical cores on the co-
processor, and the data parallelism to efficiently use 512-bit
vector processing units, significantly increased the perform-
ance of the multi-dimensional positive definite advection
transport algorithm (MPDATA) [84]. This algorithm used in
the code for numerical weather prediction executed on the
top-notch 7120P model performs double precision stencil
computations 2 and 2.9 times faster than dual-socket ma-
chines equipped with 12-core (at 2.70 GHz) and 4-core (at
3.30 GHz) processors, respectively.

Xeon Phi was also evaluated for its application in compu-
tational finance [97]. The accelerator-ported implementation
of the LIBOR Swaption Portfolio Pricer, an embarrassingly
parallel Monte-Carlo algorithm, deployed on a 5110P card
outperforms a multi-core dual-processor machine 2.3 times.

However, another financial application for the pricing of
American put options using Monte-Carlo simulations with
cross-path dependencies runs faster on the commodity multi-
core CPU than on the coprocessor, indicating that speedups
are heavily application-dependent [97]. Similar conclusions
arose from comparative benchmarks of several algorithms
including the Flexible Image Retrieval Engine that identifies
sets of similar images to a query image in a database [85].
Here, despite a good scalability on Xeon Phi systems be-
tween 50 and 113, a processor core significantly outperforms
a coprocessor core by a factor of 8-12.

Application-dependent improvements were also reported
for Molecular Dynamics (MD) simulations that are one more
example of highly CPU-intensive codes. CP2K is a state-of-
the-art program for atomistic simulations of solid state, liq-
uid, molecular, and biological systems. Notwithstanding a
50% increase in its performance on Xeon Phi, running the
same MD calculations on a 16-core CPU node still yields
better timings [89]. On the other hand, a single 5110P card is
1.4× faster than a dual-socket, eight-core Intel Xeon server
in performing MD simulations using miniMD, a simplified
version of the popular LAMMPS package [98]. Compared to
the original serial code, the optimized parallel version exe-
cuted simultaneously on the host processor and the accelera-
tor brings about a 10-fold increase in computational speed.
These real world applications once again demonstrate that,
adding Xeon Phi yields considerable performance improve-
ments for highly parallel workloads.

Structure-based Drug Discovery Accelerated by Many-core Devices Current Drug Targets, 2016, Vol. 17, No. 13 1603

Several interesting examples of the application of Intel
Xeon Phi in biology and medicine have also been reported.
In microscopy image analysis, low-dimensional spatial
datasets captured by high-resolution microscopy scanners for
whole slide tissue specimens are subjected to an advanced
image processing. Among many common operations in this
domain, object segmentation and feature computation are the
most CPU expensive algorithms, thus there is a dire need to
improve the performance of these codes. Using a 61-core
Xeon Phi and the parallel OpenMP implementation yields
satisfactory speedups for algorithms with regular data access;
for instance, the Gradient Stats code runs 2.1 times faster on
the coprocessor than on a 16-core CPU-based system [82].
However, only moderate improvements were reported for
those algorithms with irregular data access patterns and rely-
ing on atomic instructions.

Leukocyte Tracking is another medical imaging applica-
tion, where white blood cells are tracked in in vivo video
microscopy of blood vessels to help investigate the inflam-
mation process. It was demonstrated that the execution of
Leukocyte Tracking on Xeon Phi using 40 threads is twice as
slow as on a traditional CPU-based system with 12 threads; a
single coprocessor thread is about 5 times slower than a
processor thread. However, the small number of 36 leuko-
cytes used in this study does not provide sufficient parallel-
ism to fully utilize the hardware resources of the coproces-
sor. Further optimization of the code using vectorization and
the first- and second-level multi-threading significantly im-
proved the performance, indicating that the manual vectori-
zation and a massive parallelism are required in order to take
full advantage of the computing capabilities of Xeon Phi.

APPLICATION OF INTEL XEON PHI TO DRUG
DISCOVERY

Although a wide variety of applications using Intel Xeon
Phi have been developed in physics, mathematics and statics,
the repository of codes for drug design in pharmaceutical
research is still relatively limited. Here we review three ap-
plications that have been recently ported to the accelerator,
eFindSite, a structural bioinformatics tool for the prediction
of ligand-protein binding sites in proteins, a classical force
field used in bio-molecular simulations, and a virtual screen-
ing algorithm, Bristol University Docking Engine.

Ligand Binding Site Prediction

A drug binding to the specific site on a target protein
triggers a series of cellular reactions leading to the desired
therapeutic effect. In drug design, the knowledge of ligand
binding sites is essential for conducting virtual screening
experiments to identify potential lead compounds. In this
regard, we recently developed eFindSite, an algorithm for
evolution/structure-based identification of ligand binding
sites in proteins. eFindSite was designed to maximize the
accuracy of binding pocket detection at the improved toler-
ance to the structural deformation in protein models. Such a
high tolerance to structure imperfections, especially at ligand
binding sites, is particularly important for proteome-scale
applications using computer-generated protein models. Since
eFindSite employs information extracted from ligand-bound
templates to detect binding sites, template-to-target structure

alignments are one of its key components. Briefly, using a
sensitive meta-threading technique [99, 100], weakly ho-
mologous templates bound to ligands are identified in the
PDB [19] and structurally aligned to the target. Next the
template-bound ligands are clustered into putative binding
sites, which are then ranked using machine learning. Typi-
cally, eFindSite takes about 30 minutes to detect binding
sites for a protein [30] with 88% of the computing time con-
sumed by structure alignments calculations [68]. Therefore,
we decided to parallelize structure alignments in order to
speed up the entire prediction process.

The workflow for the parallel version of eFindSite is
shown in Fig. (2). Here, the target protein is a bacterial pep-
tide deformylase responsible for the removal of the N-
terminal formyl group from newly synthesized proteins
(PDB-ID: 1lru, chain A) [101]. Compounds that bind to this
enzyme and block the protein synthesis could be used as
antibiotics to inhibit bacterial growth. Binding site prediction
using eFindSite comprises three distinct stages, the pre-
processing of ligand-bound templates identified by eThread
[99, 100] (Fig. 2A), template-to-target structure alignments
(Fig. 2B), and the post-processing calculations including
pocket clustering and ranking (Fig. 2C). Fig. (2C) also
shows that the top-ranked binding site (a blue ball) was accu-
rately predicted, because it overlaps with a naturally occur-
ring antibiotic actinonin (red sticks) bound to the target
structure (green ribbons) in the experimental complex struc-
ture. As indicated in Fig. (2B), structure alignment calcula-
tions are parallelized using OpenMP for the processor and
the coprocessor.

Specifically, each template-to-target structure alignment
is either mapped to a hardware thread on the processor or
offloaded to the coprocessor. OpenMP pragmas with the
dynamic scheduling are used to parallelize the for-loop itera-
tion over the template library. Parts of the eFindSite code
that handle pre and post-alignment calculations are written in
C++, however, structure alignments are implemented in For-
tran 77 with many thread-unsafe common blocks. Therefore,
common blocks are marked using OpenMP pragmas as pri-
vate in order to avoid memory conflicts during the parallel
execution of structure alignments. For example, !$omp
threadprivate (/block_name/) are used to mark all common
blocks in Fortran 77 subroutines. In addition, the execution
of portions of the code on the coprocessor requires data
transfer. Since the data is copied only once and shared by all
structure alignment threads, there is virtually no overhead
caused by moving data back and forth. Finally, subroutines
and variables offloaded to the coprocessor are marked with,
respectively, !dir$ attributes offload:mic::subroutine_name
and !dir$ attributes offload:mic:variable_name.

In order to fully utilize the parallel power of nodes
equipped with Intel Xeon Phi cards, a dynamic workload
balancing mechanism is implemented to launch parallel tasks
to both processor and coprocessor concurrently. Up to 4 par-
allel tasks, each with 4 threads, on the processor and up to 10
parallel tasks, each with 24 threads, on the coprocessor are
executed in parallel. This way, two 8-core Xeon processors
and one 61-core Xeon Phi accelerator remain fully utilized.
Encouragingly, the OpenMP-based version of eFindSite
yields a 17.6× speedup over the serial version. Specifically,

1604 Current Drug Targets, 2016, Vol. 17, No. 13 Feinstein and Brylinski

processing a dataset of 501 proteins that would take 36.8
hours on a single processor core can now be completed in
2.1 hours on a single Stampede node. This dramatically im-
proved performance of eFindSite is particularly important for
its large-scale applications, such as drug repositioning, where
tens of thousands of proteins need to be targeted. From the
programming standpoint, eFindSite represents typical scien-
tific software written by domain scientists using different
languages and styles. The parallelization of eFindSite dem-
onstrates that with minor code modifications, a complex
C++/Fortran77 code could be ported to Intel Xeon Phi yield-
ing satisfactory speedups. Thus, adapting scientific software
for the Intel Xeon Phi architecture is relatively straightfor-
ward yet very rewarding.

Parallelization of Molecular Force Fields

Most molecular docking algorithms used in structure-
based virtual screening model protein-drug systems as sets of
interacting particles that correspond to either individual at-
oms [102-105] or pseudo-atoms representing multi-atom
moieties, such as aromatic rings and functional groups [39,
106-108]. A variety of force fields include non-bonded inter-
actions between particles, such as electrostatic and van der
Waals, as important components of scoring functions. It has
been estimated that computing these interactions, often over
long distances, makes up 80-95% of the total execution time
[109]. Since the calculation of non-bonded interactions is
easily parallelizable, significant speedups of molecular dock-
ing can be expected by moving these operations to massively
parallel accelerators. Indeed, a recent study demonstrated
that Intel Xeon Phi is well-suited for the acceleration of non-
bonded electrostatic interaction kernels [110]. Particularly
for large systems composed of 226 protein and 216 ligand

atoms, the performance of Xeon Phi is comparable to that of
NVIDIA Tesla K20x GPU. Note that the latter features two
times higher peak performance for single-precision opera-
tions than Xeon Phi; using double-precision computations,
the performance of Xeon Phi is expected to be even closer to
that of K20x.

Calculating all-against-all pairwise non-bonded interac-
tions involves iterating over all ligand and protein atoms
inside a double loop. These calculations can be significantly
accelerated using SIMD instructions that are capable of per-
forming the same operation simultaneously on multiple data
points. However, an appropriate construction of data struc-
tures is critical for the parallel performance and the full utili-
zation of the SIMD units. In molecular docking, ligand and
protein atoms are described in terms of their positions and
parameters. In Fig. (3), we illustrate two possible models for
the memory allocation for ligand caffeine. Fig. (3A) shows
the chemical structure of caffeine that is composed of 14
heavy atoms. Fig. (3B) exemplifies the Array of Structures
(AoS) memory layout for caffeine, where each atom is repre-
sented by its Cartesian x, y and z coordinates, and an arbi-
trary parameter p, which can carry a partial charge (for elec-
trostatic interactions), or the atomic radius (for van der
Waals interactions). Since, the parameters for each atom are
stored contiguously, computing leads to horizontal opera-
tions that consume multiple SIMD execution slots but pro-
duce only a single result. In other words, the AoS format
may cause data elements required for a single computation,
e.g. x1, y1, z1 and p1, to be located far from each other in
memory, thus falling into separate cache-lines. This ineffi-
cient pattern typically results in a poor cache utilization se-
verely limiting the parallel performance.

Fig. (2). Parallel implementation of eFindSite. (A) Pre-processing: for a given target protein (green cartoon) template proteins (shown in
orange, pink, and cyan) are selected from the eFindSite library. (B) The computation of template-target structure alignments is parallelized
using OpenMP for processor and coprocessor units. (C) Post-processing: ligand-binding sites are predicted. A blue ball represents the top-
ranked pocket, whereas a bound ligand molecule in the crystal structure is shown as red sticks. Results from eFindSite can be subsequently
used for binding residue prediction, functional annotation, and virtual screening. Numbers in parentheses inside pentagons at the bottom
correspond to the percentage of the total wall time for a serial execution.

Structure-based Drug Discovery Accelerated by Many-core Devices Current Drug Targets, 2016, Vol. 17, No. 13 1605

In contrast, the Structure of Arrays (SoA) memory layout

allows for a more efficient use of the SIMD instructions.
This is shown for caffeine in Fig. (3C), where the data is
ready for computation in an optimal vertical arrangement.
The SoA format takes advantage of all SIMD elements
available, i.e. computations involving multiple atoms are
performed simultaneously using multiple SIMD execution
slots producing a unique result for each slot. This leads to a
better utilization of the coprocessor bandwidth and cache.
Consequently, calculating electrostatic non-bonded interac-
tions on Xeon Phi using SoA is almost twice as fast as for
the AoS. As demonstrated for a model system comprising
10,240,000 protein and 8,192 ligand atoms, using all 240
threads available on the coprocessor completes the calcula-
tions in 4,159 and 6,848 ms for the SoA and AoS
implementations, respectively [110].

Optimally arranged data structures also significantly im-
proved the computational throughput of similar calculations
involving simple rotations and translations of 1,500×1,500
grid points [111]. The SoA model on the 1.09 GHz Xeon Phi
SE10P coprocessor with the new 512-bit Intel Initial Many
Core Instruction vectorization achieves a single- (double-)
precision performance of 483.6 (199.9) GFLOPS. For com-
parison, the fastest implementation of the same algorithm on
2.7GHz Xeon E5-2680 processor using 256-bit Advanced
Vector Extensions (AVX) yields 257.7 (111.6) GFLOPS.
Therefore, SIMD capable hardware offers a great platform
for the development of molecular force field codes domi-
nated by non-bonded interaction calculations, however, the
selection of suitable data structures is mandatory in order to
maximize the accelerator performance.

Virtual Screening

The Bristol University Docking Engine (BUDE), an al-
gorithm that simulates the binding of drug candidates to their
macromolecular targets, was one of the first projects to speed
up molecular docking in structure-based virtual screening by
using massively parallel accelerators [112, 113]. The force
field implemented in BUDE comprises physicochemical

potentials developed for ab initio protein folding simulations
[114]. The conformational space is efficiently explored using
the Evolutionary Monte Carlo protocol with six translational
and rotational degrees of freedom. The docking procedure
first constructs a set of configurations uniformly covering the
search space, which are subsequently used to seed the sub-
populations of protein-drug configurations. The system pro-
gressively evolves exploring the conformational space in
order to locate the global energy minimum that is finally
taken as the predicted binding pose. The docking procedure
involves generating a large number of configurations, whose
binding affinity towards the receptor protein is evaluated by
a scoring function. Therefore, virtual screening applications
employing hundreds of thousands to even millions of drug
candidates require a significant acceleration of docking
simulations for individual compounds.

In this spirit, a port of BUDE for heterogeneous comput-
ing was developed using OpenCL. This particular program-
ing model was chosen because OpenCL offers high perform-
ance portability, so that the same code can be deployed
across a variety of hardware architectures. Moreover, the
application of docking algorithms, such as BUDE, in struc-
ture-based virtual screening exploits different degrees of
parallelism at both data and task levels, which is supported
by OpenCL. Since the vast majority of the computations in
BUDE are related to the evaluation of binding energy for a
given drug-protein configuration, this part of the code was
implemented as a single, highly optimized OpenCL kernel.
Special attention was paid to the elimination of branches,
which are known to severely impact the performance of par-
allel codes. Here, conditional branches in the energy evalua-
tion kernel were converted into the combination of predi-
cated selection and multiplication, which eliminate the con-
trol flow from the code. Furthermore, the memory footprint
of the force field was significantly reduced to more effi-
ciently align with memory interfaces of current accelerator
devices. Similar to the implementation of molecular force
field described in the preceding section, the AoS data layout
used for transformation descriptors was replaced with a
SIMD-friendly SoA format. Other optimizations include

Fig. (3). Comparison of Structure of Arrays and Array of Structures data layouts. (A) Chemical structure of caffeine with individual heavy
atoms numbered and colored by the atom type (carbon – green, nitrogen – blue, oxygen – red). (B) Array of Structures memory layout. (C)
Structure of Arrays memory layout; SIMD execution slots are represented by black waves. In B and C, each heavy atom is associated with
four data points: Cartesian coordinates x, y and z, and an arbitrary parameter p.

1606 Current Drug Targets, 2016, Vol. 17, No. 13 Feinstein and Brylinski

storing force field parameters in the fast on-chip memory,
removing parameter redundancy and building some constant
values directly into the energy kernel, as well as increasing
data reuse within the OpenCL kernel to improve arithmetic
intensity.

Tested on Xeon Phi SE10P, BUDE achieved an effi-
ciency of 32% of peak performance with sustained 680
GFLOPS. Since the code was primarily optimized for
NVIDIA GPUs, further modifications to the kernel would be
necessary in order to improve the performance of BUDE on
Xeon Phi devices. The same code executed on the host dual-
processor with a total of 32 cores (Xeon E5-2687W clocked
at 3.1 GHz) achieved the sustained efficiency of 44% and
350 GFLOPS. Compared to the baseline Fortran implemen-
tation utilizing 32 hardware threads, executing the OpenCL
version on the processor and coprocessor delivers 1.3× and
2× speedups, respectively. Although we reviewed only the
performance of BUDE on Xeon Phi, this study is an example
of a remarkably successful implementation of a molecular
docking code that features high performance portability tar-
geting various many-core platforms. In contrast to other ap-
proaches that often move only computationally intensive
portions of the code to the device, the entire molecular dock-
ing algorithm was ported to the accelerator. Finally, as a
unique feature of BUDE, the same OpenCL code was dem-
onstrated to sustain a high fraction of peak performance of
about 40% across a variety of hardware architectures.

CONCLUSION

Modern drug discovery is no longer performed exclu-
sively in wet labs; computer-aided drug design has become
an integral component of almost every aspect of drug devel-
opment. The exponential growth of genomic knowledge re-
sulting from continuous advances in gene sequencing tech-
nologies holds a significant promise for the pharmaceutical
industry to develop better and safer therapeutics. It has also
created new challenges because processing these vast
datasets for drug design requires an unprecedented comput-
ing power. Consequently, massively parallel accelerators
have a great potential to accelerate scientific discovery.
Here, we reviewed a new heterogeneous computing platform
equipped with many-core Intel Xeon Phi coprocessors, fo-
cusing on the application of these devices to modern com-
puter-aided drug discovery. Specifically, we highlighted
various algorithms used in drug binding site prediction, bio-
molecular simulations, and structure-based virtual screening
to demonstrate that significant speedups can be achieved by
porting serial codes to the accelerator. In contrast to other
parallel architectures, coding for Intel Xeon Phi is relatively
straightforward with fairly short programming cycles, how-
ever, a thorough code optimization is mandatory to fully
utilize the parallel capability of this many-core platform.
Special attention should be drawn to a proper code vectoriza-
tion, since making use of SIMD executions is essential to
bring out the full potential of the coprocessor. There is no
doubt that the heterogeneous parallel computing using many-
core devices is vital to accelerate the computational compo-
nents of modern drug discovery pipelines, thus we expect a
vigorous development of new algorithms and codes for the
coming years.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This study was supported by the National Science Foun-
dation under the NSF EPSCoR Cooperative Agreement No.
EPS-1003897 and the Louisiana Board of Regents through
the Board of Regents Support Fund [contract LEQSF(2012-
15)-RD-A-05]. The authors are grateful for discussions and
comments from the members of the Technologies for Ex-
treme Scale Computing (TESC) team formed within the
Louisiana Alliance for Simulation-Guided Materials Appli-
cations (LA-SiGMA). This project used the Extreme Science
and Engineering Discovery Environment (XSEDE), which is
supported by the National Science Foundation grant number
OCI-1053575.

REFERENCES
[1] Reiss T. Drug discovery of the future: the implications of the hu-

man genome project. Trends Biotechnol 2001; 19: 496-9.
[2] Williams M. Genome-based drug discovery: prioritizing disease-

susceptibility/disease-associated genes as novel drug targets for
schizophrenia. Curr Opin Investig Drugs 2003; 4: 31-6.

[3] Sali A, Blundell TL. Comparative protein modelling by satisfaction
of spatial restraints. J Mol Biol 1993; 234: 779-815.

[4] Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: mod-
elling protein tertiary and quaternary structure using evolutionary
information. Nucleic Acids Res 2014; 42: W252-8.

[5] Rohl CA, Strauss CE, Misura KM, Baker D. Protein structure pre-
diction using Rosetta. Methods Enzymol 2004; 383: 66-93.

[6] Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER
Suite: protein structure and function prediction. Nat Methods 2014;
12: 7-8.

[7] Messaoudi A, Belguith H, Ben Hamida J. Homology modeling and
virtual screening approaches to identify potent inhibitors of VEB-1
beta-lactamase. Theor Biol Med Model 2013; 10: 22.

[8] Evers A, Klabunde T. Structure-based drug discovery using
GPCR homology modeling: successful virtual screening for an-
tagonists of the alpha1A adrenergic receptor. J Med Chem 2005;
48: 1088-97.

[9] Yoshikawa Y, Oishi S, Kubo T, Tanahara N, Fujii N, Furuya T.
Optimized method of G-protein-coupled receptor homology model-
ing: its application to the discovery of novel CXCR7 ligands. J
Med Chem 2013; 56: 4236-51.

[10] Christopoulos A. Allosteric binding sites on cell-surface receptors:
novel targets for drug discovery. Nat Rev Drug Discov 2002; 1:
198-210.

[11] Dukka BK. Structure-based methods for computational protein
functional site prediction. Comput Struct Biotechnol J 2013; 8:
e201308005.

[12] Hendlich M, Rippmann F, Barnickel G. LIGSITE: automatic and
efficient detection of potential small molecule-binding sites in pro-
teins. J Mol Graph Model 1997; 15: 359-63, 389.

[13] Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source
platform for ligand pocket detection. BMC Bioinformatics 2009;
10: 168.

[14] Laskowski RA. SURFNET: a program for visualizing molecular
surfaces, cavities, and intermolecular interactions. J Mol Graph
1995; 13: 323-30, 307-8.

[15] Laurie AT, Jackson RM. Q-SiteFinder: an energy-based method for
the prediction of protein-ligand binding sites. Bioinformatics 2005;
21: 1908-16.

[16] Ngan CH, Hall DR, Zerbe B, Grove LE, Kozakov D, Vajda S.
FTSite: high accuracy detection of ligand binding sites on unbound
protein structures. Bioinformatics 2012; 28: 286-7.

[17] An J, Totrov M, Abagyan R. Pocketome via comprehensive identi-
fication and classification of ligand binding envelopes. Mol Cell
Proteomics 2005; 4: 752-61.

Structure-based Drug Discovery Accelerated by Many-core Devices Current Drug Targets, 2016, Vol. 17, No. 13 1607

[18] Roy A, Yang J, Zhang Y. COFACTOR: an accurate comparative
algorithm for structure-based protein function annotation. Nucleic
Acids Res 2012; 40: W471-7.

[19] Berman HM, Westbrook J, Feng Z, et al. The protein data bank.
Nucleic Acids Res 2000; 28: 235-42.

[20] Zhang Y, Skolnick J. TM-align: a protein structure alignment algo-
rithm based on the TM-score. Nucleic Acids Res 2005; 33: 2302-9.

[21] Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the
unification of biology. The gene ontology consortium. Nat Genet
2000; 25: 25-9.

[22] Lee Y, Elvitigala DA, Whang I, et al. Structural and functional
characterization of a novel molluskan ortholog of TRAF and TNF
receptor-associated protein from disk abalone (Haliotis discus dis-
cus). Fish Shellfish Immunol 2014; 40: 32-9.

[23] Naveed M, Ahmed I, Khalid N, Mumtaz AS. Bioinformatics based
structural characterization of glucose dehydrogenase (gdh) gene
and growth promoting activity of Leclercia sp. QAU-66. Braz J
Microbiol 2014; 45: 603-11.

[24] Shi L, Zhang H, Qiu Y, et al. Biochemical characterization and
ligand-binding properties of trehalose-6-phosphate phosphatase
from Mycobacterium tuberculosis. Acta Biochim Biophys Sin
(Shanghai) 2013; 45: 837-44.

[25] Guo K, Wang W, Luo L, Chen J, Guo Y, Cui F. Characterization of
an aphid-specific, cysteine-rich protein enriched in salivary glands.
Biophys Chem 2014; 189: 25-32.

[26] Wass MN, Kelley LA, Sternberg MJ. 3DLigandSite: predicting
ligand-binding sites using similar structures. Nucleic Acids Res
2010; 38: W469-73.

[27] Brylinski M, Skolnick J. A threading-based method (FINDSITE)
for ligand-binding site prediction and functional annotation. Proc
Natl Acad Sci USA 2008; 105: 129-34.

[28] Skolnick J, Brylinski M. FINDSITE: a combined evolu-
tion/structure-based approach to protein function prediction. Brief
Bioinform 2009; 10: 378-91.

[29] Feinstein WP, Brylinski M. eFindSite: Enhanced fingerprint-based
virtual screening against predicted ligand binding sites in protein
models. Mol Inf 2014; 33: 135-50.

[30] Brylinski M, Feinstein WP. eFindSite: Improved prediction of
ligand binding sites in protein models using meta-threading, ma-
chine learning and auxiliary ligands. J Comput Aided Mol Des
2013; 27: 551-67.

[31] Reymond J-L, van Deursen R, Blum LC, Ruddigkeit L. Chemical
space as a source for new drugs. Med Chem Commun 2010; 1: 30-
38.

[32] Willett P, Winterman V, Bawden D. Implementation of nearest-
neighbor searching in an online chemical structure search system. J
Chem Inf Comput Sci 1986; 26: 36-41.

[33] Wang X, Wang JT. Fast similarity search in three-dimensional
structure databases. J Chem Inf Comput Sci 2000; 40: 442-51.

[34] Gironés X, Robert D, Carbó-Dorca R. TGSA: A molecular super-
position program based on topo-geometrical considerations. J
Comput Chem 2001; 22: 255-63.

[35] Cavasotto CN, Orry AJ. Ligand docking and structure-based virtual
screening in drug discovery. Curr Top Med Chem 2007; 7: 1006-
14.

[36] Lengauer T, Rarey M. Computational methods for biomolecular
docking. Curr Opin Struct Biol 1996; 6: 402-6.

[37] Goodsell DS, Morris GM, Olson AJ. Automated docking of flexi-
ble ligands: applications of AutoDock. J Mol Recognit 1996; 9: 1-
5.

[38] Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geo-
metric approach to macromolecule-ligand interactions. J Mol Biol
1982; 161: 269-88.

[39] Brylinski M, Skolnick J. Q-Dock: Low-resolution flexible ligand
docking with pocket-specific threading restraints. J Comput Chem
2008; 29: 1574-88.

[40] Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD.
Improved protein-ligand docking using GOLD. Proteins 2003; 52:
609-23.

[41] Brylinski M. Nonlinear scoring functions for similarity-based
ligand docking and binding affinity prediction. J Chem Inf Model
2013; 53: 3097-112.

[42] Neves MA, Totrov M, Abagyan R. Docking and scoring with ICM:
the benchmarking results and strategies for improvement. J Comput
Aided Mol Des 2012; 26: 675-86.

[43] Ghosh S, Nie A, An J, Huang Z. Structure-based virtual screening
of chemical libraries for drug discovery. Curr Opin Chem Biol
2006; 10: 194-202.

[44] Seifert MH, Lang M. Essential factors for successful virtual screen-
ing. Mini Rev Med Chem 2008; 8: 63-72.

[45] Villoutreix BO, Eudes R, Miteva MA. Structure-based virtual
ligand screening: recent success stories. Comb Chem High
Throughput Screen 2009; 12: 1000-16.

[46] Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking:
An overview of search algorithms and a guide to scoring functions.
Proteins 2002; 47: 409-43.

[47] Shoichet BK, Kuntz ID, Bodian DL. Molecular docking using
shape descriptors. J Comput Chem 1992; 13: 380-97.

[48] Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG.
ZINC: a free tool to discover chemistry for biology. J Chem Inf
Model 2012; 52: 1757-68.

[49] Neudert G, Klebe G. DSX: a knowledge-based scoring function for
the assessment of protein-ligand complexes. J Chem Inf Model
2011; 51: 2731-45.

[50] Zhang C, Liu S, Zhu Q, Zhou Y. A knowledge-based energy func-
tion for protein-ligand, protein-protein, and protein-DNA com-
plexes. J Med Chem 2005; 48: 2325-35.

[51] Pedemonte M, Nesmachnow S, Cancela H. A survey on parallel ant
colony optimization. Appl Soft Comput 2011; 11: 5181-97.

[52] Eleftheriou M, Rayshubski A, Pitera JW, Fitch BG, Zhou R, Ger-
main RS. Parallel implementation of the replica exchange molecu-
lar dynamics algorithm on Blue Gene/L. 20th International Sympo-
sium on Parallel and Distributed Processing, Rhodes Island,
Greece, 2006.

[53] Knysh DS, Kureichik VM. Parallel genetic algorithms: a survey
and problem state of the art. J Comput Syst Sci Int 2010; 49: 579-
89.

[54] What is GPU accelerated computing? Available at: http://
www.nvidia.com/object/what-is-gpu-computing.html [accessed
January 31, 2015].

[55] Parallel programming and computing platform. Available at:
http://www.nvidia.com/object/cuda_home_new.html [accessed
January 31, 2015].

[56] OpenACC directives for accelerators. Available at: http://
www.openacc-standard.org/ [accessed January 31, 2015].

[57] Vouzis PD, Sahinidis NV. GPU-BLAST: using graphics processors
to accelerate protein sequence alignment. Bioinformatics 2011; 27:
182-8.

[58] Pang B, Zhao N, Becchi M, Korkin D, Shyu CR. Accelerating
large-scale protein structure alignments with graphics processing
units. BMC Res Notes 2012; 5: 116.

[59] Dlugosz M, Zielinski P, Trylska J. Brownian dynamics simulations
on CPU and GPU with BD_BOX. J Comput Chem 2011; 32: 2734-
44.

[60] Weigel M. Simulating spin models on GPU. Comp Phys Commun
2011; 182: 1833-6.

[61] Roberts E, Stone JE, Sepulveda L, Hwu WMW, Luthey-Schulten
Z. Long time-scale simulations of in vivo diffusion using GPU
hardware. Proceedings of the 2009 IEEE International Symposium
on Parallel & Distributed Processing, Rome, Italy, 2009: 1-8.

[62] AMD compute cores. Available at: http://www.amd.com/en-
us/innovations/software-technologies/processors-for-
business/compute-cores [accessed January 31, 2015].

[63] Einstein@Home. Available at: http://www.einsteinathome.org/
[accessed January 31, 2015].

[64] Projects with ATI/AMD applications. Available at:
http://boinc.berkeley.edu/wiki/ATI_Radeon [accessed January 31,
2015].

[65] AMD energy-efficient “Carrizo” system-on-chip. Available at:
http://www.amd.com/en-us/press-releases/Pages/amd-discloses-
architecture-2015feb23.aspx [accessed January 31, 2015].

[66] Intel Xeon Phi coprocessor. Available at: https:// soft-
ware.intel.com/en-us/mic-developer [accessed January 31, 2015].

[67] Intel® Xeon Phi™ core micro-architecture. Available at:
https://software.intel.com/en-us/articles/intel-xeon-phi-core-micro-
architecture [accessed January 31, 2015].

[68] Feinstein W, Moreno J, Jarrell M, Brylinski M. Accelerating the
pace of protein functional annotation with Intel Xeon Phi coproces-
sors. IEEE Trans Nanobioscience 2015; 14: 429-39.

1608 Current Drug Targets, 2016, Vol. 17, No. 13 Feinstein and Brylinski

[69] Venetis IE, Goumas G, Geveler M, Ribbrock D. Porting FEAST-
FLOW to the Intel Xeon Phi: Lessons learned. PRACE 2014:
White Paper 139.

[70] Hemsoth N. Full Details Uncovered on Chinese Top
Supercomputer. HPCwire, Available at: http://www.hpcwire.com/
2013/06/02/full_details_uncovered_on_chinese_top_super com-
puter/ 2013.

[71] Beacon system configuration. Available at: https://
www.nics.tennessee.edu/computing-resources/beacon/configuration
[accessed January 31, 2015].

[72] Stampede at TACC. Available at: https://www.tacc.utexas.edu/
user-services/user-guides/stampede-user-guide [accessed January
31, 2015].

[73] SuperMIC. Available at: http://www.hpc.lsu.edu/resources/hpc/
system.php?system=SuperMIC [accessed January 31, 2015].

[74] Message Passing Interface forum. Available at: http://www.mpi-
forum.org/ [accessed January 31, 2015].

[75] MPICH. Available at: http://www.mpich.org/ [accessed January 31,
2015].

[76] Open MPI: open source high performance computing. Available at:
http://www.open-mpi.org/ [accessed January 31, 2015].

[77] Collignon B, Schulz R, Smith JC, Baudry J. Task-parallel message
passing interface implementation of Autodock4 for docking of very
large databases of compounds using high-performance super-
computers. J Comput Chem 2011; 32: 1202-9.

[78] OpenMP specifications. Available at: http://openmp.org/wp/
openmp-specifications/ [accessed January 31, 2015].

[79] OpenMP compilers. Available at: http://openmp.org/wp/openmp-
compilers/ [accessed January 31, 2015].

[80] Cramer T, Schmidl D, Klemm M, an Mey D. OpenMP program-
ming on Intel Xeon Phi coprocessors: An early performance com-
parison. Proceedings of Many-core Applications Research Com-
munity (MARC) Symposium at RWTH Aachen University,
Aachen, Germany, 2012: 38-44.

[81] Saule E, Kaya K, Çatalyürek ÜV. Performance evaluation of sparse
matrix multiplication kernels on Intel Xeon Phi. In: Wyrzykowski
R, Dongarra J, Karczewski K, Waśniewski J, Parallel Processing
and Applied Mathematics. Springer Berlin Heidelberg, 2014; pp.
559-70.

[82] Teodoro G, Kurc T, Kong J, Cooper L, Saltz J. Comparative per-
formance analysis of Intel Xeon Phi, GPU, and CPU: A case study
from microscopy image analysis. 28th IEEE International Sympo-
sium on Parallel and Distributed Processing, Phoenix, AZ, 2014:
pp. 1063-72.

[83] Chen C, Yang CQ, Yao WK, Qi J, Wu Q. Accelerating
PQMRCGSTAB algorithm on Xeon Phi. Adv Materials Res 2013;
709: 555-62.

[84] Szustak L, Rojek K, Gepner P. Using Intel Xeon Phi coprocessor to
accelerate computations in MPDATA algorithm. In: Wyrzykowski
R, Dongarra J, Karczewski K, Waśniewski J, Parallel Processing
and Applied Mathematics. Springer Berlin Heidelberg, 2014; pp.
582-92.

[85] Schmidl D, Cramer T, Wienke S, Terboven C, Müller MS. Assess-
ing the performance of OpenMP programs on the Intel Xeon Phi.
In: Wolf F, Mohr B, an Mey D, Euro-Par 2013 Parallel Processing.
Springer Berlin Heidelberg, 2013; pp. 547-58.

[86] Fang J, Sips H, Zhang L, Xu C, Che Y, Varbanescu AL. Test-
driving Intel Xeon Phi. Proceedings of the 5th ACM/SPEC Interna-
tional Conference on Performance Engineering, Dublin, Ireland,
2014: pp. 137-48.

[87] Gorobets A, Trias FX, Borrell R, Lehmkuhl O, Oliva A. Hybrid
MPI +OpenMP parallelization of an FFT-based 3D Poisson solver
with one periodic direction. Comput Fluids 2011; 49: 101-9.

[88] Joó B, Kalamkar DD, Vaidyanathan K, et al. Lattice QCD on Intel
Xeon Phi coprocessors. In: Kunkel JM, Ludwig T, Meuer HW,
Supercomputing. Springer Berlin Heidelberg, 2013; pp. 40-54.

[89] Reid F, Bethune I. Optimising CP2K for the Intel Xeon Phi.
PRACE 2014: White Paper 140.

[90] The open standard for parallel programming of heterogeneous
systems. Available at: https://www.khronos.org/opencl/ [accessed
January 31, 2015].

[91] OpenCL applications. Available at: https://www.khronos.org/
opencl/resources/opencl-applications-using-opencl [accessed Janu-
ary 31, 2015].

[92] Gorobets A, Trias FX, Borrell R, Oyarzun G, Oliva A. Direct nu-
merical simulation of turbulent flows with parallel algorithms for
various computing architectures. 6th European Conference on
Computational Fluid Dynamics, Barcelona, Spain, 2014.

[93] Kaiser H, Brodowicz M, Sterling T. ParalleX: An advanced parallel
execution model for scaling-impaired applications. Proceedings of
the 2009 International Conference on Parallel Processing Work-
shops, Vienna, Austria, 2009: 394-401.

[94] HPX documents. Available at: http://stellar.cct.lsu.edu/docs/ [ac-
cessed January 31, 2015].

[95] Kaiser H, Heller T, Adelstein-Lelbach B, Serio A, Fey D. HPX - A
task based programming model in a global address space. PGAS
'14 Proceedings of the 8th International Conference on Partitioned
Global Address Space Programming Models, Eugene, Oregon,
USA, 2014: 1-11.

[96] Heller T, Kaiser H, Schäfer A, Fey D. Using HPX and LibGeoDe-
comp for scaling HPC applications on heterogeneous supercomput-
ers. ScalA ’13, Proceedings of the Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems, Denver CO, USA,
2013.

[97] Computing benchmarks. Available at: http://blog.xcelerit.com/
intel-xeon-phi-vs-nvidia-tesla-gpu/ [accessed January 31, 2015].

[98] Pennycook SJ, Hughes CJ, Smelyanskiy M, Jarvis SA. Exploring
SIMD for Molecular Dynamics, using Intel Xeon processors and
Intel Xeon Phi coprocessors. 27th IEEE International Symposium
on Parallel and Distributed Processing, Boston, MA, 2013: pp.
1085-97.

[99] Brylinski M, Feinstein WP. Setting up a meta-threading pipeline
for high-throughput structural bioinformatics: eThread software
distribution, walkthrough and resource profiling. J Comput Sci Syst
Biol 2012; 6: 1-10.

[100] Brylinski M, Lingam D. eThread: a highly optimized machine
learning-based approach to meta-threading and the modeling of
protein tertiary structures. PLoS One 2012; 7: e50200.

[101] Guilloteau J-P, Mathieu M, Giglione C, et al. The crystal structures
of four peptide deformylases bound to the antibiotic actinonin re-
veal two distinct types: A platform for the structure-based design of
antibacterial agents. J Mol Biol 2002; 320: 951-962.

[102] Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search
strategies for automated molecular docking of flexible molecule da-
tabases. J Comput Aided Mol Des 2001; 15: 411-28.

[103] Meiler J, Baker D. ROSETTALIGAND: protein-small molecule
docking with full side-chain flexibility. Proteins 2006; 65: 538-
48.

[104] Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking
method using an incremental construction algorithm. J Mol Biol
1996; 261: 470-89.

[105] Trott O, Olson AJ. AutoDock Vina: improving the speed and accu-
racy of docking with a new scoring function, efficient optimization,
and multithreading. J Comput Chem 2010; 31: 455-61.

[106] Brylinski M, Skolnick J. Q-Dock(LHM): Low-resolution refine-
ment for ligand comparative modeling. J Comput Chem 2010; 31:
1093-105.

[107] Vakser IA. Low-resolution docking: prediction of complexes for
underdetermined structures. Biopolymers 1996; 39: 455-64.

[108] Wojciechowski M, Skolnick J. Docking of small ligands to low-
resolution and theoretically predicted receptor structures. J Comput
Chem 2002; 23: 189-97.

[109] Kuntz SK, Murphy RC, Niemier MT, Izaguirre JA, Kogge PM.
Petaflop computing for protein folding. Proceedings of the Tenth
SIAM Conference on Parallel Processing for Scientific Computing,
Portsmouth, Virginia, 2001: pp. 12-4.

[110] Fang J, Varbanescu AL, Imbernon B, Cecilia JM, Perez-Sanchez
H. Parallel computation of non-bonded interactions in drug discov-
ery: Nvidia GPUs vs. Intel Xeon Phi. 2nd International Work-
Conference on Bioinformatics and Biomedical Engineering, Gra-
nada, Spain, 2014.

[111] Besl P. A case study comparing AoS (Arrays of Structures) and
SoA (Structures of Arrays) data layouts for a compute-intensive
loop run on Intel Xeon processors and Intel Xeon Phi product fam-
ily coprocessors. Intel Article: 392271.

[112] Sessions RB, McIntosh-Smith S. An accelerated, computer assisted
molecular modeling method for drug design. International
Supercomputing Conference, Dresden, Germany, 2008.

Structure-based Drug Discovery Accelerated by Many-core Devices Current Drug Targets, 2016, Vol. 17, No. 13 1609

[113] McIntosh-Smith S, Price J, Sessions RB, Ibarra AA. High perform-
ance in silico virtual drug screening on many-core processors. Int J
High Perform Comput Appl 2014; [in press].

[114] Gibbs N, Clarke AR, Sessions RB. Ab initio protein structure pre-
diction using physicochemical potentials and a simplified off-
lattice model. Proteins 2001; 43: 186-202.

