
IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 4, JUNE 2015 429

Accelerating the Pace of Protein Functional
Annotation With Intel Xeon Phi Coprocessors

Wei P. Feinstein, Juana Moreno, Mark Jarrell, and Michal Brylinski*

Abstract—Intel Xeon Phi is a new addition to the family of pow-
erful parallel accelerators. The range of its potential applications
in computationally driven research is broad; however, at present,
the repository of scientific codes is still relatively limited. In this
study, we describe the development and benchmarking of a par-
allel version of FindSite, a structural bioinformatics algorithm
for the prediction of ligand-binding sites in proteins. Implemented
for the Intel Xeon Phi platform, the parallelization of the struc-
ture alignment portion of FindSite using pragma-based OpenMP
brings about the desired performance improvements, which scale
well with the number of computing cores. Compared to a serial ver-
sion, the parallel code runs 11.8 and 10.1 times faster on the CPU
and the coprocessor, respectively; when both resources are utilized
simultaneously, the speedup is 17.6. For example, ligand-binding
predictions for 501 benchmarking proteins are completed in 2.1
hours on a single Stampede node equipped with the Intel Xeon Phi
card compared to 3.1 hours without the accelerator and 36.8 hours
required by a serial version. In addition to the satisfactory parallel
performance, porting existing scientific codes to the Intel Xeon Phi
architecture is relatively straightforward with a short development
time due to the support of common parallel programming models
by the coprocessor. The parallel version of FindSite is freely avail-
able to the academic community at www.brylinski.org/efindsite.
Index Terms— FindSite, heterogeneous computer architec-

tures, high performance computing, Intel Xeon Phi, ligand-binding
site prediction, Many Integrated Cores, offloadmode, parallel pro-
cessing, performance benchmarks, protein functional annotation.

I. INTRODUCTION

C ONTINUING advances in genome sequencing technolo-
gies lead to the accumulation of raw genomic data, which

awaits functional annotation [1], [2]. Presently, computational

Manuscript received September 12, 2014; revised November 30, 2014; ac-
cepted February 08, 2015. Date of publication March 05, 2015; date of current
version May 29, 2015. This work was supported by the National Science Foun-
dation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and
the Louisiana Board of Regents through the Board of Regents Support Fund
[contract LEQSF(2012-15)-RD-A-05]. This project used the Extreme Science
and Engineering Discovery Environment (XSEDE), which is supported by the
National Science Foundation grant number OCI-1053575. Asterisk indicates
corresponding author.
W. P. Feinstein is with Department of Biological Sciences, Louisiana State

University, Baton Rouge, LA 70803 USA, and also with the Center for Compu-
tation & Technology, Louisiana State University, Baton Rouge, LA 70803 USA
(e-mail: wfeinstein@lsu.edu).
J. Moreno and M. Jarrell are with the Department of Physics and As-

tronomy, Louisiana State University, Baton Rouge, LA 70803 USA, and
also with the Center for Computation & Technology, Louisiana State Uni-
versity, Baton Rouge, LA 70803 USA (e-mail: moreno@phys.lsu.edu;
jarrellphysics@gmail.com).
*M. Brylinski is with the Department of Biological Sciences, Louisiana State

University, Baton Rouge, LA 70803 USA, and also with the Center for Compu-
tation & Technology, Louisiana State University, Baton Rouge, LA 70803 USA
(e-mail: michal@brylinski.org).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNB.2015.2403776

approaches to protein structure modeling and functional infer-
ence represent the most practical strategy to keep up with an-
notating the massive volume of DNA sequences [3], [4]. The
resulting knowledge facilitates a broad range of research in life
sciences including systems biology and drug development and
discovery. For instance, systems biology focuses on studying
cellular mechanisms as a whole by constructing and analyzing
the networks of complex molecular interactions and signaling
pathways at the level of complete proteomes [5]. Such sys-
tems-level approaches hold a significant promise to develop
new treatments for complex diseases, which often require a si-
multaneous modulation of multiple protein targets. This is the
domain of polypharmacology, an emerging field that integrates
systems biology and drug discovery [6]. Incorporating large bio-
logical datasets is critical for the success of many systems-level
applications; however, considering the vast amounts of data to
be processed, unprecedented computing power is required to
achieve a reasonably short time-to-completion. Significant chal-
lenges remain given that the currently available biological data
may easily outbalance accessible computing resources.
In that regard, traditional single threaded processor systems

are no longer viable to meet the challenges of modern computa-
tionally driven research. Therefore, parallel high-performance
computing has become a key component in solving large-scale
computational problems. For instance, graphics processing
units (GPUs) developed primarily for gaming purposes, are
now routinely used to speed up scientific applications in nu-
merous research areas [7]. Examples include GPU-accelerated
molecular [8] and Brownian dynamics [9], spin model simula-
tions [10], the modeling of in vivo diffusion [11], phylogenetic
analyses [12], as well as protein sequence [13] and structure
alignments [14]. Not surprisingly, the number of GPU-pow-
ered high-performance systems among the world's top 500
supercomputers continues to grow [15]. Likewise, the newly
launched Intel Xeon Phi coprocessor expands the repertoire of
high-performance computing architectures offering massively
parallel capabilities for a broad range of applications. The Intel
Xeon Phi coprocessor, equipped with tens of x86-like com-
puting cores, plugs into the standard PCIe port communicating
directly with the main processor to accelerate computations.
The underlying x86 architecture supports common parallel
programming models and offers familiarity and flexibility in
porting existing codes to benefit from the heterogeneous com-
puting environment. In contrast to the code development for
GPU, which often requires a substantial programming expertise
and laborious code conversions, the transition to Intel Xeon Phi
is relatively straightforward and time efficient.
Since the Intel Xeon Phi technology featuring many inte-

grated cores (MIC) is very new, the repository of scientific

1536-1241 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

430 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 4, JUNE 2015

codes is still relatively limited. However, the availability
of MIC accelerators installed in many contemporary super-
computing systems, e.g., Stampede at the Texas Advanced
Computing Center (TACC), stimulates a broad interest in this
new architecture. Consequently, significant efforts are directed
towards developing new and porting existing state-of-the-art
codes to Xeon Phi as well as exploring the performance and
functionality of the accelerator [16]–[18]. In this spirit, we
describe a new version of the FindSite algorithm, a modeling
tool used in structural bioinformatics and drug discovery, that
can be deployed on computing nodes equipped with Xeon
Phi cards. FindSite was developed to accurately identify
ligand-binding sites and binding residues across large datasets
of protein targets using weakly homologous templates [19],
[20]. Devised to efficiently operate within the “twilight zone”
of sequence similarity [21], it is especially applicable to
genome-wide protein function annotation, drug design, and
systems biology in general [22]. Briefly, FindSite extracts
ligand-binding information from evolutionarily related proteins
identified in the Protein Data Bank (PDB) [23] using sensitive
protein meta-threading techniques [24], [25]. Template pro-
teins are structurally aligned onto the target protein, which is
followed by the clustering of template-bound ligands to detect
ligand-binding sites and residues. These predictions can be
subsequently used e.g., in ligand docking and virtual screening
[26], [27], molecular function inference [28] as well as in the re-
construction and analysis of biological networks and pathways
[29]. In the original FindSite algorithm, template-to-target
structure alignments are executed sequentially, thus the iden-
tification of ligand-binding sites even for one target protein
may require many CPU hours [19]. This in turn complicates
genome-wide applications, where the number of protein targets
and the size of the template library can be very large. Therefore,
accelerating the FindSite code shortens the simulation time
resulting in faster genome-wide protein function annotation. In
this article, we describe porting FindSite to the Intel Xeon Phi
platform and demonstrate that its parallel execution on nodes
equipped with accelerator cards significantly reduces compu-
tational time required for the identification of ligand-binding
sites across large protein datasets.

II. PROCEDURES AND METHODS

A. Intel Xeon Phi Architecture
Intel Xeon Phi featuring many integrated cores (MIC) is a

promising new member to the family of powerful parallel hard-
ware accelerators. Computing systems powered by Xeon Phi are
composed of a traditional CPU processor, referred to as the host,
and a MIC coprocessor connected via the PCIe bus, referred to
as the target [30]. The shared-memory architecture of the co-
processor allows the L1 and L2 data cache of each coprocessor
core to be interconnected and remotely accessible via a fast bidi-
rectional ring; however, memory sharing is not permitted be-
tween the host and the target. Our primary development and
benchmarking system is Stampede at TACC. Each Stampede's
Xeon Phi node is equipped with dual eight-core E5-2680 Sandy
Bridge processors and one or two Xeon Phi SE10P coprocessors
[31]; in this study, we use nodes equipped with one coprocessor.

Each accelerator card deploys a stripped down Linux OS called
BusyBox and removes many power-hungry operations, yet it
offers a wider vector unit and a larger hardware thread count
compared to host processors. Each 61-core coprocessor sup-
ports 4 hardware threads per core providing up to 244 threads,
whereas the two host processors feature 8-cores each and 2
threads per core totaling up to 32 threads. However, to maximize
the performance, only 16 host threads are available on Stampede
nodes (1 thread per physical core). Intel Xeon Phi also has some
other unique features; each computing core clocks at 1090 MHz
and the device is equipped with 8 GB of GDDR5 memory and
four-way simultaneous multi-threading (SMT). Its 512-bit wide
single instruction, multiple data (SIMD) vectors translate into 8
double-precision or 16 single-precision floating-point numbers.
In comparison, the host processor runs at a faster speed of 2700
MHz and has a larger memory of 32 GB DDR3, yet narrower
256-bit SIMD vectors.
Although the Intel processor and coprocessor have different

designs, to a certain degree they share a similar architecture,
which facilitates deploying codes on MIC. Currently available
programming techniques include the native and the offload
modes. In the former, the entire code is first cross-compiled
on the host with OpenMP pragmas [32] and then executed on
the coprocessor, whereas the latter offloads only parts of the
code to the coprocessor [16]. Moreover, Xeon Phi also support
the MPI protocol [33], thus the coprocessor can work as a
self-sufficient computing node as well [18].

B. Overview of eFindSite
To induce cellular and therapeutic effects, small ligand

molecules such as metabolites and drugs bind to specific sites on
the target protein surface, often referred to as binding pockets.
However, for many pharmacologically relevant proteins only
their ligand-free experimental structures or computer-generated
models are available. Therefore, at the outset of drug dis-
covery, the identification of possible binding sites is typically
the first step in inferring and modulating protein molecular
function. Currently, evolution/structure-based approaches to
ligand-binding prediction are the most accurate and, conse-
quently, the most widely used [34]. These algorithms exploit
structural information extracted from evolutionarily weakly
related proteins, called templates, to predict ligand-binding
sites and binding residues in target proteins. FindSite is a re-
cently developed evolution/structure-based approach [19], [20],
which features a series of improvements over its predecessor,
FINDSITE [35]. It employs a collection of new algorithms,
such as highly sensitive meta-threading methods, advanced
clustering techniques, and machine learning models to further
increase the accuracy of pocket detection as well as to improve
the tolerance to structural imperfections in protein models.
Consequently, it is especially applicable in genome-wide pro-
tein function annotation projects. For a given target protein,
FindSite uses meta-threading [24], [25] to identify closely and
remotely homologous ligand-bound templates. Subsequently,
these templates are structurally aligned onto the target using
Fr-TM-align [36], which is followed by the clustering of
template-bound ligands using Affinity Propagation [37] and a
machine learning-based ranking of the detected pockets. The

FEINSTEIN et al.: ACCELERATING THE PACE OF PROTEIN FUNCTIONAL ANNOTATION WITH INTEL XEON PHI COPROCESSORS 431

Fig. 1. Workflow of the FindSite algorithm. Pre- and post-processing calcula-
tions are performed using a single host thread. Structure alignments are executed
in parallel using multiple host or target threads.

framework of FindSite is written in with the protein
structure alignment portion implemented in Fortran77 and the
Affinity Propagation clustering algorithm incorporated into the
code as a library pre-compiled for Linux systems. Previous
profiling of the FindSite code revealed that, depending on the
target protein length as well as the number of templates, the
memory requirements could be fairly high [19]. Therefore, we
decided to use the offload mode in porting FindSite to the
accelerator.

C. Porting eFindSite to Xeon Phi
The flowchart of the FindSite algorithm is shown in Fig. 1.

The input includes a target protein structure and a ligand-bound
template library. The output contains predicted ligand-binding
sites and residues, as well as structure alignments between the
target protein and the associated templates. The procedure of
binding site prediction in FindSite breaks down into three con-
secutive stages. During pre-processing, template information is
extracted from the library and sequence alignments to the target
are constructed. Next, each template is structurally aligned onto
the target; based on the code profiling results shown in Sec-
tion III-A, we identify this portion of the code as a promising
target for parallelization and porting to the accelerator. Specifi-
cally, structure alignments of a target protein against the identi-
fied templates are implemented in parallel with each template-
to-target alignment computed by a different hardware thread.
Pragma-based OpenMP is used to parallelize structure align-
ments and to perform the calculations within the host, offload
them to the target, or use both resources simultaneously. As
shown in Fig. 1, each individual alignment is assigned to a dif-
ferent thread to carry out calculations in parallel. Finally, tem-
plate-to-target structure alignments are collected and used in the
post-processing step to cluster the identified pockets, rank them
using machine learning, and predict the corresponding binding
residues.
Parallelization of the loop iterating over structure align-

ments is implemented using standard OpenMP pragmas with
the dynamic scheduling [schedule (dynamic)]. The

actual code for alignment calculations is written in Fortran77
and extensively uses common blocks to access the memory,
which is well known to be thread unsafe. To fix this issue, we
marked all common blocks in Fortran subroutines as private to
threads [!$omp threadprivate (/block_name/)].
Specifying the number of computing threads, n, is straightfor-
ward by setting the relevant OpenMP environment variable
[export OMP_NUM_THREADS=n]. Moreover, individual
structure alignments in FindSite have a larger memory foot-
print than the default OpenMP stack size, therefore, we also
increase the memory available to each thread to 64 M [export
OMP_STACKSIZE=64 M].
Offloading and executing portions of the code on the copro-

cessor requires a series of additional modifications. Because
Intel Xeon Phi architecture does not allow memory sharing
between the host and the target, the actual data used within
the offload block need to be transferred from the host to
the target prior to the calculations. To facilitate the data ex-
change, extra work was put in to marshal the data into flat,
bitwise copy-able data structures. We note that the data is
copied in and out of the target only once, thus there is virtu-
ally no overhead from moving data back and forth between
the host and the target. In addition, directives for offloading
the code to the target are used to instruct the compiler that
the offload mode is activated and that portions of the code
should be executed on the coprocessor. All subroutines and
global variables used within the structure alignment code are
tagged with the offload attributes [!dir$ attributes
offload:mic::subroutine_name] and [!dir$ at-
tributes offload:mic::variable_name], respec-
tively. OpenMP executed within the offloaded code requires
setting environment variables containing the “MIC_” prefix,
i.e., [export MIC_OMP_NUM_THREADS=n] and [export
MIC_OMP_STACKSIZE=64 M].
The 61-core Intel Xeon Phi coprocessor supports a large

number of hardware threads for programming usage, up to 244
theoretically and 240 practically (the 61st core is reserved for
the operating system, I/O operations, etc.). The physical distri-
bution of these threads is called the thread affinity and can be
controlled using Intel KMP affinity settings [38]. As shown in
Fig. 2, three types of thread affinity are available on the copro-
cessor, balanced, scatter, and compact. Specifically, the affinity
setup of [export MIC_KMP_AFFINITY=balanced]
distributes threads uniformly to ensure that the maximum
number of cores are deployed (Fig. 2(a)). Similarly, [export
MIC_KMP_AFFINITY=scatter] assigns threads evenly
across the entire core range in a round-robin fashion to max-
imize hardware utilization (Fig. 2(b)). In contrast, [export
MIC_KMP_AFFINITY=compact] packs threads densely
next to each other, therefore, the least amount of cores are
utilized (Fig. 2(c)). Since the thread affinity can have an impact
on the parallel performance, we benchmark FindSite using
different affinity types.
By default, an offloaded task assumes that the coprocessor

is used exclusively without interfering with other processes.
Therefore, when offloading concurrent multi-threaded tasks
to the same coprocessor, we need to specify the core range
for each task. We coordinate the task offloading using a

432 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 4, JUNE 2015

TABLE I
NUMBER OF TARGET PROTEINS IN THE BENCHMARKING DATASET

Fig. 2. Thread affinity modes available for Intel Xeon Phi. The schematic
shows the distribution of 8 computing threads in a simplified system composed
of 4 coprocessor cores. Threads (numbered sequentially) are assigned to
different cores according to (A) balanced, (B) scatter, and (C) compact affinity
settings.

thread pinning scheme to prevent spawning of threads on
the same execution units. Specifically, the non-overlap-
ping partitioning of the target device is accomplished using
the MIC_KMP_PLACE_THREADS environment variable
that allows requesting the number of cores, the number
of threads, and the core range. For instance, [export
MIC_KMP_PLACE_THREADS=6c,4 t,12o] spawns 24
threads with the compact affinity on cores 12–17. In this
example, we request the total of 6 cores (argument) with 4
threads per core (argument), and the core range starting from
core 12 (argument , offset). Using this pinning scheme, we
can launch multiple parallel tasks without the oversubscription
of coprocessor cores as long as the total number of concurrent
threads is no greater than 240.

D. Benchmarking Dataset
The set of protein-ligand complexes used in this study is a

subset of the original FindSite benchmarking dataset [19]. It
consists of proteins of different sizes and a varying number of
associated ligand-bound templates, selected to mimic real pro-
teomic data. As shown inTable I, we first defined 12 bins de-
pending on the number of amino acids in the target protein
(200–500) and the number of templates (50–250). Next, we pop-
ulated each bin with up to 50 structures by randomly selecting

proteins from the original FindSite dataset. For each protein,
its crystal structure is used as the target; weakly homologous
templates sharing less than 40% sequence identity are identified
by meta-threading using Thread [24], [25]. The benchmarking
dataset used in this study comprises 501 protein targets.

III. RESULT AND DISCUSSION

A. Code Profiling
Most computer programs follow the 80/20 rule and spend

80% of the wall time executing 20% of the code, thus the Pareto
principle can be applied to guide optimization efforts [39]. Be-
fore converting the serial version of FindSite to a parallel ver-
sion, we conducted a thorough profiling in order to identify
portions of the code consuming the most CPU cycles. Fig. 3
shows the results of code profiling using 12 proteins randomly
selected from the benchmarking dataset (1 protein from each
bin in Table I). In Fig. 3(a), we measure the execution time for
the three individual stages of FindSite calculations, according
to the flowchart presented in Fig. 1. Pre-processing, structure
alignments, and post-processing steps take 11%, 88% and 1%
of the total simulation time, respectively. Next, we use gprof, a
performance analysis tool, to generate a function list ordered by
computing time. Fig. 3(b) shows that four functions, tmsearch_,
cal_tmscore_, dp_ and get_score_, are the most time consuming
taking up 29%, 27%, 21%, and 15% of the execution time, re-
spectively. All these functions are involved in structure align-
ment calculations utilizing 92% of the entire computing time.
Based on these profiling results, we identify template-to-target
structure alignments as the most computationally expensive,
thus parallelizing this portion of the code and moving calcu-
lations to the accelerator should bring about the desired per-
formance improvement in predicting ligand-binding sites using
FindSite.
We also looked into the structure of the code for alignment

calculations in FindSite to estimate the difficulty of paralleliza-
tion and porting it to the external accelerator card. Each indi-
vidual template-to-target structure alignment starts by calling
the subroutine frtmalign in the main function. Fig. 4 shows a de-
tailed call graph generated by Doxygen [40] for functions asso-
ciated with frtmalign. Frtmalign calls a number of subroutines,
which in turn call other functions and so forth. The subroutine

at the bottom, the most frequently called by subroutines
at higher levels, performs root-mean-square deviation (RMSD)
calculations for structure comparisons. We note that all protein
structure alignment functions are written in Fortran77, consist
of about 2100 lines of source code, and routinely access data
stored in the memory using common blocks. Porting this code

FEINSTEIN et al.: ACCELERATING THE PACE OF PROTEIN FUNCTIONAL ANNOTATION WITH INTEL XEON PHI COPROCESSORS 433

Fig. 3. Profiling of FindSite. (A) Execution time is analyzed for the individual stages of FindSite calculations. (B) Low level function usage reported by a
performance analysis tool. Structure alignments and other functions are colored in patterned blue and red, respectively.

Fig. 4. Call graph of the protein structure alignment subroutine. The top subroutine, frtmalign, is called within the main function of FindSite.

to the GPU platform using CUDA or OpenCL would require a
great deal of effort; in contrast, using Intel Xeon Phi combined
with pragma-based OpenMP requires significantly shorter de-
velopment time to yield satisfactory speedups.

B. Performance Metrics

Before start analyzing the performance of FindSite, we need
to develop an evaluation metric for speed measurements. Intu-
itive metrics are the target protein size and the number of tem-
plates to be structurally aligned. Indeed, as demonstrated for
501 benchmarking proteins in Fig. 5(a), increasing both quan-
tities results in a longer time required by FindSite to predict
ligand-binding sites. The execution time is measured for the
total wall time (dark gray circles) and the time spent calculating
structure alignments (light gray triangles). The corresponding

Pearson correlation coefficients are 0.809 and 0.781, respec-
tively. To search for a better performance evaluation metric,
in Fig. 5(b), we plot the execution time against the number of
single RMSD calculations realized by the subroutine , which
is the most frequently called function in the process of com-
puting structure alignments. The correlation with the total wall
time and the alignment time improves to 0.963 and 0.960, re-
spectively. This analysis suggests that the number of RMSD
calculations per second provides the best performance measure
for evaluating the speed of FindSite. We note that the target
protein size and the number of templates are known a priori,
before the simulations start, whereas the number of RMSD cal-
culations can be obtained only after the simulations are com-
pleted because it depends on the convergence of structure align-
ments (templates that are structurally similar to the target con-
verge faster than those less similar).

434 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 4, JUNE 2015

Fig. 5. Performance metrics for FindSite. The execution time is plotted against (A) the product of the number of protein residues and the number of templates,
and (B) the number of single RMSD calculations. Dark gray circles and light gray triangles show the total time and the time spent calculating structure alignments,
respectively.

C. Performance of eFindSite on the Host

All benchmarking results for different versions of FindSite
were obtained using Stampede nodes at TACC. In Fig. 6, we
compare serial and multi-threaded versions executed exclu-
sively on the host. The latter uses pragma-based OpenMP
parallelization of the FindSite code; we note that both pre-
and post-processing steps are executed sequentially, while only
structure alignments are processed in parallel using multiple
host threads. Increasing the number of threads for structure
alignment calculations clearly improves the performance of
FindSite. Using the total simulation time, 1 (serial) and 16
(parallel) threads give an average performance across the
benchmarking dataset of and RMSD
calculations per second, respectively. Considering the time
spent calculating structure alignments, the average performance
is and RMSD calculations per second,
respectively. For structure alignment calculations with 100%
of the code parallelized, almost a perfect linear increase in the
performance is achieved; the speedup of 16 host threads over
the serial execution is 15.0. Contrastingly, the performance
reaches a plateau with 5.8 speedup using 16 threads when
the total wall time is considered. These results demonstrate
that FindSite follows Amdahl's law, which describes the
relationship between the expected speedup of parallelized
implementations of an algorithm relative to the serial algorithm
[41]. According to the profiling results showing that about 90%
of the calculations are parallelized, the maximum expected im-
provement using 16 threads is 6.4. With the increasing number
of computing threads, serial portions of the code dominate,
which is represented by the plateau in Fig. 6.

D. Performance of eFindSite on the Target

Next, we benchmark the performance of FindSite using the
Intel Xeon Phi coprocessor. We note that the pre- and post-pro-
cessing steps are executed sequentially on the host, whereas
only structure alignments are offloaded to the accelerator and
processed in parallel using multiple target threads. Moreover,
we measure the performance up to 24 threads because there

Fig. 6. Performance of FindSite using parallel host threads. The speed is mea-
sured in RMSD calculations per second (mean standard deviation) for 2, 4, 8,
and 16 threads across the benchmarking dataset of 501 proteins. Solid trian-
gles and open circles correspond to the total time and the time spent calculating
structure alignments, respectively. Thick dashed lines show the maximum the-
oretical performance according to Amdahl's law.

is not enough parallelism to fully utilize all target threads for
one protein target, considering that one thread processes one
template and that some proteins in the benchmarking dataset
have only 50 templates. Later on, to maximize the utilization of
resources in production runs, we will launch multiple parallel
tasks simultaneously processing multiple proteins. Specifically,
10 tasks, each processing one target protein using 24 threads,
will be launched in parallel to fully utilize 240 hardware threads
on the accelerator.
The Intel Xeon Phi coprocessor provides a large number of

computing cores, however, individual target cores in our bench-
marks are notably slower than those of the host. A single host
thread performs RMSD calculations per second,
whereas a single target thread performs (balanced
and scatter modes) and (compact mode) RMSD cal-
culations per second. Thus, depending on the affinity settings,
target threads are about 10 (balanced and scatter) and 20 (com-
pact) times slower than host threads. We note that if adjacent

FEINSTEIN et al.: ACCELERATING THE PACE OF PROTEIN FUNCTIONAL ANNOTATION WITH INTEL XEON PHI COPROCESSORS 435

threads share common data, placing them on the same execu-
tion unit by using the balanced thread affinity may bring some
improvement over the scatter mode (Fig. 2). Nevertheless, in-
dividual threads in FindSite are fully independent, therefore,
the balanced and scatter thread affinities yield identical results;
henceforth we report this performance as balanced/scatter.
Encouragingly, Fig. 7 shows that increasing the number of

target threads leads to a linear scaling of the performance. For
instance, increasing the number of threads from 4 to 24 with
the affinity mode set to balanced/scatter improves the number
of RMSD calculations per second from to

for the total time, and from to for
the alignment time. Switching to the compact thread affinity
mode improves the number of RMSD calculations per second
from to for the total time, and from

to for the alignment time. It is clear
that the scatter/balanced thread affinity yields approximately 1.8
times higher performance per thread than the compact mode.
This is because both scatter and balanced modes evenly spread
threads across the target computing cores to maximize the hard-
ware utilization, whereas the compact affinity mode places up
to four threads on a core before moving to the next one (Fig. 2).
Thus, with the scatter/balanced setting, the best performance is
achieved when 120 threads are spawned on the coprocessor,
whereas 240 threads are required for the best performance in
the compact mode. The advantage of using the scatter/balanced
affinity starts diminishing when the number of threads is greater
than 120. When the thread count reaches 240, different affinity
settings yield the same performance corresponding to the com-
pact mode. A core-to-core comparison shows RMSD
calculations per second for the scatter/balanced and
for the compact affinity. Therefore, assuming that all available
hardware threads are fully utilized by FindSite, offloading the
structure alignment portion of the code using the compact thread
affinity gives the best performance.

E. Performance of eFindSite on Both Host and Target
The ultimate goal of this study is to take full advantage of the

entire node equipped with the Intel Xeon Phi card, . process
the calculations using both the host and the target simultane-
ously. Performance benchmarks carried out independently for
the host and the target reveal several important results and con-
straints related to software, hardware and dataset characteris-
tics. These should be taken into consideration when designing
an optimized production code. First, because of Amdahl's law,
it is beneficial to execute multiple parallel versions of FindSite
on the host, each using relatively few threads. Moreover, we
demonstrated that using all available target threads with the
compact affinity maximizes the performance of FindSite on the
coprocessor. Therefore, our production scheme for predicting
ligand-binding sites using FindSite across large datasets of pro-
teins comprises multiple tasks running simultaneously that uti-
lize both the host and the target. Specifically, we further modi-
fied the code to launch up to 4 parallel tasks on the host, each
using 4 threads, and up to 10 parallel tasks on the target, each
using 24 threads.
Fig. 8 compares the time-to-solution, defined as the total time

required to predict ligand-binding sites for the entire dataset of

Fig. 7. Performance of FindSite using parallel target threads. The speed is
measured in RMSD calculations per second (mean standard deviation) for
4, 8, 16, and 24 threads across the benchmarking dataset of 501 proteins. Solid
and open symbols correspond to the total time and the time spent calculating
structure alignments, respectively. Circles and triangles show the performance
using scatter/balanced and compact thread affinity, respectively.

Fig. 8. Time-to-solution for pocket prediction across the entire benchmarking
dataset. Computations are performed using a serial version (1 host thread) as
well as three parallel versions: multiple host threads (4 tasks, each running 4
threads), multiple target threads (10 tasks, each running 24 threads), and mul-
tiple host and target threads running simultaneously. Inset shows the comparison
of parallel versions only.

501 proteins, for the serial version as well as three parallel pro-
cessing schemes. The time-to-solution for serial FindSite, par-
allel FindSite on the host only, the target only, and both the
host and the target is 36.8, 3.1, 3.6, and 2.1 hours, respectively.
Fig. 9 shows that this corresponds to the speedup over the serial
version of 11.8, 10.1, and 17.6 for the parallel processing using
the host, the target, and both resources, respectively. Therefore,
using the coprocessor in addition to the main processor provides
the desired acceleration in predicting binding sites for large pro-
tein datasets. It is noteworthy that at this point, the time-to-solu-
tion increases linearly with the dataset size, i.e., ligand-binding
site prediction using FindSite for 5000 proteins, which is a typ-
ical size of a bacterial proteome, would require 21 hours on a
single Stampede node equipped with the Intel Xeon Phi card,
compared to 31 hours without the accelerator and 368 hours
using the serial version.

436 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 4, JUNE 2015

Fig. 9. Speedups of the parallel versions of FindSite over the serial code.
Computations are performed using three parallel versions: multiple host threads
(4 tasks, each running 4 threads), multiple target threads (10 tasks, each running
24 threads), and multiple host and target threads running simultaneously.

In addition to the time-to-solution, we also monitor the uti-
lization of computing resources. Fig. 10 shows that the average
usage of host and target cores during the production multi-task/
multi-threaded simulation is 99.9% and 82.2%, respectively.
Target threads periodically become idle while waiting for the
host to finish pre- and post-processing steps, which results in
a somewhat lower utilization of the coprocessor. On the other
hand, the host remains fully utilized not only facilitating mul-
tiple tasks offloaded to the target, but also performing FindSite
calculations on its own. Looking at the performance results pre-
sented in Figs. 8 and 9, the computational capabilities of 240
coprocessor threads are fairly comparable to those of 16 host
threads, thus we can expect an even partitioning of the compu-
tations between the host and the target when processing a large
dataset. Table II shows that this is indeed the case; each par-
allel 4-thread task executed on the host performed about 12%
of the total computations, whereas each parallel 24-thread task
executed on the target performed about 5% of the total com-
putations. Adding up all computations performed by the host
and the target gives a roughly even split of 49.2% and 50.8%,
respectively. Therefore, dividing the workload evenly between
the target and the host will ensure the optimal utilization of com-
puting resources in large production runs.

F. Accuracy of Pocket Prediction
Thus far, we demonstrated that the parallel versions of
FindSite, including that accelerated by the Intel Xeon Phi co-
processor, offer an improved performance, however, the results
must also be technically correct. Fig. 11 assesses the accuracy of
pocket prediction by the code described in this paper, labeled as
1.2, compared to the original version of FindSite [19], labeled
as 1.0. All three 1.2 versions, serial, parallel on the host, and
parallel on the target, produce identical results demonstrating
that the implementation of FindSite using OpenMP and the
accelerator maintains the functionality of the code providing
shorter simulation times. Version 1.2 is slightly more accurate
than 1.0 because a couple of coding bugs in 1.0 have been
identified and fixed during the porting process. For instance,

Fig. 10. Utilization of resources during the execution of the heterogeneous par-
allel version of FindSite. Time courses of the percentage of CPU usage on the
host (black line) are compared to that on the target (gray line).

for 65.7% and 84.3% of benchmarking proteins the best of
top three ligand-binding sites is predicted within 4 Å and 8
Å, respectively. This high prediction accuracy is accompanied
by high ranking capabilities; the best binding site is at rank 1
in 69.0% of the cases. We note that closely related templates
with 40% sequence identity to the target are excluded in our
benchmarking calculation, thus quantitatively similar results
can be expected for real applications of FindSite in function
annotation at the level of entire proteomes.

G. Case Study
To conclude, we present a case study illustrating binding

pocket prediction using FindSite. Our target selected from
the benchmarking dataset is penicillin-binding protein from
Pseudomonas aeruginosa, PBP3 (PDB-ID: 3pbr, chain A), a
critical enzyme responsible for peptidoglycan synthesis [42].
FindSite predicted the total number of 22 pockets for this
protein and assigned a confidence of 91.1% to the top-ranked
binding site. Fig. 12 shows the crystal structure of the target
protein with the top three binding pockets represented by balls;
the yellow ball corresponds to the top-ranked pocket, whereas
the two red balls show the location of pockets at ranks 2 and
3. In addition to the pocket center, orange sticks and the trans-
parent yellow surface depict residues predicted to bind a ligand.
The structure displayed in Fig. 12 also contains a -lactam
antibiotic bound to this enzyme; we note that this compound
is used only to assess the prediction accuracy and it was not
included in FindSite simulations. The distance between the
predicted top-ranked binding site and the geometric center
of the antibiotic is only 2.4 Å with as many as 63% binding
residues correctly identified. This case study illustrates that
FindSite is a reliable tool for ligand-binding prediction, which
has a broad range of applications in protein function annotation,
virtual screening and drug discovery.

IV. CONCLUSIONS
In this study, we developed a new version of FindSite,

ligand-binding site prediction software used in structural bi-
ology and drug design, for processing large datasets using
modern heterogeneous high-performance systems, i.e., mul-
ticore processor platforms equipped with Intel Xeon Phi

FEINSTEIN et al.: ACCELERATING THE PACE OF PROTEIN FUNCTIONAL ANNOTATION WITH INTEL XEON PHI COPROCESSORS 437

TABLE II
PARTITIONING DETAILS FOR PROCESSING 501 BENCHMARKING PROTEINS USING FINDSITE SIMULTANEOUSLY ON THE HOST AND THE TARGET

The amount of computations is approximated by the product of the target protein length and the
number of template structures.

Fig. 11. Evaluation of the accuracy of binding site prediction using different
versions of FindSite. The cumulative fraction of proteins is plotted against
the distance between the center of the best top three predicted pockets and the
geometric center of bound ligand in the native complex structure. Inset shows
the accuracy of pocket ranking when multiple pockets are detected.

accelerators. There are two major conclusions arising from this
project. First, offloading parts of the computations to the co-
processor device indeed provides the desired speedups, which
are considered significant when normalized by the cost of the
hardware. Compared to a serial version, FindSite code runs
11.8, 10.1, and 17.6 times faster using the parallel processing on
the host, the target, and both resources, respectively. Of course,
the acceleration strongly depends on the nature of the code. For
example, the benchmarking of compute-intensive applications
in finances reported speedups of 20-–40 for a Xeon Phi code
over a sequential reference implementation running on a single
processor core [43]. Another study systematically compared
a number of applications for microscopy image analysis and

Fig. 12. Pocket prediction for a penicillin-binding protein from P. aeruginosa
using FindSite. The crystal structure of the target protein and the binding ligand
are displayed as a gray cartoon and sticks colored by atom type, respectively.
The top-ranked predicted pocket is shown in yellow; the ball corresponds to
the pocket center and the predicted binding residues are shown as sticks and a
transparent surface. Two red balls show the centers of binding pockets predicted
at ranks 2 and 3.

showed speedups ranging from 5 to 32 on Intel Xeon Phi
accelerators [44]. Thus, our results are fairly comparable to
those reported by other developers.
Second, programming models available for the Intel Xeon

Phi architecture are open-standard and portable between tradi-
tional processors and coprocessors; moreover, OpenMP makes
it relatively easy to execute programs in parallel. FindSite rep-
resents a piece of typical scientific software written mostly by
domain scientists, who contributed different components to the
code using different programming languages and styles. With
minimal modifications, a complex, hybrid /Fortran77 code

438 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 4, JUNE 2015

was successfully ported to the coprocessor yielding satisfactory
speedups. This illustrates that the process of modifying scien-
tific software to benefit from the Intel Xeon Phi architecture is
relatively straightforward with quite short development times.
Nonetheless, since the coprocessor features wide SIMD

vector instructions, a proper loop vectorization is particularly
important for its full utilization. Propitiously, vectorization
reports collected for FindSite show that the majority of
loops taking the most execution time are indeed vectorized.
Still, there are other issues related to data dependency and
alignment, which need to be addressed by rearranging loops,
data structure padding, improving register utilization, and
data caching. Therefore, in addition to the parallelization of
the remaining portions of the serial code, future directions
of this project include thorough code optimizations to take a
better advantage of the Intel Xeon and Xeon Phi architectures.
The up-to-date versions of FindSite are freely available to
the academic community at www.brylinski.org/efindsite; this
website also provides compilation and installation instructions,
as well as a detailed tutorial on processing large datasets using
heterogeneous computing platforms.

ACKNOWLEDGMENT

The authors are grateful for discussions and comments from
the members of the Heterogeneous Computing group formed
within the Louisiana Alliance for Simulation-Guided Materials
Applications (LA-SiGMA).

REFERENCES
[1] M. L. Metzker, “Sequencing technologies—the next generation,” Nat.

Rev. Genet., vol. 11, no. 1, pp. 31–46, 2010.
[2] J. Zhao and S. F. Grant, “Advances in whole genome sequencing tech-

nology,” Curr. Pharm. Biotechnol., vol. 12, no. 2, pp. 293–305, 2011.
[3] A. S. Juncker, L. J. Jensen, A. Pierleoni, A. Bernsel, M. L. Tress, P.

Bork, G. von Heijne, A. Valencia, C. A. Ouzounis, R. Casadio, and
S. Brunak, “Sequence-based feature prediction and annotation of pro-
teins,” Genome Biol., vol. 10, no. 2, p. 206, 2009.

[4] Y. Loewenstein, D. Raimondo, O. C. Redfern, J. Watson, D. Frishman,
M. Linial, C. Orengo, J. Thornton, and A. Tramontano, “Protein func-
tion annotation by homology-based inference,” Genome Biol., vol. 10,
no. 2, p. 207, 2009.

[5] H. Kitano, “Systems Biology: A brief overview,” Science, vol. 295, no.
5560, pp. 1662–1664, 2002.

[6] A. D. Boran and R. Iyengar, “Systems approaches to polypharma-
cology and drug discovery,” Curr. Opin. Drug Discov. Devel., vol. 13,
no. 3, pp. 297–309, 2010.

[7] NVIDIA, GPU Accelerated Applications [Online]. Available: http://
www.nvidia.com/object/gpu-accelerated-applications.html

[8] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco,
and K. Schulten, “Accelerating molecular modeling applications
with graphics processors,” J. Comput. Chem., vol. 28, no. 16, pp.
2618–2640, 2007.

[9] M. Januszewski and M. Kostur, “Accelerating numerical solution of
stochastic differential equations with CUDA,” Comp. Phys. Commun.,
vol. 181, no. 1, pp. 183–188, 2010.

[10] M.Weigel, “Simulating spin models on GPU,”Comp. Phys. Commun.,
vol. 182, no. 9, pp. 1833–1836, 2011.

[11] E. Roberts, J. E. Stone, L. Sepulveda, W. M. W. Hwu, and Z. Luthey-
Schulten, “Long time-scale simulations of in vivo diffusion using GPU
hardware,” pp. 1–8, 2009.

[12] J. Bao, H. Xia, J. Zhou, X. Liu, and G. Wang, “Efficient implementa-
tion of MrBayes on multi-GPU,” Mol. Biol. Evol., vol. 30, no. 6, pp.
1471–1479, 2013.

[13] P. D. Vouzis and N. V. Sahinidis, “GPU-BLAST: Using graphics pro-
cessors to accelerate protein sequence alignment,” Bioinformatics, vol.
27, no. 2, pp. 182–188, 2011.

[14] B. Pang, N. Zhao, M. Becchi, D. Korkin, and C. R. Shyu, “Acceler-
ating large-scale protein structure alignments with graphics processing
units,” BMC Res. Notes, vol. 5, p. 116, 2012.

[15] [Online]. Available: http://top500.org
[16] T. Cramer, D. Schmidl, M. Klemm, and D. Mey, “OpenMP

programming on Intel Xeon Phi Coprocessors: An early perfor-
mance comparison” [Online]. Available: https://sharepoint.campus.
rwth-aachen.de/units/rz/HPC/public/Lists/Publications/Attach-
ments/86/2012_MARC_Xeon_Phi.pdf, 2012

[17] C. Rosales, “Porting to the Intel Xeon Phi: Opportunities and
challenges” [Online]. Available: http://www.xsede.org/docu-
ments/271087/586927/CRosales_TACC_porting_mic.pdf 2012

[18] A. Vladimirov and V. Karpusenko, “Heterogeneous clustering with
homogeneous code: accelerate MPI applications without code surgery
using Intel Xeon Phi coprocessors,” Colfax Int. 2013 [Online]. Avail-
able: http://research.colfaxinternational.com/post/2013/10/17/Hetero-
geneous-Clustering.aspx

[19] M. Brylinski and W. P. Feinstein, “eFindSite: Improved prediction of
ligand binding sites in protein models using meta-threading, machine
learning and auxiliary ligands,” J. Comput. Aided Mol. Des., vol. 27,
no. 6, pp. 551–567, 2013.

[20] W. P. Feinstein and M. Brylinski, “eFindSite: Enhanced fingerprint-
based virtual screening against predicted ligand binding sites in protein
models,” Mol. Inf., vol. 33, no. 2, pp. 135–150, 2014.

[21] B. Rost, “Twilight zone of protein sequence alignments,” Protein Eng.,
vol. 12, no. 2, pp. 85–94, Feb 1999.

[22] J. Skolnick and M. Brylinski, “FINDSITE: A combined evolu-
tion/structure-based approach to protein function prediction,” Brief
Bioinf., vol. 10, no. 4, pp. 378–391, 2009.

[23] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H.
Weissig, I. N. Shindyalov, and P. E. Bourne, “The protein data bank,”
Nucleic Acids Res., vol. 28, no. 1, pp. 235–242, 2000.

[24] M. Brylinski and D. Lingam, “eThread: A highly optimized machine
learning-based approach to meta-threading and the modeling of protein
tertiary structures,” PLoS One, vol. 7, no. 11, p. e50200, 2012.

[25] M. Brylinski, “Unleashing the power of meta-threading for evolution/
structure-based function inference of proteins,” Front Genet., vol. 4, p.
118, 2013.

[26] M. Brylinski, “Nonlinear scoring functions for similarity-based ligand
docking and binding affinity prediction,” J. Chem. Inf. Model, vol. 53,
no. 11, pp. 3097–3112, 2013.

[27] M. Brylinski and J. Skolnick, “Q-Dock(LHM): Low-resolution refine-
ment for ligand comparative modeling,” J Comput. Chem., vol. 31, no.
5, pp. 1093–1105, 2010.

[28] S. B. Pandit, M. Brylinski, H. Zhou, M. Gao, A. K. Arakaki, and J.
Skolnick, “PSiFR: An integrated resource for prediction of protein
structure and function,” Bioinformatics, vol. 26, no. 5, pp. 687–688,
2010.

[29] P. Aloy and R. B. Russell, “Structural systems biology: Modelling pro-
tein interactions,” Nat. Rev. Mol. Cell Biol., vol. 7, no. 3, pp. 188–197,
2006.

[30] Intel® Xeon Phi™ Coprocessor Instruction Set Architecture Reference
Manual, Intel Corp., 2012 [Online]. Available: https://software.intel.
com/sites/default/files/forum/278102/327364001en.pdf

[31] “Stampede user guide” [Online]. Available: https://portal.tacc.utexas.
edu/user-guides/stampede

[32] “OpenMP specifications” [Online]. Available: http://openmp.org/wp/
openmp-specifications/

[33] “MPI: A message-passing interface standard version 3.0”, MPI Forum,
1997.

[34] S. Leis, S. Schneider, andM. Zacharias, “In silico prediction of binding
sites on proteins,” Curr. Med. Chem., vol. 17, no. 15, pp. 1550–1562,
2010.

[35] M. Brylinski and J. Skolnick, “A threading-based method (FINDSITE)
for ligand-binding site prediction and functional annotation,” Proc.
Natl. Acad. Sci. USA, vol. 105, no. 1, pp. 129–134, 2008.

[36] S. B. Pandit and J. Skolnick, “Fr-TM-align: A new protein structural
alignment method based on fragment alignments and the TM-score,”
BMC Bioinformat., vol. 9, p. 531, 2008.

[37] B. J. Frey and D. Dueck, “Clustering by passingmessages between data
points,” Science, vol. 315, no. 5814, pp. 972–976, 2007.

[38] J. Reinders and J. Jeffers, High Performance Parallelism Pearls: Mul-
ticore and Many-Core Programming Approaches. San Francisco,
CA, USA: Morgan Kaufmann, 2014.

[39] M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimiza-
tion. New York: Wiley, 2002.

FEINSTEIN et al.: ACCELERATING THE PACE OF PROTEIN FUNCTIONAL ANNOTATION WITH INTEL XEON PHI COPROCESSORS 439

[40] D. van Heesch, “Announcing: The first release of Doxygen, a
documentation system,” 1997.

[41] G. M. Amdahl, “Validity of the single processor approach to achieving
large-scale computing capabilities,” in AFIPS Conf. Proc., 1967, vol.
30, pp. 483–485.

[42] S. Han, R. P. Zaniewski, E. S. Marr, B. M. Lacey, A. P. Tomaras, A.
Evdokimov, J. R. Miller, and V. Shanmugasundaram, “Structural basis
for effectiveness of siderophore-conjugated monocarbams against clin-
ically relevant strains of Pseudomonas aeruginosa,” Proc. Natl. Acad.
Sci. USA, vol. 107, no. 51, pp. 22002–22007, 2010.

[43] “Benchmarks: Intel Xeon Phi vs. NVIDIA Tesla GPU” [Online]. Avail-
able: http://blog.xcelerit.com/intel-xeon-phi-vs-nvidia-tesla-gpu/

[44] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz, “Comparative
performance analysis of Intel Xeon Phi, GPU, CPU: A case study from
microscopy image analysis,” IEEE Trans Parallel Distrib. Syst., vol.
2014, pp. 1063–1072, May 2014.

Wei P. Feinstein received her M.Sc. degree in
computer science from University of Alabama,
Tuscaloosa, AL, USA, and the Ph.D. degree in
medical sciences from the College of Medicine at
the University of South Alabama, Mobile, AL, USA.
She is a Postdoctoral Researcher in the Center for
Computation & Technology, or CCT, at Louisiana
State University, Baton Rouge, LA, USA. Her
research interests are in developing algorithms for
computational biophysics with applications in drug
discovery and biomaterial research. In addition,

she develops high-performance parallel and heterogeneous codes to boost the
performance of applications in biology, physics, and chemistry.

Juana Moreno received her B.S. degree in physics
from the Universidad Autonoma, Madrid, Spain,
and the Ph.D. degree in condensed matter physics
from Rutgers University, New Brunswick, NJ, USA.
She is an associate professor in the Department of
Physics and Astronomy and CCT at Louisiana State
University, Baton Rouge, LA, USA. Her research
focuses on modeling the transport and magnetic
properties of correlated electron systems, including
diluted magnetic semiconductors, heavy fermion
compounds, and low-dimensional systems, using a

variety of computational tools, such as the dynamical mean-field theory and
the dynamical cluster approximation.

Mark Jarrell received his Ph.D. degree in physics
from the University of California at Santa Barbara,
CA, USA. He is a Professor in the Department of
Physics and Astronomy and the Material World
focus area lead in CCT at Louisiana State University,
Baton Rouge, LA, USA. His interests lie in the
physics of strongly correlated electronic materials,
which include many nanostructures, high-Tc super-
conductors, heavy fermion, and magnetic materials.
He is also actively involved in the design and
development of multidisciplinary codes to address

the problem of efficient scaling on the next generation of hyper-parallel and
heterogeneous machines.

Michal Brylinski received his M.Sc. degree in phar-
macy from Wroclaw Medical University, Poland,
and the Ph.D. degree in chemistry from Jagiellonian
University, Poland. He is an Assistant Professor in
the Department of Biological Sciences and CCT,
Louisiana State University, Baton Rouge, LA, USA.
His work involves the design and development of
novel algorithms and codes for drug discovery and
repositioning using systems-level approaches. He
is interested in the application of massively parallel
hardware accelerators in structural bioinformatics,

functional genomics, cheminformatics, and pharmacogenomics.

