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ABSTRACT: We have used protein cross-linking with the zero-length cross-
linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and radiolytic foot-
printing coupled with high-resolution tandem mass spectrometry, to examine
the structure of higher-plant PsbO when it is bound to Photosystem II. Twenty
intramolecular cross-linked residue pairs were identified. On the basis of this
cross-linking data, spinach PsbO was modeled using the Thermosynechococcus
vulcanus PsbO structure as a template, with the cross-linking distance constraints
incorporated using the MODELLER program. Our model of higher-plant PsbO identifies several differences between the spinach
and cyanobacterial proteins. The N-terminal region is particularly interesting, as this region has been suggested to be important
for oxygen evolution and for the specific binding of PsbO to Photosystem II. Additionally, using radiolytic mapping, we have
identified regions on spinach PsbO that are shielded from the bulk solvent. These domains may represent regions on PsbO that
interact with other components, as yet unidentified, of the photosystem.

Photosystem II (PS II) is a light energy-driven water-
plastoquinone oxidoreductase. Excitation energy from the

light-harvesting apparatus (phycobilisomes in cyanobacteria and
light-harvesting chlorophyll proteins in green plants and algae) is
transferred to the reaction center of the photosystem. Initial
charge separation occurs between ChlD1 and PheoD1, which
yields ChlD1

+PheoD1
−.1 This charge-separated state is stabilized

by rapid electron transfer from PheoD1
−, first to QA and then

to QB. The accumulation of two electrons on QB leads to pro-
tonation and its subsequent release as plastoquinol. ChlD1

+ is
reduced by PD1, and PD1

+ is reduced by Yz, the residue D1:
161Y,

yielding YZ
• with the release of a proton. The subsequent

reduction of YZ
• by the Mn4CaO5 cluster occurs via proton-

coupled electron transport and leads to the accumulation of an
oxidizing equivalent at the oxygen-evolving site, the Mn4CaO5
metal center. The accumulation of four oxidizing equivalents
ultimately leads to the oxidation of two water molecules and the
release of dioxygen.2,3

Cyanobacterial PS II contains at least 20 subunits, of which at
least 17 are intrinsic membrane proteins.4 A subset of these
components (D1, D2, CP43, CP47, the α and β subunits of
cytochrome b559, and the PSBL protein) is required for oxygen
evolution and accumulation of the photosystem in thylakoid
membranes. Genetic or biochemical removal of any of these
protein subunits leads to loss of functional PS II. In addition, 10
low-molecular mass intrinsic proteins are present; however, their
functions remain obscure. PS II complexes containing only these
intrinsic proteins evolve oxygen at low rates and require very high

concentrations of calcium and chloride.5,6 At presumptive
physiological concentrations of these cofactors, efficient oxygen
evolution requires the extrinsic components of the photosystem.
These include PsbO, which is uniformly present in all oxygenic
organisms, and either PsbU, PsbV, CyanoQ and CyanoP (in the
cyanobacteria), or PsbP, PsbQ, and PsbR (in green plants)
(for reviews, see refs 7−12). PsbO plays an important role in the
stabilization of the Mn4CaO5 cluster

13 at low chloride concen-
trations and protects the metal cluster from exogenous reduc-
tants. In higher plants, it is required for PS II assembly7,14−17 and
photosynthetic oxygen evolution. Interestingly, in cyanobacteria,
this is not the case.5 In the absence of PsbO, Synechocystis can
grow autotrophically and evolve oxygen, albeit at lower rates.18

Over the past 15 years, increasingly higher resolution crystal
structures of thermophilic cyanobacterial PS II have become
available.4,19−24 These studies have been critically important in
improving our understanding of the molecular organization of
the photosystem. Recently, a crystal structure of PS II from the
red alga Cyanidium caldarium, at 2.76 Å resolution, has also
become available.25 This is, importantly, the first structure of PS
II available from a eukaryote. It should be noted, however, that
the red algae do not lie in the green plant lineage.
As no crystal structure for higher-plant PS II is available, the

structure and interactions of the extrinsic proteins with the
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intrinsic components of the photosystem have been modeled by
comparison to those of cyanobacterial PS II. It must be stressed,
however, that the interactions of the PsbP and PsbQ proteins
with PS II are not well understood. Additionally, strong bio-
chemical evidence indicates the presence of a putative second
copy of PsbO being associated with each PS II monomer in
higher plants (for reviews, see refs 13 and 26). Protein cross-
linking coupled with tandem mass spectrometry is a powerful
technique for elucidating protein−protein interactions in
multisubunit protein complexes.27,28 Recently, these methods
have been used to investigate subunit−subunit interactions
within PS II and PS I.29−32 Liu et al.30 elucidated the structure of
a PS II−phycobilisome−PS I megacomplex using dithiobis-
(succinimidylpropionate). Liu et al.,31 using the cross-linkers
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, a zero-
length cross-linker) and dithiobis(succinimidylpropionate),
identified a binding domain for CyanoQ within Synechocystis
PS II. Ido et al.32 have extended their earlier studies using the
cross-linker EDC on higher-plant PS II. In this study, they
identified interchain cross-linked products involving PsbP, PsbQ,
and other PS II components (CP43, CP26, and PsbR). Ido
et al.32 have positioned PsbQ on the periphery of the PS II
complex in marked contrast to the position of CyanoQ pro-
posed by Liu et al.31 Our laboratory has used the cross-linker
bis-sulfosuccinimidyl suberate to examine the interaction of PsbP
and PsbQ in higher-plant PS II.33 Our results indicate that PsbP
and PsbQ directly interact, with the location of PsbQ being
consistent with the location hypothesized by either Liu et al.31 or
Ido et al.32 It should be noted that the proposed location of PsbQ
presented by Ido et al.32 andmodified byMummadisetti et al.33 is
similar to the location of PsbQ′ in the Cyanidium PS II crystal
structure.25 Recently, models for the structural organization of
the higher-plant extrinsic proteins in association with PS II have
been presented.12

The radiolysis of water by synchrotron radiation produces
•OH, which is capable of oxidatively modifying amino acid
residues that are in contact with the bulk solvent. The modified
residues can be identified using tandem mass spectrometry, and
their location can be used to “footprint” protein−protein inter-
actions within multisubunit protein complexes.34−36 This
radiolytic mapping technique has been used to identify both
surface and buried amino acid residues that are exposed to
water.37−40 Recently, we used this technique to examine the
interaction of PsbP and PsbQ in higher-plant PS II.33 In this
study, we identified domains on PsbP that appear to be shielded
from the bulk solvent by intrinsic components of PS II and,
possibly, by PsbR.
In this paper, we have used protein cross-linking coupled with

tandem mass spectrometry to identify 20 intramolecular cross-
linked products within the PsbO protein. These experiments
allowed the modeling of the N-terminus of higher-plant PsbO,
which contains a 10-amino acid extension when compared to
cyanobacterial PsbO. This facilitated the localization of the two
binding determinants for higher-plant PsbO that previously had
been identified in this region.41,42 Radiolytic mapping was also
used to oxidatively modify surface residues on PsbO that were in
contact with water. Seventy-seven residues were identified.
Interestingly, a large domain on the surface of PsbO was resistant
to radiolytic modification, indicating that it was shielded from
the bulk solvent. This domain appears to define buried regions
of PsbO that are in contact with other, as yet unidentified,
components of PS II.

■ MATERIALS AND METHODS

PS IIMembrane Isolation andProtein Cross-Linking. PS
II membranes were isolated by the method of Berthold et al.43

from market spinach. Chl was determined by the method of
Arnon.44 After isolation, the PS II membranes were suspended
at a concentration of 2 mg of chl/mL in 50 mM Mes-NaOH
(pH 6.0), 300 mM sucrose, 15 mM NaCl (SMN) buffer and
frozen at −80 °C until they were used. Protein cross-linking was
performed using the zero-length cross-linker EDC. In our experi-
ments, PS II membranes were suspended at a chl concentration
of 200 μg/mL in 25% glycerol, 10 mMMgCl2, 5 mM CaCl2, and
50 mMMES-NaOH (pH 6.0) buffer. The membranes were then
treated with 6.25 mM EDC and 5 mM N-hydroxysulfosuccini-
mide for 2 h at room temperature in the dark. The reaction
was quenched by bringing the reaction mixture to 100 mM
ammonium bicarbonate and incubating the mixture for 20 min
at room temperature. The membranes were harvested by
centrifugation for 25 min at 38000g, and the final pellet was
resuspended in 1.0 M NaCl in SMN buffer for 1 h at 4 °C to
release the PsbP and PsbQ subunits. The PsbP- and PsbQ-
depleted PS II membranes were washed with SMN and then
treated with 1.0 M CaCl2 in SMN buffer to release PsbO. After
centrifugation to remove the PsbO-depleted membranes, the
supernatant from the CaCl2 wash (which contains PsbO) was
dialyzed overnight against 10 mM Mes-NaOH (pH 6.0) using
a 6−8 kDa cutoff membrane (Spectrum Laboratories, Inc.)
and was concentrated by ultrafiltration using a 10 kDa cutoff
membrane (Millipore Co.). Prior to electrophoresis, protein
concentrations were determined using the BCA protein assay.45

Synchrotron Radiolysis. Synchrotron radiolysis was
performed as described previously.40 Radiolysis was performed
on the XLRM2 beamline at The J. Bennett Johnston, Sr. Center
for Advanced Microstructures & Devices (CAMD) synchrotron.
PS II membranes (200 μL at 2 mg of chl/mL) were exposed for
various lengths of time at room temperature in a multichannel
Plexiglas chamber. After exposure, the samples were immediately
removed from the chamber and held on ice until being stored
at −80 °C.

Electrophoresis and Protein Digestion. For the EDC
cross-linking experiments, the protein samples were resolved on
12.5 to 20% LiDS−PAGE gradient gels46 using ammonium
persulfate and tetramethylethylenediamine for polymerization.
For the radiolytic experiments, however, the proteins were
separated on 12.5 to 20% acrylamide LiDS−PAGE gradient gels
using a nonoxidizing system in which the gels were polymerized
with riboflavin (in the presence of diphenyliodonium chloride
and toluene sulfinate) by exposure to UV light.47,48 The upper
reservoir also contained thioglycolate. This was required, as
standard PAGE polymerization conditions are known to intro-
duce numerous protein oxidation artifacts.49 Earlier experiments
indicated that PS II proteins resolved in the nonoxidizing gel
system exhibited much lower levels of artifactual protein oxidation
than when resolved using standard LiDS−PAGE (see Figure S1
of ref 48).
After electrophoresis, the gels were stained with Coomassie

Blue and destained, and protein bands of interest were excised.
The protein bands were processed for protease digestion (trypsin
or trypsin with Lys-C) using standard protocols. After digestion,
the proteolytic peptides were processed using a C18 ZipTip prior
to mass analysis.

Mass Spectrometry.The proteolytic peptides were resolved
using reversed-phase chromatography with mass spectrometry
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being performed on a Thermo Scientific LTQ-FT instrument.48

This is a hybrid instrument consisting of a linear ion trap
coupled to a Fourier transform ion cyclotron resonance mass
spectrometer.
Identification and analysis of peptides containing cross-linked

products or oxidative mass modifications were performed using
the MassMatrix online search engine.50,51 A FASTA library
containing PsbO, PsbP, and PsbQ proteins was searched, as was a
decoy library containing the same proteins but with reversed
amino acid sequences. For the identification of cross-linked
products, peptides were selected if their P value was ≤0.0001.
In this study, as expected, no cross-linked products involving the
PsbP and PsbQ proteins were identified. Additionally, cross-
linked products were identified with StavroX version 3.4.1252

using the same FASTA library. This program reports a non-
probabilistic score and a false discovery rate (FDR) for each
identified cross-linked product. The FDR corresponded to 5%.
Only putative cross-linked products that exhibited scores of >100
(which was considered a “significant” score52) and also exhibited
scores >3 times the FDR were considered in our study. In both
MassMatrix and StavroX, a precursor ion precision of ≤5.0 ppm
was required.
For the radiolytic footprinting studies, MassMatrix was pro-

grammed to search for all of the possible oxidative modifications
for the 18 modifiable and identifiable amino acids, excluding
glycine and alanine.36,53 For the identification of oxidative
modifications, a more stringent P value (≤0.00001) was used.
We feel that given the smaller mass modifications introduced by
oxidative labeling (2−48 au), the use of a more stringent P value
was prudent. For both the protein cross-linking studies and the
radiolytic modification experiments, the peptides were required
to exhibit 0% hits to the decoy library for further consideration.
Protein Modeling. Clustal Omega54 was used to align

the spinach and Thermosynechococcus vulcanus PsbO protein
sequences. On the basis of this alignment, the spinach sequence
was threaded using SWISS-MODEL55 with the structure of
T. vulcanus PsbO [contained in Protein Data Bank (PDB) entry
3WU2, which is the update of PDB entry 3ARC4] as a template.
Secondary structure prediction for higher-plant PsbO was
performed using Genesilico Metaserver.56 The cross-linking
distance constraints imposed by the 20 identified EDC cross-
linked products were incorporated into the threaded structure
using MODELLER.57 EDC generates an amide bond between
primary amino groups and carboxylates that are in van der Waals
contact.58,59 To model these interactions, a Cα−Cα distance of
12.1 Å60,61 was used. This distance conservatively takes into
account the length of the amino acid R groups and dynamic
variations in the protein structure. The 10 lowest-energy models
were analyzed by Ramachandran analysis using PROCHECK62

and RAMPAGE.63

Antibodies.The antiserum against PsbOwas produced using
a synthesized peptide consisting of the N-terminal 27 amino acid
residues of the mature spinach protein coupled to keyhole limpet
hemocyanin. The antiserum was produced and isolated from
rabbits after their immunization by standard protocols.64 The
specificity of the antiserum was confirmed by its specific reaction
with the antigenic peptide, isolated PsbO, PS II membrane
preparations, and thylakoid membranes.

■ RESULTS AND DISCUSSION
Protein Cross-Linking. Figure 1 illustrates the results

obtained upon treatment of PS II membranes with the cross-
linker EDC followed by LiDS−PAGE and immunoblotting.

After protein cross-linking, the PS II membranes were washed
with NaCl to remove the PsbP and PsbQ proteins. These
membranes were then washed with CaCl2 to remove both
unmodified PsbO and PsbO containing putative intramolecular
cross-linked residues. This sample was then dialyzed and
concentrated by ultrafiltration. As expected, in the absence of
EDC, no cross-linked products were observed for PsbO.
After cross-linking with EDC, a variety of cross-linked products
containing PsbO were observed. Some of these remained
associated with the PS II membranes after sequential washing
with 1.0 M NaCl, which removes PsbP and PsbQ from the PS II
membranes [no cross-linked products containing either PsbP or
PsbQ were observed (data not shown)], and then washing with
1.0 M CaCl2. These high-apparent molecular mass components
represent intermolecular cross-linked products containing PsbO
and intrinsic membrane protein components65,66 and are the
object of continuing investigations. The CaCl2 treatment
removed un-cross-linked PsbO, which migrated at an apparent
molecular mass of 29.6 kDa, and PsbO, which contained putative
intramolecular cross-links, as indicated by more rapid migration
via LiDS−PAGE, exhibiting an apparent molecular mass of
25 kDa. This protein band reacted only with anti-PsbO and not
anti-PsbP or PsbQ (data not shown). This 25 kDa protein is the
object of this work.
The observed 25 kDa band could be the result of either

proteolysis or intrachain protein cross-linking. Subsequent
tandem mass spectrometry indicated no proteolysis was evident
as we obtained 100% coverage for PsbO, with complete coverage
of the N- and C-termini. Consequently, the 25 kDa band appears
to result from internal cross-linking with EDC.
In-gel proteolysis followed by tandem mass spectrometry

allowed the identification of the cross-linked residues in this
25 kDa band (Table 1). Twenty intrachain cross-linked products
were identified within PsbO. All of the cross-linked peptides
identified exhibited low P values (the probability that the
peptide match is a random occurrence) ranging from 1 × 10−4 to

Figure 1. EDC cross-linking of PsbO within the PSII complex. Protein
cross-linking was performed as described in Materials and Methods.
Illustrated are “Western” blots from the extracts of 1.0 M CaCl2-washed
PSII membranes (which were obtained after initially washing with 1.0M
NaCl) cross-linked with EDC. Panel A was stained with Coomassie blue,
and panel B was probed with anti-PsbO. Intact PS II membranes are
labeled PS II and are included for reference. The putative PsbO
intramolecular cross-linked product is indicated by the cyan arrows and
has an apparent molecular mass of 25 kDa. This protein is the subject of
our cross-linking study.
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5 × 10−10. The quality of the data used in this work is illustrated
in Figure 2. This figure illustrates the mass analysis for the
intrachain cross-link involving 14K and 18E, which was the
median-P value cross-linked product (P = 2.5 × 10−7) identified
in this study. This peptide exhibits nearly complete y- and b-ion
series (Figure 2A,B), the exception being that residues that lie
between the two cross-linked residues cannot be identified using
MassMatrix. A heat map, which visually assists in the identi-
fication of cross-linked products in MassMatrix, is also shown
(Figure 2C). This cross-linked species was additionally identified
with StavroX (Table 1).
Structure of Higher-Plant PsbO. Table 1 summarizes the

cross-linked products identified using MassMatrix and StavroX.
For the majority of the cross-linked products observed, analo-
gous residue pairs are present in cyanobacterial PsbO. The
Cα−Cα distances between these corresponding residue pairs in
cyanobacterial PsbO are generally within 12.1 Å (Table 1); this
was expected and highlights the overall structural similarity
between the higher-plant and cyanobacterial PsbO proteins.
Only two anomalously long distances were observed. In
T. vulcanus, the residues that correspond to the 66K−234D
cross-linked residues in spinach are residues 58K and 231E. In the
crystal structure, the α-carbons of these residues are 16.1 Å apart.
This might indicate a modest conformational difference of ∼4 Å
between the higher-plant and cyanobacterial proteins. The
second anomaly is more difficult to explain. In T. vulcanus, the
residues that correspond to the 97D−105K cross-linked residues in
spinach are residues 89D and 97E. In the crystal structure, the
α-carbons of these residues are 22.9 Å apart. This would indi-
cate a rather large conformational (>10 Å) difference between
the higher-plant and cyanobacterial proteins. Interestingly, these
residues flank a domain on the PsbO protein that is resistant to

radiolytic modification (see below). At this point in time, we
cannot explain this anomaly.
The residues located at the N-terminus of the higher-plant

protein (1E−10E) are not present in cyanobacterial PsbO. Three
cross-linked residue pairs were present in this domain.
Additionally, cross-linked residues were located in the vicinity
of spinach residues 138P and 139E. The eight-residue insertion that
forms the cyano loop67 in the T. vulcanus PsbO structure lies
between 138P and 139E in the higher-plant protein. Finally, cross-
linked residue pairs that lie near spinach residues 178R−180D that
are absent in T. vulcanus PsbO were identified. This cross-linking
information places constraints on the possible structures that can
be assumed by higher-plant PsbO when it is bound to PS II.
Given these distance constraints provided by the observed

cross-linked products (Table 1), molecular dynamics refinement
can provide useful models for higher-plant PsbO, particularly
with respect to its 10 N-terminal amino acid residues, which are
not conserved in the cyanobacterial protein. MODELLER57 was
used to provide the structures shown in Figure 3, which illustrates
molecular dynamics structural refinements either in the absence
(Figure 3A) or in the presence (Figure 3B) of the EDC-cross-
linking distance constraints. In both panels, the 10 lowest-energy
structures for PsbO are illustrated in different shades of blue
and are aligned with the T. vulcanus protein (colored orange).
Without inclusion of the distance constraints, the N-terminus is
highly disordered. Inclusion of the distance constraints, however,
yields a family of very similar structures, all of which exhibit
similar low DOPE scores of approximately −19500.57
It should be noted that secondary structure analysis using the

Genesilico Metaserver56 of the N-terminal domain of PsbO
(1E−10E), which is not present in the cyanobacterial protein,
indicates that the consensus secondary structure for this region

Table 1. EDC-Cross-Linked Residues Identified in PS II-Bound Spinach PsbOa

higher-plant PsbO cross-linked residues
precursor mass
precision (ppm) StavroXbscore FDRc

MassMatrixd

P value
crystal structure distancee

(Cα−Cα) (Å)
4K−32E: 1EGG[K]7R 21GTGTANQCPTV[E]GGVDSFAFKPG44K −2.1 − − 5.0 × 10−5 NAf

4K−36D: 1EGG[K]7R 21GTGTANQCPTVEGGV[D]SFAFKPG44K −3.7 − − 6.3 × 10−5 NAf

9D−14K: 6LTY[D]EIQS[K]TYLEV20K +0.7 172 52 5.0 × 10−7 NAf

10E−14K: 6LTYD[E]IQS[K]TYLEV20K +0.3 182 52 3.1 × 10−5 NAf

14K−18E: 6LTYDEIQS[K]TYL[E]V20K −0.9 253 39 2.5 × 10−7 8.1
60K−62E: 57FAV[K]A[E]GIS66K 0.0 − − 1.0 × 10−8 5.8
60K−234D: 57FAV[K]AEGIS66K 234[D]V236K +0.5 278 39 2.5 × 10−9 6.9
62E−66K: 61A[E]GIS[K]NSGPDFQNT66K +1.0 − − 1.2 × 10−8 11.5
62E−233K: 61A[E]GIS66K 231VP[K]DV236K 0.0 − − 5.0 × 10−7 9.9
66K−71D: 61AEGIS[K]NSGP[D]FQNT66K −2.2 − − 6.3 × 10−7 10.8
66K−234D: 61AEGIS[K]NSGPDFQNT76K 234[D]V236K −2.6 − − 5.0 × 10−9 16.1
97D−101K: 81LTYTLDEIEGPFEVSS[D]GTV[K]FEE105K −4.8 183 59 6.3 × 10−8 9.5
97D−105K: 81LTYTLDEIEGPFEVSS[D]GTV101K 102FEE[K]
DGIDYAAVTVQLPGGE122R

+0.1 264 39 − 22.9

101K−104E: 81LTYTLDEIEGPFEVSSDGTV[K]FE[E]105K −4.8 − − 1.0 × 10−10 9.7
101K−109D: 81LTYTLDEIEGPFEVSSDGTV[K]FEE105K 106DGI[D]
YAAVTVQLPGGE122R

+0.11 249 39 − 8.6

103E−105K: 102F[E]E[K]DGIDYAAVTVQLPGGE122R +0.3 − − 1.9 × 10−9 6.9
105K−106D: 102FEE[K][D]GIDYAAVTVQLPGGE122R +0.4 − − 3.1 × 10−6 3.8
137K−139E: 131QLVASG[K]P[E]SFSGDFLVPSY151R +1.4 207 39 − 9.9
180D−186K: 162GGSTGYDNAVALPAGGRG[D]EEELQ[K]ENN190K +1.1 224 59 − NAf

182E−186K: 162GGSTGYDNAVALPAGGRGDE[E]ELQ[K]ENN190K +0.2 223 59 1.0 × 10−5 9.7
aStavroX51 and MassMatrix52 were used to identify the various cross-linked products. bA significant score: qualifying cross-links have a StavroX score
of >100 and >3 times the FDR. cFDR, the StavroX false discovery rate, represents a score at which the rate of false discovery is <5% dP value,
calculated by MassMatrix using max(pp1,pp2), pptag. eDistances between the corresponding residues in the cyanobacterial PsbO structure of PS II.
These residues are not necessarily fully conserved in higher-plant PsbO.4 fNot applicable, as no corresponding residues are present.
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contains a short α-helix (7T−10E). This program utilizes seven
independent secondary structure prediction algorithms. These
algorithms uniformly predicted an α-helix at this location, and
consequently, this was incorporated into the distance-constrained
models.
Elucidation of the structure of the N-terminus of PsbO is

critical for understanding the function of this component. Early
reports indicated that the 16 N-terminal amino acid residues
(1E−16Y) were required for binding to PS II and efficient oxygen

evolution in higher plants.68 Subsequently, site-directed muta-
genesis studies indicated that two binding determinants for PsbO
are located in this N-terminal domain (Figure 4). One
determinant (4K−10E) is found in higher plants (and green
algae), and its deletion abolishes 50% of the oxygen evolving
activity and results in the loss of 50% of the recombinant PsbO
binding.41 The second binding determinant (15T−18E) is present
in both higher plants and cyanobacteria; its deletion leads to a
further loss of PsbO binding and very low oxygen evolution
rates.42 These authors hypothesized that the deletion of 4K−10E
prevented one of two copies of PsbO from efficiently binding to
the photosystem. The deletion of 15T−18E led to the loss of a
second copy. The locations of these two experimentally deter-
mined binding determinants are illustrated in Figure 4B. It should
be noted that the biochemical evidence that suggests that two
copies of the PsbOprotein are present per PS IImonomer in higher
plants is quite strong (for in-depth reviews, see refs 13 and 26).

Radiolytic Footprinting of PsbO. Radiolytic footprinting
allows the identification of amino acid residues that are exposed
to bulk solvent.34−36 The •OH that is produced during radiolysis
is extremely reactive and can modify 18 different residues that
can be identified by mass spectrometry.36 Consequently, radio-
lytic footprinting is significantly more robust than other chemical
modification techniques that can usually label only a few types of
residues.64,69−71

Table 2 and Figure 5 present the results from the radiolytic
footprinting of the PsbO subunit in association with the PS II
complex. Mass spectrometry coverage of the PsbO protein was

Figure 2.Quality of the mass spectrometry used in this study. Shown are
themass spectrometry data obtained for themedian-P value cross-linked
product 14K−18E (Table 1; P = 2.5 × 10−7). (A) Mass spectra obtained
for this peptide. Identified ions are colored red and those not identified
black. (B) Table of predicted ions from this peptide. Identified ions are
colored red and those not identified black. In loop peptides, MassMatrix
cannot identify residues lying between the cross-linked residues. Note
the nearly complete y- and b-ion series obtained. Additionally, y′n+ and
b′n+ ions exhibiting neutral loss of water and y*n+ and b*n+ ions
exhibiting neutral loss of ammonia are shown. (C) Heat map that assists
in the identification of cross-linked species. The identified peptide is
colored red.

Figure 3. Distance-constrained molecular dynamics refinement for the
N-terminus of higher-plant PsbO. Shown are the top 10models for cases
in which (A) no EDC-cross-linking distance constraints are
incorporated and (B) EDC distance constraints are incorporated. The
individual PsbO models are shown in various shades of blue and are
aligned with cyanobacterial PsbO (colored orange). All models
exhibited similar low DOPE scores of approximately −19500.
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100% upon integration over all of the irradiation time points
(0, 4, 8, and 16 s). Table 2 identifies the residues and types of
oxidative modifications observed. The individual time points are
not shown; Table 2 and Figure 5 represent a unified set of all of
the identified oxidatively modified residues observed in the
experiment at all time points.

In Table 2, 77 oxidatively modified PsbO residues were
identified. Using modern high-resolution and sensitivity mass
spectrometers (FTICR and Orbitrap-class instruments), the
oxidative modification of 18 amino acid residues can be detected
and identified.36,72 Only glycine and alanine remain refractory to
radiolytic analysis, because of their low reactivity. As expected, in

Figure 4. Binding determinants for higher-plant PsbO. (A) Clustal Omega alignment of spinach andT. vulcanus PsbO proteins. This alignment is similar
to that presented by Popelkova and Yocum.41,42 Binding determinant I (highlighted in cyan) is found in all oxygenic organisms, while binding
determinant II (highlighted in magenta) is found only in the green plant lineage. (B) Distance-constrained molecular dynamics refinements for spinach
PsbO. Shown are the top 10 models of PsbO presented in different shades of blue. These were aligned with cyanobacterial PsbO (orange, PDB entry
3WU2). Binding determinants I and II are outlined in cyan and magenta dashes, respectively. All of the models illustrated fulfill the EDC distance
constraints and exhibit similar low DOPE scores (approximately −19500). The orange arrow indicates the location of the cyano loop (T. vulcanus,
131N−138S), while the blue arrow indicates the location of the short deletion (spinach, 178R−180D) in the cyanobacterial protein.

Table 2. Oxidative Modifications of PsbOa

aMassMatrix was used to identify the locations of oxidative modifications. In some instances, different types of oxidative modifications were observed
for a given residue. Key: ca, carbonyl addition, +13.98 Da; do, double oxidation, +31.99 Da; go, general oxidation, +15.99 Da; gam, Glu/Asp
decarboxylation, +30.01 Da; stcb, Ser/Thr carbonyl, −2.02 Da. It should be noted that while a total of 12 different types of oxidative modifications
were incorporated into the MassMatrix searches, only these five types were actually observed.
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some instances, multiple different oxidative modifications were
observed for the same residue.
In Figure 5, the locations of the radiolytic modifications are

shown. In Figure 5A, the PsbO protein is viewed from the surface
of the intrinsic proteins looking toward the face of PsbO that
interacts with the photosystem. In this view, the domains on
PsbO that interact with the intrinsic subunits and are shielded
from the bulk solvent and, consequently, radiolytic modification
are illustrated. Three shielded regions are evident (76K−87E,
149S−155F, and 169N−173L), and these correspond to regions of
cyanobacterial PsbO that interact with the intrinsic proteins in
the cyanobacterial crystal structure (76K−87E interacts with CP43
and D1; 149S−155F interacts with CP43 and D1; 169N−173L
interacts with CP47 and D2) of Umena et al.4

In Figure 5B, the protein is viewed from the lumen, looking
down onto the exposed surface of the PsbO protein. While
numerous exposed residues are modified, a large contiguous
domain that is not susceptible to oxidative modification is evi-
dent. This includes a large region wrapping around the β-barrel.
This is not due to the presence of a high proportion of glycyl and

alanyl amino acid residues, which cannot be identified using this
technique. Approximately 80% of the residues in this domain
would be identifiable after oxidative modification. This compares
favorably to the percentage (85%) that would be identifiable
given the standard abundance of amino acids within proteins
(Release Notes for UniProtKB/Swiss-Prot data bank, April
2013). In the cyanobacterial crystal structure, these domains
do not interact with other PS II subunits, are surface-exposed,
and, consequently, should be highly susceptible to radiolytic
modification.
The overall pattern of oxidative modifications of higher-plant

PsbO is seen within the context of PS II in Figure 5C. Higher-
plant PsbO was aligned with the PsbO subunit of T. vulcanus as it
appears in the cyanobacterial photosystem (PDB entry 3WU24).
Because the overall fold of higher-plant PsbO and cyanobacterial
PsbO is quite similar (Figure 4B) and because the major intrinsic
components of the photosystem that interact with PsbO (D1,
D2, CP43, and CP47) are highly conserved, we believe that this
model strongly approximates the organization of a single copy of
higher-plant PsbO in association with one PS II monomer. What
is clear from panels B and C of Figure 5 is that large portions of
the higher-plant PsbO protein, which by analogy to the cyano-
bacterial subunit should be exposed to the bulk solvent, are not
observed to be radiolytically modified.
A number of hypotheses could explain this observation. It is

formally possible that higher-plant PsbO undergoes a large con-
formational change upon being associated with PS II, shielding
the unmodified residues from the bulk solvent and, consequently,
radiolytic modification. In our view, this is highly unlikely and
would require unprecedented conformational flexibility of the
β-barrel of the protein. Additionally, it would require that the
overall architecture of higher-plant PsbO be significantly dif-
ferent from that of the cyanobacterial protein. No evidence of
this exists.
A second hypothesis is that the unmodified domains represent

regions on the PsbO protein that are shielded by interaction with
other PS II subunits. Several possibilities exist. The unmodified
PsbO domains could be regions that interact with PsbP and
PsbQ. Several investigators have examined the interaction of
these subunits with the photosystem. In cyanobacteria, Liu
et al.31 proposed a binding domain for CyanoQ at the lumenal PS
II dimer interface. These authors observed cross-linking between
PsbO and CyanoQ that strongly supported their hypothesis. If
PsbQ were positioned in an analogous location in higher-plant
PS II, this could explain the lack of radiolytic modification in
domain A (Figure 5B,C), which lies near the PS II dimer
interface. One such model was previously proposed for higher-
plant PS II.33 It should be noted that other investigators have
presented alternative models for the location of higher-plant
PsbQ, suggesting that it lies at the periphery of PS II and is closely
associated with CP43.11,12,32,33 In these models, PsbQ was
suggested to be located in a position roughly similar to that of
PsbQ′ in the red alga C. caldarium.25 If this positioning is correct
for higher-plant PsbQ, then the observed absence of modifi-
cations in domain A (Figure 5B,C) cannot be explained. In any event,
the presence of unmodified residues in domain B (Figure 5B,C)
cannot be attributed to the presence of PsbQ in any of the models
that have been presented previously.
It also appears very unlikely that PsbP could occupy domain B.

In higher-plant PS II membranes, Ido et al.29,32 observed EDC
cross-linking between PsbP:1A and PsbE:57E, indicating that
these residues are in van der Waals contact. The closest approach
between PsbE:57E and domain B is >80 Å, which would appear

Figure 5. Radiolytic mapping of solvent-exposed domains on higher-
plant PsbO. Seventy-seven oxidatively modified residues (blue spheres)
were identified. These are listed in Table 2. The mass spectrometry
coverage of PsbO was 100%. (A) View of PsbO from the surface of the
PS II intrinsic proteins. Residues that were not oxidatively modified and
associate with the intrinsic components of the photosystem are shown as
red dotted spheres. (B) View of PsbO from the lumen looking down
onto PS II. No oxidatively modified residues were identified in the large
contiguous lumenally exposed domains labeled domain A (outlined in
cyan) and domain B (outlined in orange). Residues that were not
oxidatively modified and face the bulk solvent are shown as green dotted
spheres. We speculate that these are shielded from oxidative
modification by as yet unidentified PS II components. (C) Spinach
PsbO shown within the context of cyanobacterial PS II. CP43 is colored
green; CP47 is colored brown, and all other subunits are colored gray.
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to preclude the association of PsbP with domain B of PsbO
(Figure 5B,C).
Other components have been reported to be associated with

PS II membranes and core complexes. These include catalase and
polyphenol oxidase,73 TL29,74,75 TLP18.3 (Psb32),75,76 and a
YCF39-like protein.75 It is possible that these (and perhaps
other) components are associated with PS II membranes but
have generally escaped detection, possibly because of the
substoichiometric abundance or unusually poor protein staining.
The presence of a substoichiometric component in association
with domain B (Figure 5B,C), for instance, could reduce the
amount of oxidative modification in the domain to below levels
that can be detected by mass analysis.
Clearly, one of the most intriguing possibilities is that a second

copy of PsbO may associated with domain B. While the bio-
chemical evidence of the presence of a second copy of PsbO
within the PS II monomer is very strong,13,26 it must be stressed
that no direct structural evidence of a second copy of PsbO has
been forthcoming. At this time, we cannot distinguish between
these various possibilities.

■ CONCLUSIONS
In this work, we have provided new information concerning
structural features of the PsbO protein from higher plants while
it is in association with PS II membranes. The location and
organization of the N-terminal 10-amino acid residue extension
that is present in higher plants, but not in cyanobacteria, have
been examined and structural models for this domain presented.
This region appears to be instrumental in the binding of PsbO in
higher plants.41,42 Additionally, radiolytic footprinting experi-
ments indicate that large contiguous domains on the surface of
PsbO are resistant to oxidative modification and, consequently,
appear to be shielded from the bulk solvent by as yet unidentified
PS II components. Ongoing investigations are underway in an
attempt to identify the species responsible for this observation.

■ NOTE ADDED IN PROOF
Recently, Wei et al. (2016) (Nature DOI: 10.1038/nature18020)
have presented a cryo-EM structure of an inactive spinach PS
II-LHCII supercomplex at 3.2 Å resolution. The N-terminus of
the PsbO protein that is presented in this structure is highly
congruent to the structure presented in this communication.
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