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The identification of protein–protein interactions is vital for understanding protein function, elucidating interaction
mechanisms, and for practical applications in drug discovery. With the exponentially growing protein sequence
data, fully automated computational methods that predict interactions between proteins are becoming essential
components of system-level function inference. A thorough analysis of protein complex structures demonstrated
that binding site locations as well as the interfacial geometry are highly conserved across evolutionarily related pro-
teins. Because the conformational space of protein–protein interactions is highly covered by experimental structures,
sensitive protein threading techniques can be used to identify suitable templates for the accurate prediction of inter-
facial residues. Toward this goal, we developed eFindSitePPI, an algorithm that uses the three-dimensional structure
of a target protein, evolutionarily remotely related templates and machine learning techniques to predict binding
residues. Using crystal structures, the average sensitivity (specificity) of eFindSitePPI in interfacial residue prediction
is 0.46 (0.92). For weakly homologous protein models, these values only slightly decrease to 0.40–0.43 (0.91–0.92)
demonstrating that eFindSitePPI performs well not only using experimental data but also tolerates structural
imperfections in computer-generated structures. In addition, eFindSitePPI detects specific molecular interactions at
the interface; for instance, it correctly predicts approximately one half of hydrogen bonds and aromatic interactions,
as well as one third of salt bridges and hydrophobic contacts. Comparative benchmarks against several dimer
datasets show that eFindSitePPI outperforms other methods for protein-binding residue prediction. It also features
a carefully tuned confidence estimation system, which is particularly useful in large-scale applications using raw
genomic data. eFindSitePPI is freely available to the academic community at http://www.brylinski.org/efindsiteppi.
Copyright © 2014 John Wiley & Sons, Ltd.
Additional supporting information may be found in the online version of this article at the publisher’s website.
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INTRODUCTION

Proteins often function in conjugation with other proteins, thus
an overwhelming number of biological processes are mediated
by protein–protein interactions (PPIs) (Rual et al., 2005). For
example, interacting proteins are routinely involved in signal
transduction, protein transport and folding, DNA replication
and repair, and cell division, just to mention a few examples.
Consequently, significant efforts have been devoted to study
PPIs because of their importance in elucidating protein function
and molecular recognition processes. Also, PPi sites are attractive
targets for therapeutics as the disruption of crucial interactions
may attenuate or even impair the function of pharmacologically
relevant proteins (Wells and McClendon, 2007; Jubb et al., 2012).
In recent years, many experimental and theoretical studies have
been conducted to discover and characterize these interactions;
however, despite evident progress, salient challenges remain.
Experimental methods used to identify interface residues are
often low-throughput with associated high costs of instruments
and experiments. Therefore, many cost-efficient computational
approaches have been developed for the prediction of interac-
tion sites to complement experimental efforts. For instance,
computationally predicted PPI sites can be used to optimize

site-directed mutagenesis experiments by reducing the number
of mutations needed to be tested in vitro (Sowa et al., 2000; Sowa
et al., 2001; Kortemme et al., 2004). Protein–protein docking is
another important application of interfacial site prediction.
Taking into account even the approximate location of protein
interface can, in principle, reduce the search space, improve
the accuracy of modeled complexes, and shorten computing
time (Halperin et al., 2002; Chelliah et al., 2006; Li and Kihara,
2012). For instance, Li and Kihara showed that docking results
obtained by a docking program PI-LZerD are successfully
improved even when the accuracy of supplied PPI restraints is
significantly low (Li and Kihara, 2012). On the other hand,
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another study by Shih and Hwang demonstrated that when
using bioinformatics-predicted information on interface resi-
dues, data-guided protein docking methods perform poorly
(Shih and Hwang, 2013), suggesting that PPI restraints should
have a certain accuracy in order to improve protein docking.

Until now, a variety of computational methods have been de-
veloped for the prediction of PPI sites (Obenauer and Yaffe, 2004;
Porollo and Meller, 2007; Pitre et al., 2008; Wang et al., 2013).
Sequence-based methods largely rely on features extracted from
sequence profiles constructed by Position-Specific Iterative Basic
Local Alignment Search Tool (PSI-BLAST) (Koike and Takagi, 2004;
Chen and Jeong, 2009; Murakami and Mizuguchi, 2010). Other
methods extensively utilize remote evolutionary information to
detect functionally important sites (Lichtarge et al., 1996; Armon
et al., 2001; Pupko et al., 2002; Engelen et al., 2009). For example,
the Evolutionary Trace algorithm (Lichtarge et al., 1996) maps
conserved amino acids onto a three-dimensional protein
structure and then identifies functional sites by analyzing highly
conserved residues in the branches of an evolutionary tree. Iden-
tified residues are assumed to be structurally important if they lie
in the core of a protein, while those on the surface are relevant
for protein function. Finally, as a consequence of the continu-
ously growing structural content in protein databases (Berman
et al., 2013), a number of structure-based approaches have been
developed. These algorithms exploit geometrical and physico-
chemical features derived from the three-dimensional structures
of target proteins (Jones and Thornton, 1997; Liang et al., 2006;
Jordan et al., 2012), for example, the solvent accessibility,
secondary structure states, hydrophobicity, B-factors and the
local topology. Furthermore, recent studies demonstrate that
the interaction sites tend to be conserved among structural
analogs (Zhang et al., 2010), which stimulate the development
of methods for the prediction of PPI sites based on the global
structural similarity between query proteins and those with
known dimer structures. For example, a recently developed
method called PrePPI derives empirical scores from the inter-
faces of structural neighbors for the prediction of binary PPIs
(Zhang et al., 2012). The accuracy and coverage of approaches
based on the global structural similarity certainly depend on
the availability of experimental structures of target proteins as
well as the oligomer complexes of their structural neighbors.

PPI sites can be separated from the rest of the surface by
various geometric features, for example, accessible surface area,
planarity and protrusion (Jones and Thornton, 1997; Nooren and
Thornton, 2003), as well as the local structure similarity between
query proteins and a repository of known dimers (Jordan et al.,
2012). Consequently, there is an increasing interest in PPI predic-
tion based on the local similarity; for instance, PrISE detects
interaction sites using a local surface similarity between query
proteins and a collection of structural elements (Jordan et al.,
2012). Notwithstanding the evident progress in the structure-
based identification of PPI sites in proteins, these methods have
not been widely used in proteome-scale applications, primarily

because (1) the number of proteins with known structures is far
smaller than the number of known sequences; (2) they may
require an additional knowledge of interacting partners, which
is often unavailable; and (3) their performance depends on the
availability of protein dimers structurally similar to query
proteins.
In that regard, continuous efforts are directed toward the

development of novel approaches for the prediction of pro-
tein–protein interfacial sites. In this study, we describe the devel-
opment and benchmarking of eFindSitePPI, a new evolution/
structure-based method that can be used to predict PPI sites in
proteins with known structures, as well as in gene products
whose structures have not yet been solved experimentally.
eFindSitePPI effectively integrates sensitive meta-threading
techniques with structure alignments and machine learning to
accurately detect interfacial residues in query proteins. Its unique
feature is the capability to predict positions and types of molec-
ular interactions that target proteins are likely to form with their
partners. These include many interactions known to stabilize
protein–protein complexes, such as hydrogen bonds, salt
bridges, as well as hydrophobic and aromatic contacts. Impor-
tantly, eFindSitePPI makes accurate predictions for protein
models with diverse quality, which opens up the possibility for
structure-based PPI site identification at the proteome scale.
Finally, in comprehensive benchmarks, we demonstrate that
eFindSitePPI outperforms other methods for the prediction of
PPI sites from protein structures.

MATERIALS AND METHODS

Overview of eFindSitePPI

eFindSitePPI is a new evolution/structure-based approach for the
prediction of protein-binding sites, specific interactions as well
as the local interfacial geometry. The flowchart shown in Figure 1
illustrates the procedure implemented in eFindSitePPI, which
starts with the structure of a target protein (Figure 1A). Next,
using meta-threading, functionally and structurally related
templates are identified in the template library (Figure 1B). For
each template, eFindSitePPI retrieves its known complexes and
maps their interfaces onto the target protein using structure
alignments (Figure 1C). Then, the algorithm computes five differ-
ent attributes for each surface residue in the target protein: the
relative accessible area (RSA), generic interface propensity (IP),
sequence entropy (SE), position specific interface propensity
(PSIP), and the fraction of templates (FT) that have an equivalent
residue at the protein–protein interface (Figure 1D). These
attributes are combined into probabilistic scores by machine
learning using Support Vector Machines (SVMs) and a Naïve
Bayes Classifier (NBC) (Figure 1E). Both classifiers are finally used
to distinguish between interface and non-interface residues in
the target protein (Figure 1F). Below, we describe datasets used
in this study, that is, the template library and various

Figure 1. Flowchart for the PPI site prediction using eFindSitePPI. Details are given in text.
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benchmarking sets provide details on the methods and algo-
rithms implemented in eFindSitePPI, and explain evaluation
metrics used to assess its performance in PPI prediction.

Dimer template library

Template library was compiled from all Protein Data Bank (PDB)
(Berman et al., 2000) entries as of September 2012 with biologi-
cally relevant arrangements of two protein chains identified
using Protein, Interface, Surfaces, and Assemblies (PISA) (Krissinel
and Henrick, 2007). The redundancy was removed at 40%
pairwise sequence identity by Cluster Database at High Identity
with Tolerance (CD-HIT) (Li et al., 2001); however, two homologous
dimers were included in the library if they either had structurally
dissimilar receptor proteins with a template modeling score (TM-
score) of <0.4 (Zhang and Skolnick, 2004), non-overlapping
interfacial residues with Matthew’s correlation coefficient (MCC)
of <0.5, or a different interfacial geometry with an interfacial
similarity score (IS-score) of<0.191 (Gao and Skolnick, 2010). Note
that an IS-score of 0.191 indicates a significant interfacial similarity
at a p-value of 0.05. TM-score is a structure alignment quality
measure that ranges from 0 to 1 and has a length independent
statistical significance threshold of ≥0.4, which corresponds to a
p-value of 3.4 × 10�5 (Zhang and Skolnick, 2004). Here, TM-score
is calculated upon structure alignments constructed by Fr-TM-align
(Pandit and Skolnick, 2008), whereas the overlap of binding
residues and the local structure similarity of binding interfaces
(IS-score) are assessed by iAlign (Gao and Skolnick, 2010). The
complete template library comprises 17,792 dimer structures.

Benchmarking dataset BM4361

The primary dataset used in eFindSitePPI benchmarking, BM4361,
consists of complex crystal structures selected from the template
library. In each dimer, the longer chain is considered a receptor
and the shorter chain is a ligand. We selected those dimers, in
which the receptor has 50–600 residues. Furthermore, to avoid
ambiguity when assessing the accuracy of interfacial residue
prediction, we excluded receptors that interact with different
ligands through different binding residues or whose close homo-
logues with ≥40% sequence identity form different PPIs. This
procedure resulted in a non-redundant dataset of 4,361 protein
dimers with unique and biologically relevant interfaces, referred
to as BM4361. In addition to benchmarking simulations, this
dataset was used to optimize eFindSitePPI parameters and to
construct machine learning models.

Benchmarking dataset BM1905

This dataset was compiled as a subset of BM4361 to benchmark
the accuracy of binding residue prediction against non-native
structures. It features three structural forms for each receptor
protein: a crystal structure as well as high-quality and
moderate-quality protein models. Weakly homologous models
were generated by template-based modeling using eThread
(Brylinski and Feinstein, 2012; Brylinski and Lingam, 2012) follow-
ing a procedure described in Supporting Information. eThread is
a meta-predictor that integrates several single threading algo-
rithms to improve the recognition of structurally and functionally
related templates (Brylinski, 2013). Both models with the
preferred accuracy were constructed for 1,905 target proteins,
thus the corresponding sets of crystal structures, high-quality,

and moderate-quality models are referred to as BM1905C,
BM1905H and BM1905M, respectively.

Other datasets

In addition to the BM4361 and BM1905 datasets, we compare
the performance of eFindSitePPI to other approaches for interfa-
cial residue prediction on datasets used previously in the devel-
opment and benchmarking of those algorithms. Comparison
with PrISE is carried out using bound and unbound receptor con-
formations from the Benchmark 4.0 dataset (Hwang et al., 2010).
We note that the accuracy of PrISE is assessed only against
crystal structures in their bound conformational state (Jordan
et al., 2012). We excluded multimeric complexes, in which the
receptor is either smaller than 50 or larger than 600 residues,
forms multiple interfaces, or the interface is made up of less than
20 residues. This dataset consists of 170 target proteins, 95 in
bound and 75 in the unbound conformational state. We also as-
sess the performance of eFindSitePPI with respect to ET and iJET
predictors (Lichtarge et al., 1996; Engelen et al., 2009) on the
Huang dataset (Caffrey et al., 2004), applying similar criteria as
described in the previous text. This dataset comprises 52 target
proteins including 28 homodimers, 17 heterodimers and 7
transient complexes. When applicable, we modify eFindSitePPI

parameters to match prediction procedures described in the
original publications of PrISE, ET and iJET.

Selection of dimer templates

eFindSitePPI is a template-based approach, which employs meta-
threading using eThread (Brylinski and Feinstein, 2012; Brylinski
and Lingam, 2012) to identify structurally and functionally re-
lated proteins in the template library as described previously
(Brylinski, 2013). At least one dimer template is required in order
to make a prediction. By default, we carry out benchmarking
simulations excluding closely related templates, whose se-
quence identity to the target is >40%. Moreover, we only use
templates that structurally align to their targets with a TM-score
of ≥0.4 (Zhang and Skolnick, 2004) as reported by Fr-TM-align
(Pandit and Skolnick, 2008). Note that benchmarking calculations
under these conditions are devised to approximate real applica-
tions in across-proteome functional annotation, where at most
weakly homologous proteins can be identified for the majority
of gene products. In addition to the default sequence identity
threshold of 40%, we evaluate the performance of eFindSitePPI

at 30 and 20% as well.

Interfacial probability score

Each residue in the target protein is assigned an interfacial
probability score that estimates the likelihood of this residue
position to be at the protein–protein interface. These scores
are calculated using machine learning and a set of the following
residue-level attributes:

Relative surface accessibility

The relative accessible solvent area (ASA) of each residue is
calculated using NACCESS (Hubbard and Thomson, 1993). This
program implements a method by Lee and Richards (1971),
which calculates the atomic accessible surface by rolling a
probe of a given size around the van der Waals surface. Resi-
dues with a surface accessibility of <5% are considered buried,
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thus non-interfacial. Remaining residues are assigned the rela-
tive surface accessibility (RSA) score.

Interface propensity

We use interface residue propensities derived for 20 standard
amino acids by Jones and Thornton from a non-redundant set
of high-resolution crystal structures of protein–protein com-
plexes (Jones and Thornton, 1996; Jones and Thornton, 1997).
Interface propensities (IP) describe the statistical likelihood of
different amino acids to be found at protein–protein interfaces.
These are calculated for each amino acid (AAj) as the relative
contribution of AAj to the interfacial ASA compared with the
whole surface:

IPj ¼

XNi

i¼1

ASAi jð Þ

XNi

i¼1

ASAi
=

XNs

s¼1

ASAs jð Þ

XNs

s¼1

ASAs

(1)

where,
P

ASAi(j) is the sum of ASA of amino acid residues of
type j at the interface,

P
ASAi is the sum of ASA of all amino

acids at the interface,
P

ASAs(j) is the sum of ASA of amino acid
residues of type j on the surface, and

P
ASAs is the sum of ASA of

all amino acids on the surface.

Sequence entropy

Functionally important residues tend to be evolutionarily con-
served (Caffrey et al., 2004; Guharoy and Chakrabarti, 2005;
Mintseris and Weng, 2005); therefore, we include a conservation
score estimating the sequence variability for each target residue.
First, multiple sequence alignments generated for the target
sequence by PSI-BLAST (Altschul et al., 1997) are converted
to a sequence profile. Then, the conservation score for each
residue position (SE) is calculated using the Shannon entropy
(Shanon, 1948):

SE ¼
X20

i¼1

pi log2 pið Þ (2)

where pi is the fraction of residues of amino acid type i in a
given position in the sequence profile. SE ranges from 0 (absolute
conservation of a particular residue type) to 4.32 bits (maximum
entropy for equally distributed amino acids).

Position-specific interface propensity

The PSIP score combines generic interface residue propensities,
as described in the previous text, with evolutionary information
included in sequence profiles:

PSIP ¼
X20

i¼1

piIPi (3)

where pi is the fraction of residues of amino acid type i at a given
position in the profile and IPi is the interface propensity for
amino acid type i.

Fraction of templates

Finally, we include the fraction of templates (FT) that have an
interfacial residue in the equivalent position according to tem-
plate–target structure alignments constructed by Fr-TM-align.
Individual residue-level attributes, RSA, IP, SE, PSIP and FT, are

combined into a single probabilistic score using machine learn-
ing. Two different classifiers, SVMs (Chang and Lin, 2011) and
the NBC (Zhang, 2004), are trained to predict interfacial residues
according to the assignment by iAlign (Gao and Skolnick, 2010).
iAlign assigns interfacial residues based on interatomic contacts,
which occur when any two heavy atoms belonging to residues
from different chains are within a distance of 4.5 Å. Both machine
learning models are twofold cross-validated on the BM4361
dataset. Specifically, dataset proteins are randomly divided into
two subsets, A and B; A is used to train a model and then validate
it against B, and vice versa, the model trained on B is validated
against A. We note that <40% sequence identity between any
pair of proteins in the BM4361 dataset ensures that the classifiers
are trained and validated using different proteins. Probability
thresholds optimized using the BM4361 dataset are 0.202 for
the SVM and 0.178 for the NBC predictor. These values were
selected to maximize MCC to 0.428, which corresponds to a true
positive rate of 0.464 at the expense of 0.076 false positive rate. A
given residue in the target protein is predicted to be at the inter-
face when both probabilities are above their threshold values.

Calculation of interfacial interactions

In analyzing interfacial interactions, we consider the following
four types of inter-residue contacts: salt bridges, hydrogen
bonds, hydrophobic, and aromatic interactions. Salt bridges
and hydrogen bonds across protein interfaces are detected by
PDB2PQR (Dolinsky and Baker, 2004). Hydrophobic interactions
are defined when the distance between any pair of atoms be-
longing to hydrophobic side chains is ≤5 Å; hydrophobic amino
acids include Ala, Ile, Leu, Phe, Pro, Met and Val. Using the same
distance threshold, aromatic contacts are identified between the
side chains of His, Phe, Trp and Tyr. For each predicted interfacial
residue, we calculate the fraction of templates that have a
residue in the equivalent position forming a particular type of
PPI using template–target structure alignments constructed by
Fr-TM-align. These frequency values calculated for all interaction
types correspond to the probabilities of various contacts that
target residues may form with protein partners. Thresholds
optimized on the BM4361 dataset are 0.001 for salt bridges,
0.021 for hydrogen bonds, 0.041 for hydrophobic contacts, and
0.012 for aromatic interactions. Similar to the interface residue
prediction, these threshold values maximize the respective MCC.

Confidence estimation system

In proteome-level function inference, reliable predictions cannot
be obtained for all targeted gene products; therefore, various
predictors are required to provide confidence estimates. Every
prediction by eFindSitePPI is assigned an overall confidence score
(CS) defined as

CS ¼ 1
N

XN

i¼1

SVMi�NBCi (4)

where N is the total number of predicted binding residues, and
SVMi and NBCi are the binding probability scores assigned to
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ith residue by machine learning using SVMs and the NBC, respec-
tively. Calibrated ranges are CS≥ 0.5 for high, 0.25<CS< 0.5 for
medium, and CS≤ 0.25 for low confidence predictions.

Performance evaluation metrics

Binding residue prediction by eFindSitePPI is assessed using
standard evaluation metrics for classification problems:

Sensitivity (true positive rate):

TPR ¼ TP
TP þ FN

(5)

Fall-out (false positive rate):

FPR ¼ FP
FP þ TN

(6)

Specificity (true negative rate):

SPC ¼ TN
FP þ TN

(7)

Precision (positive predictive value):

PPV ¼ TP
TP þ FP

(8)

Accuracy:

ACC ¼ TP þ TN
TP þ FP þ TN þ FN

(9)

Matthew’s correlation coefficient:

MCC ¼ TP�TN � FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ TNð Þ FP þ FNð Þ TN þ FNð Þp (10)

where true positives (TP), false negatives (FN) and false positives
(FP) is the number of correctly predicted, underpredicted, and
overpredicted binding residues, respectively. True negatives
(TN) is the number of correctly predicted non-interfacial residues.
Binding residues in experimental complex structures (positives)
are defined as those forming protein–protein interfaces accord-
ing to iAlign (Gao and Skolnick, 2010). The minimum value is 0,
and the maximum value is 1 for all scores, except for MCC that
ranges from �1 to 1. MCC quantifies the strength of the correla-
tion between predicted and actual classes; by heavily penalizing
both overpredictions and underpredictions, it provides a
convenient assessment measure that balances the sensitivity
and specificity. In addition to numerical values assessing the
classification accuracy, we analyze the prediction results using
receiver operating characteristic (ROC) plots. This technique
was developed to evaluate the overall performance of a classifier
and shows the trade-off between sensitivity and specificity. The
area under the ROC curve (AUC) quantifies the performance of
a classifier; larger AUC values indicate a better prediction power
of the classification model.
The accuracy of interface residue prediction is compared with

that of a random, size-independent classifier. First, for a given

target protein, we estimate the size of its interface from the num-
ber of exposed residues as described by Martin (2014). Next, we
randomly select a patch on the target surface whose size is
equivalent to the estimated number of interfacial residues. This
patch represents a random interface and includes the correction
of a size bias, that is, smaller proteins have proportionally more
residues within the patch, increasing the chances of overlapping
with the correct interface.

RESULTS AND DISCUSSION

Accuracy of template selection

eFindSitePPI employs meta-threading and structure alignments
to select templates for the prediction of interfacial sites. The
prediction accuracy inevitably depends on the quality of the
identified set of dimer templates; therefore, using the BM4361
dataset, we first assess the accuracy of template selection. We
note that templates used in this study are at most weakly
homologous, sharing <40% sequence identity with their targets.
Figure 2 shows a series of ROC plots cross-validating the accu-
racy of template selection with respect to several features. Using
template confidence as a variable parameter, Figure 2A (a solid
line) shows the performance of eThread in detecting those tem-
plates that are structurally similar to the target with a TM-score
of ≥0.4. Structure similarity is quantified by the TM-score (Zhang
and Skolnick, 2004) calculated for template–target structure
alignments constructed by Fr-TM-align (Pandit and Skolnick,
2008). Detecting structurally similar templates yields the maxi-
mum accuracy of 0.746 at a true positive rate of 0.642 and a false
positive rate of 0.210, resulting in the area under ROC of 0.754.

Next, in addition to the global structure similarity, we also
require a template to have a similar location of the PPI interface
in order to be considered a positive. Specifically, we measure the
interface overlap between the target and a template by calculat-
ing MCC over interfacial residues in both structures with residue
equivalences taken from structure alignments. MCC values of
≥0.5 indicate that both the target and a template bind their
partners at similar locations. Figure 2A (a dashed line) shows that
protein templates whose binding interfaces are at similar loca-
tions are accurately detected. The corresponding area under
ROC is 0.747 with the maximum accuracy of 0.759 obtained at
a true positive rate of 0.655 and a false positive rate of 0.215.
Finally, we consider the most stringent case, where the interfa-
cial geometry in a template is similar to that in the target with
an IS-score of ≥0.191. The IS-score measures interfacial similarity
by comparing geometric distances as well as the conservation of
contact patterns (Gao and Skolnick, 2010). Encouragingly, the
area under ROC is 0.709, with the maximum accuracy of 0.695
at a true positive rate of 0.778 and a false positive rate of 0.419
(Figure 2A, a dotted line). Our results demonstrate that both
the interface location and its geometry are conserved across a
set of evolutionarily and structurally related proteins, which
accords with previous studies (Gao and Skolnick, 2010; Zhang
et al., 2010). Therefore, threading and meta-threading tech-
niques can be effectively utilized to explore remote relationships
between proteins using sensitive sequence profile comparisons.
This strategy optimizes the selection of dimer templates for
template-based prediction of functional aspects related to PPIs.

Similarity-based approaches to protein docking use dimer
templates, in which both monomers are structurally similar to
the target monomers (Aloy and Russell, 2003; Zhang et al.,
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2012). These algorithms employ global structure similarity to
construct complex models based on the identified dimer tem-
plates. Therefore, we also analyze the capabilities of threading
to detect weakly homologous receptor templates that bind glob-
ally similar ligands. First, we assess the global structure similarity
of template ligands, where the interacting partners with a TM-
score ≥0.4 to the target ligand are positives. Figure 2B (a dashed
line) shows that binding ligands are not necessarily structurally
similar to the target ligand even when they share the same bind-
ing location. The corresponding area under ROC is only 0.538,
and the maximum accuracy of 0.483 is obtained at a true positive
rate of 0.448 and a false positive rate of 0.373. Next, we use
global sequence similarity to select interacting partners from
the identified dimer templates; here, template ligands whose
sequence identity to the target ligand is ≥40% are positives.
Interestingly, as shown in Figure 2B (a solid line), receptor
templates with similar binding sites tend to bind homologous
proteins with respect to the target ligand. The area under ROC
is 0.848, and the maximum accuracy of 0.790 is obtained at a
true positive rate of 0.866 and a false positive rate of 0.210. We
note that structurally similar ligands with a TM-score of ≥0.4
and homologous ligands with a sequence identity of ≥40% were
found for 44 and 0.5% of the cases, respectively. This analysis
shows that the interface site can be inferred using the global
structure similarity when the sequence similarity between the
target and template ligands is high. Nevertheless, because of
the incompleteness of dimer libraries, the coverage of suitable
protein targets is rather low.

Conservation of interfacial interactions

Because protein complexes are stabilized by a variety of interac-
tions, we analyze the conservation of interaction patterns across
weakly related proteins. For each protein in the BM4361 dataset,
interfacial interactions in its dimer templates are mapped to the
target residues according to the structure alignments of receptor
proteins. ROC plots in Figure 3 show the structural conservation
of interfacial hydrogen bonds, salt bridges, aromatic and hydro-
phobic contacts at protein–protein interfaces. ROC curves end at
certain sensitivity values, because we can only take account of

those surface residues having an interacting residue at a struc-
turally aligned position in at least one template. The maximum
accuracy obtained for hydrogen bonds, salt bridges, hydropho-
bic and aromatic interactions is 0.900, 0.945, 0.895 and 0.949,
at a true (false) positive rate of 0.684 (0.091), 0.459 (0.049),
0.760 (0.098) and 0.488 (0.044), respectively. Comparison of
these ROC plots shows that the conservation of interfacial
hydrophobic contacts and hydrogen bonds is higher than aro-
matic interactions and salt bridges. The high conservation of hy-
drophobic contacts is in line with previous studies suggesting

Figure 2. Accuracy of eThread in recognizing templates for PPI site prediction. In (A), correct templates for the receptor (larger subunit) are defined
using the global structure similarity with a TM-score of ≥0.4, the overlap of interfacial residues with MCC of ≥0.5, and the local interfacial similarity with
an IS-score of ≥0.191. In (B), we evaluate the recognition of those dimer templates in which the ligand (smaller subunit) is globally similar to the target-
bound ligand with a sequence identity of ≥40% and a TM-score of ≥0.4, respectively. Combined curves are calculated using a twofold cross-validation
against the BM4361 dataset. TPR, true positive rate; FPR, false positive rate. Gray areas correspond to predictions no better than random.

Figure 3. ROC plot evaluating the conservation of different types of
protein–protein interactions across sets of evolutionarily weakly related
dimer templates. The following non-covalent interaction types are
considered: hydrogen bonds, salt bridges, hydrophobic, and aromatic
contacts. A variable parameter is the fraction of templates that form
the same interactions as the target in structurally equivalent positions.
TPR, true positive rate; FPR, false positive rate. Gray area corresponds to
interactions found by a random chance.
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that these interactions play a central role in stabilizing protein–
protein complexes and the PPIs are dominated by hydrophobic
patches (Jones and Thornton, 1996; Jones and Thornton, 1997).
Overall, the results suggest that, in addition to binding residues,
the interaction conservation patterns detected across structur-
ally and evolutionarily related proteins can be used to predict
various interaction types as well. These features can be used to
support protein–protein docking simulations by favoring those
assembled dimer conformation, in which highly conserved
interactions are formed.

Prediction of PPI sites using experimental structures

eFindSitePPI extracts PPIs from weakly homologous dimer
templates identified by meta-threading for the prediction of
protein-binding residues, specific interactions as well as the local
interfacial geometry. Most of these features are identified by
machine learning techniques. Here, we assess the accuracy of
binding residue prediction, that is, the classification of target
residues as either interfacial or non-interfacial, using two
machine learning algorithms, SVMs and the NBC. As shown in
Figure 4, the performance of both classifiers on the BM4361
dataset is fairly comparable. The area under ROC for SVM is
0.737, with the maximum MCC of 0.404 at a true (false) positive
rate of 0.573 (0.144). For NBC, the area under ROC is 0.773, with
the maximum MCC of 0.339 at a true (false) positive rate of 0.628
(0.209). Encouragingly, combining both classifiers using opti-
mized thresholds, labeled as SVM+NBC in Figure 4, further
enhances the discriminatory power. Specifically, MCC improves
to 0.428, which corresponds to a sensitivity of 0.464 at the
expense of only 0.076 false positive rate.
We also evaluate the performance of eFindSitePPI in predicting

specific interactions that the target protein is likely to form with
its partners. The performance of eFindSitePPI in the prediction of

interaction types across the BM4361 dataset is shown in Figure 5;
note that underpredicted interfacial residues count as false
negatives in this analysis. Interestingly, despite the fact that
closely homologous templates with a sequence identity of
>40% were excluded from benchmarking calculations, the
prediction of all interaction types is fairly accurate. True positive
rates for hydrogen bonds and aromatic interactions are 0.515
and 0.484, with very small false positive rates of 0.048 and
0.037, respectively. For salt bridges and hydrophobic contacts,
the true (false) positive rates are 0.330 (0.031) and 0.306 (0.017).
These results demonstrate that eFindSitePPI predicts approxi-
mately one half of interfacial hydrogen bonds and aromatic inter-
actions and one third of salt bridges and hydrophobic contacts.

Size and composition of predicted interfaces

In addition to binding residues and interaction types predicted
by eFindSitePPI, in Figure 6, we analyze the general properties
of interfacial sites, such as their size and amino acid composition.
Figure 6A shows that the size of interfacial sites predicted by
eFindSitePPI for the BM4361 dataset correlates well with the size
of experimental interfaces identified by iAlign (Gao and Skolnick,
2010); the Pearson correlation coefficient is 0.720 with a standard
error of 0.118. In Figure 6B, we compare the amino acid compo-
sition of experimental and predicted protein–protein interfaces.
The frequencies of amino acids at the predicted interfaces are
in good quantitative agreement with the experimental data;
the differences are less than 1% on average. Consequently, inter-
faces predicted by eFindSitePPI are predominantly hydrophobic,
which is consistent with a previous study conducted by Lijnzaad
and Argos showing that interfacial sites often contain the largest
or second largest hydrophobic patches on the surface of
proteins (Lijnzaad and Argos, 1997). Next, we evaluate the
composition of amino acids involved in specific interactions at

Figure 4. ROC plot assessing the accuracy of interfacial residue predic-
tion across the BM4361 dataset by eFindSitePPI compared with PINUP.
For eFindSitePPI, three prediction protocols are evaluated: SVM only,
NBC only and a combination of SVM and NBC. TPR, true positive rate;
FPR, false positive rate. Gray area corresponds to predictions no better
than random.

Figure 5. ROC plot for the prediction of various interaction types by
eFindSitePPI for the BM1905C dataset. The following non-covalent inter-
action types are considered: hydrogen bonds, salt bridges, hydrophobic,
and aromatic contacts. TPR, true positive rate; FPR, false positive rate.
Gray area corresponds to predictions no better than random.
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protein–protein interfaces. The statistics collected for hydrogen
bonds are shown in Supporting Information, Figure S3A; we note
that because both side-chain and main-chain hydrogen bonds
are taken into consideration, all amino acid types are included
in this analysis. In general, interfaces are rich in hydrogen bonds,
which are the major contributors to electrostatic interactions
between proteins (Xu et al., 1997). The analysis of the composi-
tion of residues involved in the formation of hydrogen bonds
at the predicted interfaces reveals that some polar residues are
under-represented, for example, Arg, Glu, Asp and Ser (by 3.9,
4.0, 4.5 and 2.3%, respectively), whilst several hydrophobic resi-
dues are overpredicted to form hydrogen bonds, for example,
Leu, Ala, Ile, Phe, Pro and Met (by 4.8, 2.8, 2.1, 2.6, 2.2 and
1.8%, respectively). The amino acid composition of residues pre-
dicted to interact with ligands through salt bridges, hydrophobic
and aromatic contacts are comparable to that in the experimen-
tal complexes (Supporting Information, Figures S3B-E) except for
Arg and Phe, which are slightly overpredicted to form electro-
static and hydrophobic contacts by 5.5 and 5.1%.

Susceptibility to target–template sequence similarity

The accuracy of template-based function inference certainly
depends on the target–template sequence similarity; therefore,
we analyze the performance of eFindSitePPI at different similarity
thresholds applied to the selection of evolutionarily related
templates. Table 1 summarizes the results obtained at 40, 30
and 20% sequence similarity thresholds. The accuracy of protein
interface prediction at 40 and 30% similarity thresholds is
comparably high; however, the performance of eFindSitePPI

starts deteriorating at lower sequence similarity thresholds. For
example, MCC is 0.428, 0.381 and 0.177 at 40, 30 and 20%
sequence similarity, respectively. This corresponds to a true
(false) positive rate of 0.464 (0.076), 0.415 (0.077) and 0.151
(0.042). Thus, excluding templates with >20% sequence identity
to the target leads to an approximately twofold drop-off in the
prediction accuracy compared with higher sequence identity
thresholds. We note that this is a common feature of
threading-based approaches to protein function inference from
evolutionarily related templates and a similar behavior was
observed in ligand-binding site prediction using eFindSite
(Brylinski and Feinstein, 2013).

Protein models as targets for PPI prediction

Similar to eFindSite, a recently developed algorithm to ligand-
binding site prediction, the design of eFindSitePPI makes it partic-
ularly well suited for structure-based PPI prediction using protein
models. Therefore, in addition to target crystal structures, we
benchmark eFindSitePPI against computer-generated models.
The details on model preparation and their structural character-
istics are provided as Supporting Information. Benchmarking
results for different quality models from the BM1905 dataset
compared with experimental structures are presented in Table 2.
Because small proteins involve proportionally more residues at
interfaces compared with large targets, it is important to
eliminate a potential bias caused by this size effect. To address
this issue, several techniques for systematic corrections have
been recently suggested (Martin, 2014). Table 2 also includes a
random background that accounts for the size bias estimated
for the BM1905 dataset. Only a fraction of surface residues
contribute to PPIs; therefore, most residues assigned by a
random classifier are true negatives, resulting in a relatively high
accuracy (ACC) and specificity (SPC). However, sensitivity (TPR)
and fall-out (FPR) are comparably low and close to the diagonal
in a ROC space.
Using the SVM classifier in eFindSitePPI yields slightly better

performance than NBC, however, combining predictions from
both machine learning algorithms (listed as eFindSitePPI in
Table 2) gives the highest accuracy. For instance, using target
crystal structures, MCC for eFindSitePPI is 0.428. The performance
using protein models is only slightly worse with MCC of 0.371 for
high-quality and 0.339 for moderate-quality models. Compared
with a random, size-independent classifier, using eFindSitePPI

yields MCC values higher by 0.417 for target crystal structures,
and 0.352 and 0.309 for high-quality and moderate-quality

Figure 6. Size and composition of interfaces predicted by eFindSitePPI. (A) The correlation between the size of experimental interfaces identified by
iAlign and those predicted by eFindSitePPI. (B) Amino acid composition of experimental and predicted interfaces.

Table 1. Performance of eFindSitePPI in interface residue
prediction across the BM1905C dataset at different target–
template sequence similarity thresholds

Similarity
threshold

Evaluation metric

FPR TPR ACC SPC PPV MCC

40% 0.076 0.464 0.835 0.924 0.594 0.428
30% 0.077 0.415 0.824 0.922 0.563 0.381
20% 0.042 0.151 0.800 0.957 0.459 0.177

FPR, false positive rate; TPR, sensitivity; ACC, accuracy; SPC,
specificity; PPV, precision; MCC, Matthew’s correlation
coefficient.
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models. This analysis demonstrates that eFindSitePPI is capable of
tolerating distortions in modeled target structures.

Prediction confidence

A reliable confidence index is an essential feature to identify
those targets, whose interface is likely to be correctly predicted.
eFindSitePPI uses an average probability score assigned by
machine learning to target residues to categorize predictions
as either high, medium or low confidence. In Figure 7, we report

the prediction accuracy separately for each confidence group
using target crystal structures as well as protein models from
the BM1905 dataset. In general, confidence estimates correlate
well with the actual prediction accuracy assessed by MCC across
all datasets, that is, the average MCC for high-confidence predic-
tions is significantly higher than those assigned medium and low
confidence. For high-confidence predictions, using targets from
the BM1905C, BM1905H and BM1905M datasets yields the me-
dian MCC of 0.623, 0.585 and 0.520, whereas for medium (low)
confidence predictions, the median MCC is 0.383 (0.128), 0.246
(0.095) and 0.210 (0.086), respectively. As expected, the percent-
age of high-confidence predictions slightly decreases from 32 to
29% (28%) when high (low) quality protein models are used in-
stead of the target crystal structures; this is shown in Supporting
Information, Figure S2. To that end, eFindSitePPI offers a reliable
confidence index, which can be used to select only accurately
predicted interfaces for large-scale protein docking simulations
and other applications that may require a high precision.

Comparison with PINUP

We compare the performance of eFindSitePPI to several
structure-based approaches for protein-binding residue
prediction. The first one is PINUP (Liang et al., 2006), a method
that employs residue-level energy scores, accessible surface
area-dependent interface propensities and conservation scores
to derive a set of structural and functional constraints. PINUP
effectively combines side-chain energy, residue conservation
and interface propensity into a single score, which is used to
build a consensus region from initial top-ranked patches. The
corresponding weight factors were obtained by a linear optimi-
zation of the scoring function against a training dataset of 57
protein targets. Figure 4 shows that eFindSitePPI is almost twice

Table 2. Comparison of the performance of eFindSitePPI and PINUP using different quality target structures

Dataset Predictor Evaluation metric

FPR TPR ACC SPC PPV MCC

BM1905C eFindSitePPI (SVM) 0.150 0.581 0.760 0.850 0.483 0.403
eFindSitePPI (NBC) 0.208 0.627 0.760 0.793 0.421 0.366
eFindSitePPI 0.076 0.464 0.835 0.924 0.594 0.428
PINUP 0.091 0.244 0.748 0.808 0.414 0.189
Random 0.078 0.086 0.759 0.921 0.209 0.011

BM1905H eFindSitePPI (SVM) 0.161 0.539 0.785 0.838 0.418 0.344
eFindSitePPI (NBC) 0.228 0.590 0.739 0.771 0.357 0.304
eFindSitePPI 0.083 0.428 0.829 0.916 0.522 0.371
PINUP 0.112 0.179 0.722 0.787 0.284 0.080
Random 0.074 0.087 0.778 0.925 0.201 0.019

BM1905M eFindSitePPI (SVM) 0.169 0.517 0.775 0.839 0.393 0.314
eFindSitePPI (NBC) 0.233 0.571 0.732 0.766 0.341 0.281
eFindSitePPI 0.089 0.402 0.822 0.910 0.489 0.339
PINUP 0.121 0.166 0.709 0.778 0.264 0.053
Random 0.076 0.097 0.780 0.923 0.212 0.030

For eFindSitePPI, three prediction protocols are evaluated: SVM only, NBC only and a combination of SVM and NBC (listed as
eFindSitePPI). Values pointing to the best performance are highlighted in bold, except for FPR and TPR that need to be
considered jointly
BM1905C, crystal structures; BM1905H, high-quality models; BM1905M, moderate-quality models.
FPR, false positive rate; TPR, sensitivity; ACC, accuracy; SPC, specificity; PPV, precision; MCC, Matthew’s correlation coefficient.
Random performance includes the correction of a size bias.

Figure 7. Accuracy of interfacial residue identification for predictions
assigned different confidence levels. The accuracy is assessed by
Matthew’s correlation coefficient; boxes end at the quartiles Q1 and Q3

and a horizontal line in each box is the median. Whiskers point at the
farthest points that are within 3/2 times the interquartile range.
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as sensitive as PINUP on the BM4361 dataset; a true positive rate
for eFindSitePPI and PINUP is 0.446 and 0.236, at a comparably
low false positive rate of 0.073 and 0.060, respectively. In Table 2,
we assess the performance of both methods using experimental
structures and different quality protein models from the BM1905
dataset. Consistent with benchmarking results against BM4361,
eFindSitePPI outperforms PINUP on crystal structures from the
BM1905C dataset; for instance, MCC is 0.428 for eFindSitePPI

and 0.189 for PINUP. More importantly, the prediction accuracy
for eFindSitePPI against protein models from the BM1905H and
BM1905M datasets is much higher than for PINUP. When high
(moderate) quality models are used instead of the experimental
structures, MCC for PINUP decreases by 0.109 (0.136), whereas
for eFindSitePPI, MCC decreases only by 0.057 (0.089). Thus,
eFindSitePPI tolerates structure deformations in protein models
more efficiently than PINUP. These unequal performances of
eFindSitePPI and PINUP can be explained by differences in their
prediction techniques. eFindSitePPI mainly exploits template–
target similarities using global structure alignments, which are
fairly insensitive to local distortions in the target proteins,
whereas PINUP employs local features, for example, side-chain
conformations of individual amino acids as well as solvent
accessible surface calculations to predict interface residues.
Despite the correct global topology, the local characteristics of
computer-generated models may deviate significantly from
experimental structures, decreasing the performance of PINUP in
binding interface prediction using non-native target conformations.

Next, we compare the performance of eFindSitePPI and PINUP
separately for 3,896 homodimers and 465 heterodimers identi-
fied in the BM4361 dataset. Table 3 shows that both algorithms
perform better on homodimers compared with heterodimers;

MCC for eFindSitePPI (PINUP) is 0.419 (0.187) for homodimer
and 0.289 (0.156) for heterodimers. Furthermore, consistent
with previous results, eFindSitePPI is roughly twice as sensitive
as PINUP on both datasets of dimers. We note that the
performance of algorithms for PPI site prediction is often differ-
ent on homodimers and heterodimers; for example, Engelen
et al. (2009) reported that the average performance of iJET
and ET (Lichtarge et al., 1996) were better on homodimers
compared with heterodimers. This is because of the fact that
homodimers often have a nearly perfect symmetric organization
at the interface in contrast to mainly asymmetric interfaces
in heterodimers.

Comparison with PrISE

In order to eliminate any potential prediction bias using one
dataset, we evaluate the performance of eFindSitePPI with re-
spect to other methods on different protein sets. In addition to
PINUP, we compare eFindSitePPI with PrISE, a recently developed
method that exploits local surface similarities to predict protein
interfaces (Jordan et al., 2012). This method extracts structural
elements from a target protein and scans them through two
databases of protein quaternary structures and protein–protein
interface residues, ProtInDB (Jordan et al., 2011) and PQS
(Henrick and Thornton, 1998). The accuracy of PrISE was previ-
ously evaluated using the Protein–Protein Docking Benchmark
dataset (Howook Hwang et al., 2009). We ran eFindSitePPI on
the Benchmark 4.0 dataset following the same procedure as
used in PrISE benchmarking (Jordan et al., 2012). In this analysis,
we also include results from PINUP reported for the Benchmark
4.0 dataset. Table 4 shows that eFindSitePPI outperforms both

Table 3. Comparison of the performance of eFindSitePPI and PINUP using homodimers and heterodimers from the BM4361
dataset

Dataset Predictor Evaluation metric

FPR TPR ACC SPC PPV MCC

Homodimer eFindSitePPI 0.088 0.478 0.820 0.911 0.574 0.419
PINUP 0.089 0.239 0.771 0.910 0.414 0.187

Heterodimer eFindSitePPI 0.093 0.354 0.806 0.906 0.456 0.289
PINUP 0.090 0.217 0.773 0.909 0.368 0.156

Values pointing to the best performance are highlighted in bold, except for FPR and TPR that need to be considered jointly
FPR, false positive rate; TPR, sensitivity; ACC, accuracy; SPC, specificity; PPV, precision; MCC, Matthew’s correlation coefficient.

Table 4. Comparison of the performance of eFindSitePPI, PINUP and PrISE on the Benchmark 4.0 dataset. Values pointing to the
best performance are highlighted in bold, except for FPR and TPR that need to be considered jointly

Dataset Predictor Evaluation metric

FPR TPR ACC PPV MCC

Bound eFindSitePPI 0.049 0.399 0.909 0.404 0.352
PINUP 0.065 0.347 0.783 0.307 0.246
PrISE 0.042 0.381 0.790 0.432 0.279

Unbound eFindSitePPI 0.047 0.377 0.909 0.499 0.338

Results for PINUP and PrISE are taken from ref. (Jordan et al., 2012).
TPR, sensitivity; ACC, accuracy; PPV, precision; MCC, Matthew’s correlation coefficient.
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PrISE and PINUP; for example, the accuracy (MCC) is 0.909
(0.352), 0.790 (0.279) and 0.783 (0.246), respectively. Moreover,
Benchmark 4.0 also provides apo structures for most of the
target proteins; we use these conformations to evaluate the
performance of eFindSitePPI against unbound experimental
structures to complement our previous analysis using protein
models from the BM1905 dataset. The accuracy of eFindSitePPI

against bound and unbound structures is fairly comparable;
using apo conformations only slightly decreases the sensitivity
by 0.022 and MCC by 0.014. Thus, eFindSitePPI performs better
than other predictors on the Benchmark 4.0 dataset offering a
high prediction accuracy using both bound as well as unbound
experimental target conformations.

Comparison with ET and iJET

Finally, we compare eFindSitePPI to evolution-based predictors,
ET and iJET (Lichtarge et al., 1996; Engelen et al., 2009). Inspired
by the Evolutionary Trace approach (Lichtarge et al., 1996), these
methods identify PPI interfaces by detecting and analyzing
conserved surface patches on target proteins. Evolutionary con-
servation is the primary feature for the identification of interface
residues by both algorithms, as it reflects the evolutionary selec-
tion at interfacial sites to maintain the molecular function across
protein families. The comparison with ET and iJET is based on the
interface residue prediction for 52 protein chains derived from
the Huang dataset (Caffrey et al., 2004). The targets are experi-
mental structures in their bound conformational state and cover
three categories of PPIs: non-transient homodimers, non-
transient heterodimers and transient complexes. Table 5 summa-
rizes the performance of eFindSitePPI, ET and iJET in terms of sen-
sitivity, specificity, precision and accuracy. Clearly, eFindSitePPI

produces quantitatively better results than ET and iJET across
all targets. For instance, the sensitivity of eFindSitePPI is 28.9%
(33.8%), 20.8% (14.6%) and 21.2% (7.6%) higher than ET (iJET)
on homodimers, heterodimers and transient complexes, respec-
tively. However, despite a lower sensitivity for the transient
complexes, iJET gives 7.8% higher precision compared with
eFindSitePPI. This analysis also shows that similar to ET and iJET,
the performance of eFindSitePPI decreases from non-transient
homodimers to heterodimers to transient complexes. This is

consistent with other studies demonstrating that, in contrast to
proteins forming transient complexes, the prediction of non-
transient interfaces is less complicated, because they are evolu-
tionarily more conserved, larger and flatter (Ofran and Rost,
2003; Caffrey et al., 2004).

Case studies

To illustrate the prediction performance of eFindSitePPI, we dis-
cuss a couple of representative examples. We note that these
proteins are not present in the BM4361 dataset, thus have not
been used in the construction of machine learning models. The
first case study involves a NAD-dependent D-glycerate dehydro-
genase (GDH) from Hyphomicrobium methylovorum (PDB-ID:
1GDH). This enzyme belongs to the family of oxidoreductases
and catalyzes the NADH-linked reduction of 3-hydroxypyruvate
to D-glycerate in the serine pathway for the assimilation of
one-carbon compounds in methylotrophs (Izumi et al., 1990).
The GDH molecule forms a homodimer composed of two
structurally similar subunits related to each other by a twofold
symmetry (Goldberg et al., 1994). Figure 8 presents the PPI
interface predicted for a GDH monomer by eFindSitePPI from
remotely homologous templates. 59% of interfacial residues
are correctly identified, with 0.992 specificity, 0.951 precision,
and 0.909 accuracy (Figure 8A). Moreover, eFindSitePPI correctly
predicted 7 out of 16 hydrogen bonds as well as two out of five
salt bridges present at the GDH interface. Figure 8B illustrates
selected correctly identified interactions, including a salt bridge
between the side chains of R129-chain A and D277-chain B,
and hydrogen bonds between the side chain of R127-chain A
and T281-chain B.

The second example is a mouse T cell receptor protein (TCR)
(PDB-ID: 1TCR), which is localized on the surface of T cells and
is responsible for their activation (Saito et al., 1984). These mole-
cules participate in the recognition of antigens bound to major
histocompatibility complexes (Wyer et al., 1999; van der Merwe
and Davis, 2003). TCR is a membrane-anchored heterodimer
composed of alpha and beta chains (Garcia et al., 1996); we use
eFindSitePPI to predict interfacial residues separately for both
chains. Figure 9 shows that eFindSitePPI correctly identified 65%
of interfacial residues in chain alpha, with 0.946 specificity,

Table 5. Comparison of the performance of eFindSitePPI, ET and iJET using non-transient homodimers and heterodimers as well
transient complexes from the ET/iJET dataset

Dataset Predictor Evaluation metric

FPR TPR PPV SPC ACC

Homodimer eFindSitePPI 0.049 0.678 0.657 0.951 0.917
ET 0.058 0.389 0.482 0.856 0.738
iJET 0.038 0.340 0.552 0.905 0.764

Heterodimer eFindSitePPI 0.071 0.572 0.614 0.929 0.871
ET 0.065 0.364 0.524 0.854 0.696
iJET 0.062 0.426 0.575 0.824 0.707

Transient eFindSitePPI 0.048 0.531 0.460 0.952 0.922
ET 0.032 0.319 0.431 0.906 0.727
iJET 0.030 0.455 0.538 0.820 0.751

Results for ET and iJET are taken from ref. (Engelen et al., 2009).
Values pointing to the best performance are highlighted in bold, except for FPR and TPR that need to be considered jointly
TPR, sensitivity; PPV, precision; SPC, specificity; ACC, accuracy.
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0.420 precision, and 0.929 accuracy (Figure 9A). For chain beta,
46% of interfacial residues are correctly predicted, with 0.815
specificity, 0.959 precision, and 0.817 accuracy (Figure 9B).

Importantly, most false positives and false negatives in both
chains are located at the rim of interface patches; thus, the
prediction of the core interfacial residues is highly accurate. This

Figure 8. Example of PPI prediction by eFindSitePPI for a homodimer (PDB-ID: 1GDH). (A) The surface representation of a monomer chain; true
positives, true negatives, false positives, and false negatives are colored in green, gray, red, and cyan, respectively. (B) Interface residues correctly
predicted to form specific interactions; dashed blue lines represent salt bridges and red lines represent hydrogen bonds.

Figure 9. Example of PPI prediction by eFindSitePPI for a heterodimer (PDB-ID: 1TCR). The surface representations of alpha and beta chains are shown
in (A) and (B); the dimer complex is displayed in (C). True positives, true negatives, false positives, and false negatives are colored in green, gray/tan, red,
and cyan, respectively. Interfacial residues in both chains correctly predicted to form specific interactions are shown in (D). Dashed blue lines represent
salt bridges and red lines represent hydrogen bonds.
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is evident in Figure 9C, which shows the heterodimer structure
composed of alpha and beta chains interacting via two inter-
faces. Residues overpredicted and missed by eFindSitePPI are
mainly positioned either within the interfacial cavity or at the in-
terface edge, whereas those predicted correctly make up the
core of the TCR alpha–beta interface. Furthermore, eFindSitePPI

accurately identified three out of six interfacial hydrogen bonds
and one out of two salt bridges stabilizing the dimer complex
according to the experimental structure. Figure 9D illustrates
two correctly predicted interactions: a salt bridge between the
side chains of D137-alpha and R187-beta and a hydrogen bond
between the main chain of D157-alpha and the side chain of
Y173-beta. These examples demonstrate the capability of
eFindSitePPI to predict PPI sites, residues, and interaction types
for homodimers as well as heterodimers using weakly homolo-
gous templates.

CONCLUSIONS

The analysis of evolutionarily weakly related dimer proteins re-
ported in this study strongly suggests that the locations of their
binding sites are highly conserved, irrespectively of the global
structure similarity of protein–protein complexes. Furthermore,
the interfacial geometry is preserved as well, thus can be pre-
dicted with a high accuracy. This is consistent with previous
studies demonstrating that surface regions responsible for pro-
tein binding are conserved among structural neighbors (Zhang
et al., 2010). Exploiting these insights, we developed eFindSitePPI,
a new approach for the prediction of protein-binding sites using
information derived from evolutionarily and structurally related
templates. eFindSitePPI employs sensitive meta-threading by
eThread (Brylinski and Lingam, 2012) to identify evolutionarily
related templates and extensively uses various machine learning
techniques to detect interfacial residues on a query protein
surface. A higher degree of conservation of local interface
compared with the global structure of protein complexes forms
the basis for an accurate prediction of interfacial binding sites.

In addition to these conservation patterns, eFindSitePPI also em-
ploys other residue-level descriptors to effectively discriminate
between interfacial and non-interfacial residues. For instance, it
incorporates the relative solvent accessible area and the interfa-
cial propensities of amino acids, which have been already
successfully used by several other interfacial site prediction
algorithms (Liang et al., 2006; Li et al., 2008). A high accuracy in
extracting structural information from the “twilight zone”
templates motivated us to further extend the capabilities of
eFindSitePPI to predict specific interactions as well. That is,
eFindSitePPI also detects the types of molecular interactions that
target proteins are likely to form with their interacting partners;
this is demonstrated for hydrogen bonds, salt bridges as
well as hydrophobic and aromatic contacts. Comparative
benchmarking calculations on several datasets of protein dimers
show that eFindSitePPI outperforms other methods for protein-
binding residue prediction. Equally important, it is designed to
work with protein models so that the interfacial site can be
efficiently predicted even when the experimental structure of a
query protein is unavailable. Finally, a carefully tuned confidence
estimation system identifies those predictions that are likely to
be correct. eFindSitePPI is freely available to the academic
community as a user-friendly web-server and a well-documented
stand-alone software distribution at http://www.brylinski.org/
efindsiteppi; this website also provides all benchmarking datasets
and results reported in this paper.
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