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Molecular docking is an important component of computer-

aided drug discovery. In this communication, we describe

GeauxDock, a new docking approach that builds on the ideas

of ligand homology modeling. GeauxDock features a

descriptor-based scoring function integrating evolutionary con-

straints with physics-based energy terms, a mixed-resolution

molecular representation of protein-ligand complexes, and an

efficient Monte Carlo sampling protocol. To drive docking sim-

ulations toward experimental conformations, the scoring func-

tion was carefully optimized to produce a correlation between

the total pseudoenergy and the native-likeness of binding

poses. Indeed, benchmarking calculations demonstrate that

GeauxDock has a strong capacity to identify near-native con-

formations across docking trajectories with the area under

receiver operating characteristics of 0.85. By excluding closely

related templates, we show that GeauxDock maintains its

accuracy at lower levels of homology through the increased

contribution from physics-based energy terms compensating

for weak evolutionary constraints. GeauxDock is available at

http://www.institute.loni.org/lasigma/package/dock/. VC 2015

Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24031

Introduction

Computational identification of potential leads against a spe-

cific protein target is of paramount importance to modern

drug design. As of April 2015, the ZINC database of commer-

cially available small molecule entities for drug discovery con-

tains 17,900,742 drug-like compounds collected from the

catalogs of 236 vendors.[1] At the outset of drug development,

this vast number of compounds must be downsized to typi-

cally hundreds to thousands of the most promising candidate

molecules. High-throughput screening (HTS) often adopted by

the pharmaceutical industry is a conventional approach for

lead identification, however, it suffers from high costs and low

hit rates. Conversely, computational methods such as virtual

screening (VS) provide faster and cheaper alternatives to HTS

with many successful examples described in the literature.[2–4]

Current VS techniques fall into two main categories: ligand-

based similarity searching and structure-based molecular dock-

ing.[5] Although the experimentally solved structures of target

proteins are not required in the ligand-based approach, an ini-

tial set of already developed compounds must be known.

However, this information is often unavailable, particularly for

novel molecular targets. In contrast, the advances in X-ray

crystallography and nuclear magnetic resonance result in the

accumulation of atomic-level structures of biological molecules

fostering docking-based drug discovery projects.[6,7]

A typical molecular docking program incorporates two

important components, the prediction of the binding mode of

a drug candidate within the target pocket and the estimation

of binding affinity from molecular interactions. Most currently

available docking approaches implement effective algorithms

to predict near-native binding modes,[8–11] however, noticeable

differences still exist when compared with the experimental

data. For instance, a recent study evaluated seven popular

docking programs on a dataset of 1300 complexes showing a

wide range of the average root-mean-square-deviation (RMSD)

values from 2.7 Å up to 4.5 Å.[12] In addition to binding mode

prediction, a scoring function is another pivotal component of

molecular docking that guides the exploration of the confor-

mational space and estimates the binding affinity for putative

binding modes. Many scoring functions developed to

date[13–18] can be broadly categorized into three classes, force

field-based, empirical, and knowledge-based.[19–21] Recently,

Liu and Wang proposed a new type of scoring function called

descriptor-based or machine learning-based to capture the

new trend in this field.[22] Methods using descriptor-based

scoring functions encode the properties of ligands and
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proteins as well as protein-ligand interactions into sets of

descriptors followed by applying machine learning to compute

protein-ligand binding scores.[22] Notwithstanding the progress

in the development of scoring functions for ligand docking,

several comparative studies reported that no single algorithm

systematically outperforms other methods across all protein

targets.[8,23,24]

In general, high-resolution protein structures are required

for satisfactory results from molecular docking regardless of

which scoring function is used.[25] Additionally, the prediction

success rate drops from the ligand-bound to ligand-free con-

formational state of a target protein.[26] This is due to the fact

that many proteins undergo structural changes in functionally

relevant regions on ligand binding.[27] It has been demon-

strated that even minor changes affect the docking accuracy;

for example, the mean protein rearrangement greater than 1.5

Å may cause a loss of 90% of the initial docking accuracy.[28]

Although high-resolution structures are usually preferred in

docking simulations, these may not be available in the near

future for many pharmacologically important drug targets

such as membrane spanning G-protein coupled receptors and

ion channels.[29] Conversely, Skolnick et al. pointed out that

high-resolution structures may actually conceal the inherent

structural plasticity of ligand binding regions.[30] For instance,

the structural variation of a highly conserved ATP-binding site

is about 2.4 Å, as measured over a subset of inhibitor-bound

crystal structures of protein kinases.[31] To address this issue, a

recently developed ligand homology modeling (LHM)

approach[32] integrates structural information extracted from

evolutionarily related proteins into the modeling of protein-

ligand interactions to improve the tolerance to distortions in

target binding sites. LHM was one of the first approaches to

successfully incorporate evolutionary information in ligand

docking and VS.[30,33] Q-DockLHM[34] further exploited the ideas

of LHM by implementing a descriptor-based scoring function.

Nevertheless, an open question is how evolutionary descrip-

tors supplement physics-based components in a force field

that combines these two classes of scoring terms.

In this study, we describe the development and benchmark-

ing of GeauxDock, a new approach for ligand molecular dock-

ing. GeauxDock uses a descriptor-based scoring function

integrating evolutionary constraints with statistical potentials

and physics-based energy terms. Moreover, it features a

mixed-resolution molecular representation of protein-ligand

complex structures at the level of ligand heavy atoms and pro-

tein effective points. A Monte Carlo protocol is used to effi-

ciently sample the conformational space with the flexibility of

ligand and receptor molecules modeled using an ensemble-

based approach. The scoring function in GeauxDock was para-

meterized on a large dataset of protein-ligand complexes and

further optimized to produce a correlation between the total

pseudoenergy and the native-likeness of binding poses. Finally,

we carry out an analysis of the contribution of various scoring

terms to the identification of final docking conformations. We

demonstrate that although evolutionary constraints generally

improve the docking accuracy, the scarcity of this information

can be effectively compensated by increasing the contribution

from physics-based energy components.

Materials and Methods

Datasets

Two datasets of protein-ligand complexes are used in this

study. The first set was compiled from the eFindSite library[35]

by clustering template proteins at 40% sequence identity

using PISCES[36] and then selecting representative chains that

noncovalently bind small organic molecules at distinct loca-

tions. This procedure resulted in 14,059 nonredundant struc-

tures of protein-ligand complexes, referred to as the eFindSite/

Protein Data Bank (PDB)[37] dataset, that are used to derive

potentials and parameters for the docking force field. The sec-

ond dataset comprises 201 high-quality crystal structures taken

from the Astex/CCDC collection of pharmacologically relevant

drug targets complexed with ligand molecules.[38] As our force

field includes potentials calculated from evolutionarily related

binding pockets, we selected those proteins for which eFind-

Site predicted the binding site within a distance of 8 Å from

the geometric center of a ligand in the experimental complex

structure. eFindSite is a threading/structure-based method that

detects conserved binding sites across sets of homologous

proteins.[35] For each target, we ran eFindSite at two different

thresholds for the maximum target-template sequence iden-

tity, 80 and 40%. The first protocol uses both close and remote

homologs to detect functional sites, whereas the second uses

only those templates that are evolutionarily weakly related to

the target. The Astex/CCDC dataset is used for the force field

optimization and benchmarking.

Molecular representation of complex structures

Docking systems are described using a mixed-resolution

molecular representation; heavy atoms are used for ligands,

whereas proteins are represented at the coarse-grained subre-

sidual level.[39] The following SYBYL chemical types[40] are used

for ligand atoms: carbon (C.1, C.2, C.3, C.ar, and C.cat), nitrogen

(N.1, N.2, N.3, N.4, N.am, N.ar, and N.pl3), oxygen (O.2, O.3, and

O.co2), phosphorous (P.3), sulfur (S.2, S.3, S.O, and S.O2), and

halogens (Br, Cl, F, I). For proteins, two effective backbone

points per residue are placed at the position of its Ca atom

and the geometrical center of the peptide plane (PP). Small

side chains of Ala, Asn, Asp, Cys, Ile, Leu, Pro, Ser, Thr, and Val

are reduced to one pseudo atom located at the geometric

center (e.g., Ala-1, Asn-1, etc.), whereas longer side chains of

Arg, Gln, Glu, His, Lys, Met, Phe, Trp, and Tyr are described by

two effective points corresponding to the middle of a virtual

bond between Cb and Cc atoms (e.g., Arg-1, Gln-1, etc.), and

the geometric center of the remaining side-chain atoms (e.g.,

Arg-2, Gln-2, etc.). Such a low-resolution description of pro-

teins has been shown to improve the tolerance to deforma-

tions in the target structures, while maintaining reasonable

details of the physicochemical features of amino acids.[34]
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Protein-ligand contacts

Intermolecular contacts between ligand atoms and protein

effective points are calculated using type-dependent distance

thresholds, Dcnt
lp , that accurately reproduce high-resolution

interatomic contacts.[41] In addition to several contact-based

components of the docking force field, mixed-resolution pro-

tein-ligand contacts are used to quantify the similarity between

binding modes. Specifically, we use a Contact Mode Score (CMS)

that calculates Matthew’s correlation coefficient between two

sets of intermolecular contacts derived from a pair of ligand

binding modes for a given protein-ligand system:

CMS5
TP3TN2FP3FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP1FPð Þ TP1FNð Þ TN1FPð Þ TN1FNð Þ
p (1)

where TP is the number of true positives, that is, interatomic

contacts that are correctly predicted, and TN is the number of

true negatives, that is, those pairs of ligand atoms and protein

effective points that are correctly predicted not to be in con-

tact. FP and FN are the numbers of false positives and false

negatives, respectively, that is, those contacts that are overpre-

dicted and underpredicted. Theoretically, CMS ranges from 21

to 1 with higher values indicating a better overlap between the

two sets of contacts. In practice, because ligand conformations

are confined to the vicinity of a protein pocket, CMS varies

from about 0 up to 1. It also has certain advantages over other

similarity measures. In contrast to the RMSD, CMS is fairly inde-

pendent of the ligand size, therefore, it provides a more intui-

tive metric for the analysis of datasets comprising different

compounds and target proteins. Finally, compared with the frac-

tion of overlapping contacts, CMS penalizes those contacts that

are overpredicted and underpredicted in docking models.

Force field for molecular docking

Protein-ligand complexes are stabilized by a variety of molecu-

lar interactions. Here, we developed a new descriptor-based

force field for the modeling of protein-ligand interactions that

combines classical physics-based potentials with statistical and

knowledge-based scoring terms. Specifically, we include the

following nine energy terms: (i) electrostatic and (ii) van der

Waals interactions, (iii) hydrogen bonds, (iv) hydrophobic inter-

actions, (v) generic and (vi) pocket-specific contact potentials,

(vii) a pseudopharmacophore potential, and position restraints

on (viii) family conserved anchor substructures, and (ix) the

binding site center.

Electrostatic and van der Waals interactions (i, ii). Because of

the mixed-resolution model, we use soft electrostatic, Psoft
ele , and

soft Lennard-Jones, Psoft
vdW , potentials.[42] Electrostatic interac-

tions are described by:

Psoft
ele l; pð Þ5qlqpg rlp

� �
(2)

Let rlp be the distance between the lth ligand atom and the

pth protein effective point with the corresponding partial

charges ql and qp. Then g rlp

� �
51=Rlp for Rlp � 1, and g rlp

� �
5k

1aR2
lp1bR3

lp for Rlp < 1, where Rlp5srlp, a5423k and b52k23.

k is an adjustable parameter that controls the value of the elec-

trostatic potential at zero separation and it is set to 2.0, and s is

a scaling factor set to 0.5. Partial charges on ligand atoms are

calculated using the Mulliken population analysis[43] imple-

mented in Open Babel,[44] whereas those on protein effective

points are assigned by adding partial charges from the constitu-

ent atoms according to the Assisted Model Building with

Energy Refinement (AMBER) ff03ua force field.[45]

The electrostatic interaction score, Esoft
ele , is a sum of Psoft

ele val-

ues taken over L 3 P pairs of ligand atoms and protein effec-

tive points normalized by the total number of ligand atoms, L:

Esoft
ele 5

1

L

XL

l

XP

p

Psoft
ele l; pð Þ (3)

Van der Waals interactions are modeled using the following

form of a soft Lennard-Jones potential:

Psoft
vdW l; pð Þ5

2Elpr�9lp =r9
lp

� �
2 3Elpr�6lp =r6

lp

� �
2Elpr�9lp =r9

lp

� �
a 11br2

lp

� �
11

(4)

where r�lp depends on both a ligand atom type and the amino

acid effective point and it is defined as r�lp5jDcnt
lp . E is the

depth of the potential well, and rlp is the distance between

the lth ligand atom and the pth protein point. The parameter

a controls the value of the function at rlp50, and the parame-

ter b controls the rate at which the function approaches the

maximum value at zero separation.

Type-dependent parameters E are derived from the eFind-

Site/PDB dataset as follows:

Elp5ln 11
nlp

n0
lp

 !
(5)

where nlp is the observed number of contacts between a

given pair of a ligand atom type and the amino acid effective

point, and n0
lp is an expected number of contacts assuming no

specificity. The latter is defined as n0
lp5Nvlvp, with the total

number of N protein-ligand contacts, and vl and vp corre-

sponding to the mole fractions of ligand atoms of type l and

protein points of type p, respectively.

Parameters a, b; and j are optimized empirically on the

eFindSite/PDB dataset by minimizing the following Z-score

function:

ZvdW5
XD

l;p

Pnat
vdW l; pð Þ2hPdec

vdW l; pð Þi
d

(6)

where the summation runs over D pairs of ligand atoms and

protein points that are in contact according to the mixed-

resolution models of dataset complexes. Pnat
vdW is the value of

the soft Lennard-Jones potential, Psoft
vdW , for a given pair of the

lth ligand atom and the pth protein point. hPdec
vdW l; pð Þi is the

value of Psoft
vdW averaged over a set of 10 “decoy” distances rlp
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randomly generated around the interaction threshold Dcnt
lp , and

d is the corresponding standard deviation. The optimal values

of a50:88, b50:74, and j50:70 were found using the evolu-

tionary search strategy.[46]

For a given protein-ligand complex, the van der Waals inter-

action score, Esoft
vdW , is calculated by summing Psoft

vdW values over

all ligand atoms and protein effective points, and then normal-

izing the sum by the total number of ligand atoms L:

Esoft
vdW5

1

L

XL

l

XP

p

Psoft
vdW l; pð Þ (7)

Hydrogen bonds (iii). The hydrogen bond potential, PHB, only

applies to those atom pairs that can form hydrogen bonds

and it is modeled using single Gaussian restraints:

PHB l; pð Þ52exp 20:5
rHB

lp 2lHB
lp

rHB
lp

 !2( )
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2prHB
lp

q (8)

where rHB
lp is the distance between the lth ligand atom and

the pth protein effective point, and lHB
lp is the average hydro-

gen bond length between ligand atoms of the same type as l

and protein points of the same type as p across the eFindSite/

PDB dataset, with the corresponding standard deviation rHB
lp .

For a given protein-ligand complex, its hydrogen bond score

is calculated by summing PHB over those pairs of ligand atoms

and protein effective points that can form hydrogen bonds,

and then averaging by the total number of ligand atoms L:

EHB5
1

L

XL

l

XP

p

PHB l; pð Þ; if l; pð Þ can form a hydrogen bond

0; else

(

(9)

Hydrophobic interactions (iv). Hydrophobic interactions

between ligand atoms and protein effective points are mod-

eled using a spatial hydrophobicity distribution and softened

Gaussian restraints. First, we calculate an empirical hydropho-

bicity, PHP lð Þ, at the position of a ligand atom l resulting from

the surrounding P protein side chains within a distance of rmax

using a simple sigmoid function[47]:

PHP lð Þ5
XP

p

~Hp 12
1

2
7k2

lp29k4
lp15k6

lp2k8
lp

� �� �
; if rlp � rmax

0; else

8><
>:

(10)

where rlp is the distance between the lth ligand atom and the

pth protein effective point, rmax has a fixed value of 9 Å,[47]

and klp5rlp=rmax. ~Hp is the hydrophobicity parameter for the

pth protein effective point according to a scale derived for

amino acids in globular proteins from crystallographic data.[48]

Next, we calculate a natural logarithm of the common Gaus-

sian restraint with the average hydrophobicity lHP
l and the cor-

responding standard deviation rHP
l :

Prst
HP lð Þ5 1

2

PHP lð Þ2lHP
l

rHP
l

	 
2

2ln
1

rHP
l

ffiffiffiffiffiffi
2p
p

 !
(11)

Ligand type-dependent parameters lHP
l andrHP

l are derived

from the eFindSite/PDB dataset by calculating the average

empirical hydrophobicity, PHP lð Þ, and the corresponding stand-

ard deviation for different ligand atom types.

The hydrophobic interaction score, EHP, is taken as the aver-

age Prest
HP calculated over all ligand atoms, L:

EHP5
1

L

XL

l

Prest
HP lð Þ (12)

Generic and pocket-specific contact potentials (v, vi). The

molecular docking force field implemented in GeauxDock also

includes generic and pocket-specific contact potentials. The

generic potential, PCP, between the lth ligand atom and the

pth protein effective point is calculated as follows:

PCP l; pð Þ5S rlp

� �
2ln

nlp

n0
lp

 !
(13)

where nlp is the observed number of contacts between ligand

atoms of a similar type as l and protein effective points of a

similar type as p across the eFindSite/PDB dataset, and n0
lp is a

reference number of contacts assuming no specificity

[explained in eq. (5)]. S rlp

� �
is a smoothing function defined as:

S rlp

� �
5

1

11exp 62
rlp

2

� �
rlp2Dcnt

lp

� �h i (14)

where rlp is the distance between l and p, and Dcnt
lp is the con-

tact threshold that depends on the types of both l and p.

The generic contact score, ECP, is calculated by summing PCP

values over all pairs of ligand atoms and protein effective points,

and then averaging over the total number of ligand atoms, L:

ECP5
1

L

XL

l

XP

p

PCP l; pð Þ (15)

In addition to the generic potential PCP derived from the

eFindSite/PDB dataset, we calculate PPS
CP, a pocket-specific (PS)

contact potential.[34] The PS version uses the same formalism as

the generic potential, however, rather than derived from the

eFindSite/PDB, the numbers of contacts nlp and n0
lp are calculated

using a set of evolutionarily related complex structures identified

for a given target protein by eThread[49] and eFindSite.[35] Similar

to ECP, the pocket-specific contact score, EPS
CP, is calculated as:

EPS
CP5

1

L

XL

l

XP

p

PPS
CP l; pð Þ (16)

Family conserved anchor substructures and pseudopharmaco-

phore potential (vii, viii). Ligands extracted from evolutionarily

related complex structures are also used to impose a series of
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harmonic restraints on family conserved anchor substructures,

which were shown to be highly effective in ligand docking,[50]

and to construct a new pseudopharmacophore model. The for-

mer performs the chemical matching of a target ligand against all

template ligands using kcombu[51] to identify the maximum com-

mon substructures (MCS). Subsequently, atomic equivalences

within MCS provided by kcombu are used to calculate a weighted

average for RMSD values obtained against a set of A template

ligands, with weights corresponding to the target-template chem-

ical similarity measured by the Tanimoto coefficient.[52] A position

restraint, PMCS, imposed on the ath anchor substructure, which is

essentially an MCS detected by kcombu, is calculated as:

PMCS að Þ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

E

XE

e

re
a

� �2

vuut (17)

where the summation runs over E pairs of equivalent atoms in

the target and template ligands sharing the ath anchor sub-

structure, and re
a is the atomic distance for the eth pair.

Typically, multiple templates and the corresponding anchor

substructures are detected for a given protein-ligand target,

therefore, the final score taking into account family conserved

anchor substructures, EMCS, is calculated as the natural loga-

rithm of the weighted average of individual PMCS values:

EMCS5ln
1

A

XA

a

TCaPMCS að Þ
 !

(18)

where TCa is the Tanomoto coefficient corresponding to the

chemical similarity between the ath template ligand and the

target molecule, and A is the total number of templates used

to extract the anchor substructures.

The second energy term in this group uses a pseudophar-

macophore potential. Specifically, it applies a Kernel Density

Estimation (KDE) method to the positions of heavy atoms of

template ligands bound to the identified homologs to esti-

mate a probability density function. We use a standard normal

density function to describe the likelihood of an atom of the

docking ligand to be at a certain position within the binding

site; the following is the scaled form of the kernel, Kh:

Kh l; eð Þ5 1

2phð Þ3=2
exp 2

xl-xeð Þ21 yl2yeð Þ21 zl2zeð Þ2

2h2

 !
(19)

where h is the bandwidth with a value of 0.5, l is a target

ligand atom, and e is a template ligand atom (l and e are of

the same type). KDE provides a convenient way of data

smoothing, where inferences about the population are made

based on a finite data sample.[53,54]

The pseudopharmacophore potential on the lth ligand atom

is then calculated as:

PPHR lð Þ5 1

E

XE

e

Kh l; eð Þ; if type eð Þ5type lð Þ

0; else

(
(20)

where E is the total number of template ligands.

The pseudopharmacophore score for a given configuration

of a ligand within the binding site of the target protein is cal-

culated as the average PPHR over all ligand atoms, L:

EPHR5
1

L

XL

l

PPHR lð Þ (21)

Distance restraint (ix). Finally, to limit the search space to the

vicinity of a binding site, the following distance constraint is

imposed:

EDST5rcen (22)

where rcen is the distance between the ligand geometric center

and the binding pocket center predicted by eFindSite.[35]

Ensemble docking

The flexibility of ligands and proteins in molecular docking is

implemented using an ensemble-based approach. This com-

monly used technique first precalculates an ensemble of low-

energy conformations and then performs a rigid-body docking

for each conformer.[55,56] For ligands, we used a procedure

described previously[50] to generate nonredundant ensembles

comprising up to 50 low-energy conformations whose pairwise

RMSD is >1 Å. Protein ensembles were constructed using Mod-

eller[57] based on the experimental structure of each target (self-

modeling). We used only the coordinates of Ca atoms belong-

ing to nonbinding residues to fully explore the flexibility of

ligand binding regions. For each target protein, 10 models were

generated by Modeller through three rounds of optimization

using a variable target function method and molecular dynam-

ics refinement with the objective function set to 106.

Monte Carlo sampling

We use the Metropolis Monte Carlo (MMC) method[34,58] to

sample the conformational space of protein-ligand interac-

tions. This space consists of multiple subspaces representing

unique combinations of protein and ligand conformations

from the precalculated ensembles. In the current implementa-

tion, each subspace is sampled independently using the MMC

method and the collected trajectories are merged at the end

of simulations. In each single MMC step, the position and ori-

entation of a ligand are randomly perturbed by translational

and rotational steps about the x, y, and z-axis of up to 0.02 Å

and 5 deg, respectively. We found that this protocol allows a

ligand to freely explore the conformation space without com-

promising the precision. Furthermore, the temperature factor

is chosen such that the average acceptance ratio is about 0.5.

Note that in GeauxDock, both the perturbation scale and the

temperature factor can be modified to achieve a better per-

formance for particular systems. As MMC simulations search

for the global minimum energy state of a system, a scoring

function implemented in GeauxDock is optimized to assign

low pseudoenergy values to near-native conformations. Conse-

quently, native-like binding modes are frequently visited
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during the conformational sampling providing a sufficient

resolution of biologically relevant states.

Force field optimization

The total pseudoenergy score for a given configuration of a

ligand within the binding site of its protein target is calculated

as a linear combination of the individual energy terms:

E5w1Esoft
ele 1w2Esoft

vdW1w3EHB1w4EHP1w5ECP

1w6EPS
CP1w7EMCS1w8EPHR1w9EDST

(23)

The energy weight factors, w1–w9, are optimized on a large

and nonredundant set of protein-ligand conformations con-

structed for the Astex/CCDC dataset.[59] Specifically, for each

complex, we first generated 105 configurations through a series

of MMC simulations including only the Lennard-Jones potential

(i) to prevent steric clashes and the distance constraint (ix) to

confine the sampling to the vicinity of a binding pocket. Next,

we calculated pairwise CMS values for all conformations to cre-

ate a 105 3 105 CMS matrix. To remove redundancy, this matrix

was subjected to clustering using CLUTO[60] resulting in 5000

groups; a cluster centroid was selected to represent each group.

The final dataset comprises 102,000 nonredundant protein-

ligand configurations constructed for 204 complexes.

Subsequently, we compiled two subsets for the force field

optimization, a group of 36,022 native-like conformations

whose CMS values calculated against the experimental com-

plex structures are �0.6, and a set of 847,849 decoys with the

CMS of �0.4. The native-like recognition capability of the scor-

ing function was enhanced by finding the set of weights w1–

w9 [see eq. (23)] that maximize the energy gap between

native-like and decoy conformations measured by the Z-score:

Z-score5
hEdi2hEni

r2
n1r2

d

(24)

where hEni and hEdi are the mean energy values calculated for

native-like and decoy conformations, respectively, with the cor-

responding standard deviations rn and rd .

We used the evolutionary search algorithm[46] emulating the

principles of natural evolution to identify the optimal set of

energy weight factors that maximize the Z-score. To avoid any

bias, the optimization was performed 10 times starting from

different initial random sets of weights; the final weight factors

were taken as the consensus of the 10 optimization rounds.

Other scoring functions

Two state-of-the-art algorithms, DrugScoreX (DSX)[14] and

Ligand-Protein Contacts (LPC),[61] were selected for comparative

benchmarks of GeauxDock. DSX is a knowledge-based scoring

function that features a distance-dependent pair potential, a

torsion angle potential, and a novel solvent accessible surface-

dependent potential.[14] LPC uses a scoring function that evalu-

ates the geometric and chemical complementarity between a

ligand and its receptor protein.[62] Both programs were used

with their default set of parameters.

Results and Discussion

Ensembles for pseudoflexible docking

It is well known that both proteins and ligands often undergo

structural changes on complex formation[27,63–65]; for instance,

an analysis of 27 flexible ligands shows the RMSD variation

from 0.19 to 2.96 Å[65] calculated between single-crystal and

protein-bound states. A larger structural diversity is expected

as the size of ligand molecules increases; for instance, the con-

formational range for two ubiquitous compounds, nicotina-

mide adenine dinucleotide and flavin adenine dinucleotide

was calculated as 3.58 Å 6 0.08 and 3.49 Å 6 0.13, respectively,

when bound to proteins.[64] On that account, an accurate rep-

resentation of biomolecules in simulations requires sampling

multiple conformational states.[66] We use an ensemble dock-

ing technique to handle this issue in a discrete manner. Specif-

ically, conformers are selected from a precomputed pool of

configurations covering a large conformational space that

includes biologically relevant molecules. In that regard, we

investigate the coverage of Astex/CCDC ligands by calculating

Figure 1. Structural characteristics of protein and ligand ensembles for

pseudoflexible docking. All-atom RMSD values are calculated using the

native conformation for a) ligands and b) protein binding sites. Dashed

lines point out the estimated ranges of the molecular plasticity. Blue,

green, and red lines correspond to the maximum, minimum, and median

RMSD within each ensemble; molecules are sorted on the x-axis by their

median values.
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RMSD values using conformational ensembles and the corre-

sponding experimental structures. The results in terms of maxi-

mum, minimum, and median RMSD values are presented in

Figure 1. Figure 1a shows that the median RMSD for �81% of

the flexible ligands is within the reference range of 0.19 to

2.96 Å[65] suggesting that the ligand flexibility is well repre-

sented across the generated docking ensembles. Furthermore,

the average plasticity of ligand-binding regions in proteins

expressed as the mean RMSD was estimated as 2.6 Å with a

standard deviation of 1.0 Å.[67] Protein ensembles constructed

in this study fall within this range with the median binding

site RMSD calculated over 204 ensembles of 2.61 Å, as shown

in Figure 1b. Collectively, these results demonstrate that con-

formational ensembles for pseudoflexible docking provide a

sufficient coverage of biologically relevant structures of both

ligands and their protein targets.

Force field parameterization

Force fields for molecular modeling typically require a careful

parameterization to reproduce experimental data. We derived

the parameters for GeauxDock from the eFindSite/PDB dataset,

a representative and nonredundant collection of protein-

ligand complex structures. Selected force field potentials para-

meterized against eFindSite/PDB are presented in Figure 2. Fig-

ure 2a shows the soft Lennard-Jones potential used to model

van der Waals interactions between effective points on Phe

and Arg side chains, and selected ligand atoms. The corre-

sponding parameters E that define the depth of the potential

well are reported in Table 1. For instance, aromatic interactions

between Phe-2 and C.ar, and a salt bridge between Arg-2 and

O.co2 have deeper potential wells with E51:95 and E51:54,

respectively, compared to those less favorable, for example,

Phe-2 and N.3 E51:07ð Þ, and Arg-2 and N.am E50:43ð Þ. Fur-

thermore, the softened potential, which is weaker at short dis-

tances than the traditional form, is more appropriate to model

interactions involving effective points representing clouds of

atoms rather than the hard spheres of individual particles.

We also use a soft version of the electrostatic potential,

where its values do not extend to infinity when the interaction

distance r approaches zero. As shown in Figure 2b, the electro-

static potential creates a repulsion at close distances between

Figure 2. Examples of selected force field potentials. a) Type-dependent soft Lennard-Jones potential, b) soft electrostatic potential between protein effec-

tive points and various charges on ligand atoms q, c) hydrogen bond restraints, d) restraints for hydrophobic interactions between different ligand atoms

as a function of local hydrophobicity, e) extreme values for the log-odds potential between aromatic carbon C.ar and protein effective points, f ) generic

contact potential including a smoothing function, and g) probability density for different ligand atoms estimated by KDE along the x-axis.
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those groups whose partial charges have the same sign,

whereas positively and negatively charged particles attract

each other. The strength of these interactions depends on the

partial charges on individual groups. Table 2 lists net charges

assigned to protein effective points by collapsing AMBER par-

tial charges of the constituent atoms. A point charge on the

PP has a fixed value of 20.246, which balances positively

charged Ca atoms of individual amino acids. Side chains of

small hydrophobic residues are slightly positively charged, for

example, qp50:047 for Ile-1, in contrast to small polar amino

acids that carry small negative charges on their side chains, for

example, qp520:046 for Ser-1. A small negatively charged Asp

has the unit charge assigned to its side chain effective point,

whereas larger charged residues have almost unit charge val-

ues; for example, the parameter qp is 20.792, 0.901, and 0.927

for Glu-2, Arg-2, and Lys-2, respectively. Partial charges on

ligand heavy atoms are calculated for individual compounds

using the Mulliken population analysis,[43] which is a widely

used parameterization method in molecular docking.

Hydrogen bonds are modeled for hydrogen donor-acceptor

pairs using single Gaussian restraints. Table 3 lists force field

parameters for hydrogen bonds and Figure 2c shows the para-

meterized potential for selected pairs. Mean values for the

interaction distance, lHB
lp , derived from the eFindSite/PDB data-

set, give the optimal type-dependent bond lengths, whereas

rHB
lp parameters that describe the deviation from average inter-

action distances across the dataset, control the interaction

strength. For instance, lHB
lp for Thr-1 and N.3 (3.59 Å) is slightly

smaller than that for Tyr-2 and N.am (3.88 Å). Moreover, the

corresponding rHB
lp are 0.95 and 0.78, respectively, thus, the

strength of hydrogen bonded pair of Tyr-2 and N.am at the

optimal distance is greater than a hydrogen bond between

Thr-1 and N.3.

In our model, protein residues create a polar/hydrophobic

local environment favoring certain types of ligand atoms.

These hydrophobic interactions are parameterized using statis-

tics collected for eFindSite/PDB protein-ligand complexes and

a standard hydrophobicity scale for amino acids. The derived

force field parameters reported in Table 4 are in good agree-

ment with physicochemical properties of ligand atom types.

For example, aromatic carbon atoms lHP
l 50:11

� �
and halogens

lHP
l 50:24

� �
tend toward nonpolar residues, whereas amine

nitrogen lHP
l 520:27

� �
and carboxylate oxygen lHP

l 520:34
� �

Table 1. Force field parameters for van der Waals interactions and the generic contact potential for selected ligand atom types and protein effective

points.

Protein

point Parameter[a]

Ligand atom type

C.3 C.ar C.cat N.3 N.am N.ar O.2 O.3 O.co2 P.3 S.3 S.O2 Cl

Ca e 0.59 0.65 0.99 0.53 0.44 0.86 1.08 0.86 0.95 0.05 0.62 0.82 1.03

PCP 0.21 0.09 20.47 0.37 0.59 20.33 20.69 20.26 20.47 3.01 0.15 20.19 20.63

PP e 0.66 0.79 0.87 0.64 0.56 0.61 0.83 0.58 1.02 0.05 0.84 0.80 1.05

PCP 0.10 20.09 20.20 0.13 0.32 0.22 20.23 0.14 20.55 20.69 20.25 20.14 20.57

Phe-1 e 0.63 0.77 1.30 0.64 0.30 0.63 0.75 0.43 0.55 0.26 0.79 0.30 1.07

PCP 0.12 20.10 20.96 0.10 1.22 20.10 20.13 0.56 0.37 4.01 20.18 0.87 20.67

Phe-2 e 1.77 1.95 1.58 1.07 1.34 1.95 1.46 1.29 1.60 1.17 1.66 0.82 2.19

PCP 21.55 21.79 21.33 20.69 21.10 21.72 21.21 21.00 21.27 20.86 21.48 20.26 22.11

Arg-1 e 0.19 0.21 0.12 0.47 0.18 0.26 0.39 0.31 0.52 0.43 0.25 0.05 0.25

PCP 1.60 1.40 2.06 0.53 1.61 1.17 0.85 1.18 0.36 0.63 1.10 3.00 1.29

Arg-2 e 0.63 0.55 0.27 0.70 0.43 0.62 1.00 0.82 1.54 0.00 1.08 0.85 0.56

PCP 0.09 0.29 1.07 20.01 0.63 0.14 20.58 20.31 21.31 6.52 20.80 0.04 0.29

[a]e is the depth of the potential well in the softened Lennard-Jones potential; PCP is the value of contact potential for pairwise interactions.

Table 2. Partial charges on Ca and side chain (SC) effective points of

amino acids.

Amino acid

Effective point

Ca SC-1 SC-2

Gly 0.246 – –

Ala 0.215 0.031 –

Asn 0.217 0.029 –

Asp 0.246 21.000 –

Cys 0.088 0.158 –

Ile 0.199 0.047 –

Leu 0.204 0.042 –

Pro 0.112 0.119 –

Ser 0.292 20.046 –

Thr 0.268 20.022 –

Val 0.201 0.045 –

Arg 0.237 0.107 0.901

Glu 0.246 20.208 20.792

Gln 0.210 0.010 0.026

His 0.219 0.172 20.145

Lys 0.227 0.092 0.927

Met 0.137 0.127 20.018

Phe 0.214 0.049 20.017

Trp 0.248 0.066 20.068

Tyr 0.245 0.020 20.020

Table 3. Force field parameters for hydrogen bonds, lHB
lp 6 rHB

lp , for

selected ligand types and protein effective points.

Ligand

atom

type

Protein effective point

His-2 Ser-2 Thr-1 Tyr-2 PP

N.2 3.38 6 0.71 3.83 6 0.83 3.91 6 0.99 3.64 6 0.77 3.91 6 0.88

N.3 3.67 6 0.71 3.80 6 0.88 3.59 6 0.95 3.79 6 0.89 3.89 6 0.92

N.am 3.80 6 0.75 3.82 6 0.83 3.79 6 0.82 3.88 6 0.78 3.62 6 0.82

O.2 3.58 6 0.78 3.64 6 0.87 3.62 6 0.86 3.75 6 0.92 3.69 6 0.84

O.3 3.64 6 0.83 3.68 6 0.86 3.72 6 0.85 3.74 6 0.85 3.85 6 0.84

O.co2 3.50 6 0.76 3.45 6 0.87 3.64 6 0.92 3.46 6 0.86 3.75 6 0.86
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atoms prefer a polar microenvironment. Hydrophobicity

restraints Prest
HP for selected ligand atom types are shown in Fig-

ure 2d as a function of the environment created by surround-

ing amino acids. The extremes of 21.0 and 1.0 describe a

strongly polar and nonpolar character, respectively. The posi-

tion of the function minimum determines the optimal environ-

ment for a particular atom type described by PHP, thus, Cl and

C.ar are on the positive side, and N.am and O.3 are on the

negative side of the protein hydrophobicity range.

Statistical potentials are commonly used components of

molecular docking force fields.[41,68–70] In this study, the param-

eters for pairwise interactions between ligand heavy atoms

and protein effective points were derived from the eFindSite/

PDB dataset. The log-odds potential expresses the likelihood

of individual contacts, where the interactions averaged over

the entire dataset are taken as a reference state. Figure 2e

shows the extreme values for the contact potential between

aromatic carbon C.ar and all types of protein effective points.

Clearly, aromatic moieties on the side chain effective points of

Phe-2, Trp-2, and Tyr-2, as well as the hydrophobic parts of

Cys-1, Ile-1, Met-2, Leu-1, and Val-1 make contacts with C.ar

more often than by a random chance. In contrast, the polar

and charged groups of Glu-1, Lys-1, Arg-1, Glu-1, Glu-2, and

Lys-2 are statistically unlikely to interact with ligand aromatic

carbon atoms. Moreover, backbone effective points Ca and PP

have no distinct preferences toward interacting with C.ar.

In the GeauxDock force field, we use a smoothing function

that is less sensitive to small changes in ligand coordinates at

the contact distance thresholds than the commonly used step

function. This is shown in Figure 2f for selected interactions

between ligand heavy atoms and protein effective points. For

instance, salt bridges between Arg-2 and O.co2, and Asp-1

and N.3 contribute half of their negative interaction energy at

Dcnt
lp 55:76 Å and Dcnt

lp 55:36 Å, respectively. Similarly, the posi-

tive energy contributions from destabilizing interactions

between Ala-1 and O.3, and Glu-2 and C.ar reach half of their

values at the corresponding contact thresholds. In addition to

the generic contact potential derived from the eFindSite/PDB

dataset, we calculate its pocket-specific variant using evolutio-

narily related complexes identified by sequence profile-based

protein threading. These potentials are specific toward a par-

ticular family of proteins, however, they contain significantly

less parameters compared with the generic potential because

of much smaller sample sizes (the number of template com-

plexes). For example, out of 720 pairwise parameters derived

from the eFindSite/PDB dataset for PCP, the average number of

PPS
CP parameters calculated across the Astex/CCDC target pock-

ets is only 110 6 67. Nonetheless, the latter have been demon-

strated to be more accurate than the generic potential in the

scoring and ranking of ligand binding modes.[34]

Different from traditional pharmacophore-based models that

use known bio-actives to calculate sets of steric and physico-

chemical features necessary for molecular recognition,[71] the

pseudopharmacophore potential in GeauxDock is derived from

evolutionarily ligand-bound templates. Specifically, it estimates

a probability for each ligand heavy atom type to be at a cer-

tain position within the binding site. For instance, Figure 2g

shows a one-dimensional probability density for C.ar, N.am,

O.co2, and O.3 along the x-coordinate with the pocket cen-

tered at x5y5z50 Å (the full potential is the product of prob-

abilities at x, y, and z coordinates). In this example, amine

nitrogen and hydroxyl oxygen atoms are most likely to be

found at x5-1:4 Å and x5-2:5 Å, respectively. Carboxyl oxy-

gen atoms have a bimodal distribution typical for symmetric

moieties with two equivalent peaks at x50:4 Å and x52:5 Å,

whereas aromatic carbon atoms have a relatively broad proba-

bility of occurrence at -0:6 < x < 2:5 Å. Favoring ligand heavy

atoms at their high probability positions predicts binding

modes consistent with the conserved evolutionary profiles

observed across sets of homologous proteins.

Force field optimization

Force field weights were optimized on a large dataset of

protein-ligand configurations generated for Astex/CCDC com-

plexes using the evolutionary search algorithm. The objective

was to maximize the Z-score corresponding to the energy gap

between native-like and decoy conformations. Figure 3a shows

the trajectory of Z-score in one complete optimization process.

The simulation converges within �400 generations, indicating

an efficient update of weight factors. We performed the total

of 10 simulations seeded with random initial weight factors;

each calculation resulted in the same set of weight factors

w1518:97; w250:78;ð w352:05; w450:53; w550:01;

w650:53; w750:88; w85110:82; and w9546:4Þ, suggest-

ing that the optimized values are stable and robust. Figures

3b and 3c show the distribution of energy values with differ-

ent sets of weights. In Figure 3b, random weight factors do

not provide a clear separation between native-like (green dots)

and decoy (red dots) conformations whose median energy

score is 21.67 and 21.03, respectively. In contrast, Figure 3c

shows that the optimized weight factors yield better energy-

based partitioning of native-like and decoy conformations;

here, native-like (decoy) binding modes have a median energy

of 20.16 (0.58). This analysis suggests that the total pseudoe-

nergy calculated using the optimized set of weights has a

Table 4. Force field parameters for hydrophobic interactions, lHP
l 6 rHP

l ,

assigned to selected ligand types.

Ligand atom type lHP
l 6 rHP

l

C.3 20.03 6 0.43

C.ar 0.11 6 0.46

C.cat 20.26 6 0.43

N.3 20.27 6 0.44

N.am 20.10 6 0.38

N.ar 0.03 6 0.47

O.2 20.21 6 0.50

O.3 20.28 6 0.46

O.co2 20.34 6 0.46

P.3 20.50 6 0.41

S.3 20.14 6 0.45

S.O2 20.10 6 0.40

Cl 0.24 6 0.52
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great potential to effectively drive molecular docking toward

correct ligand binding modes.

Recognition of native-like conformations

A strong capacity to identify native-like binding modes among

a vast number of generated configurations plays a pivotal role

in successful ligand docking simulations. Therefore, in Figure 4,

we conduct a comparative Receiver Operating Characteristics

(ROC) analysis of GeauxDock and two other scoring functions,

DSX[14] and LPC.[61] Here, we use a precompiled dataset of

protein-ligand configurations comprising 36,022 native-like

binding poses and 847,849 decoys generated for Astex/CCDC

complexes to uniformly cover the conformational space. In

general, all docking algorithms are capable of identifying cor-

rect conformations across the training MMC trajectories gener-

ated for the Astex/CCDC dataset better than a purely random

guess (dashed line). The area under the curve (AUC) for the

unoptimized GeauxDock force field (all weight factors set to

1.0) is 0.654 in contrast to 0.851 for the optimized set of

weights. For comparison, DSX_pair, DSX_pair_sas and LPC yield

the AUC of 0.847, 0.858, and 0.765, respectively. Despite a

slightly lower AUC, GeauxDock gives �5% higher true positive

rate than DSX_pair_sas at relatively small false positive rates of

0.1–0.2. The results for DSX consistent with the original bench-

marking calculations[24] suggest that our dataset is of high

quality and the CMS indeed provides an effective evaluation

metric.

Next, we performed full docking calculations using Geaux-

Dock. The major difference from the previous analysis is that

these validation simulations start from a random ligand con-

formation and use the complete, optimized force field to

guide the conformational sampling. MMC trajectories gener-

ated for the Astex/CCDC dataset are analyzed in Figure 5. First,

for each benchmarking complex, we calculated the Z-score

between native-like and decoy conformations extracted from

the docking trajectories. As shown in Figure 5a, �90% of the

cases have positive Z-score values indicating that ligand bind-

ing modes close to native are systematically assigned a lower

energy than those farther away from the experimental confor-

mation. The median Z-score across Astex/CCDC complexes is

�1.0, which is in accord with the training results reported in

Figure 3. To further evaluate the quality of the GeauxDock

force field, we calculated the Pearson correlation coefficient

(PCC) between the total pseudoenergy score and CMS. Figure

5b shows that in the majority of the cases, the total pseudoe-

nergy score and CMS are negatively correlated, that is, the

energy increases with the decreasing similarity to the experi-

mental binding mode. According to the scale provided

by Salkind,[72] a very strong 21:0 � PCC < 20:8ð Þ, strong

20:8 � PCC < 20:6ð Þ, moderate 20:6 � PCC < 20:4ð Þ, weak

20:4 � PCC < 20:2ð Þ, and very weak or no correlation

Figure 3. Force field optimization using the evolutionary algorithm. a) The trajectory of Z-score in the course of the optimization procedure. The distribu-

tion of pseudoenergy values for native-like (green) and decoy (red) conformations for the b) unoptimized and c) optimized force field. Boxes in b and c

end at the quartiles Q1 and Q3, a horizontal blue line in a box is the median, and whiskers show the 1.5 interquartile range. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Recognition of native-like conformations across docking trajecto-

ries. A ROC plot for GeauxDock with an optimized force field is compared

with those obtained using the unoptimized force field as well as other

scoring functions, DSX and LPC. TPR – true positive rate, FPR – false posi-

tive rate. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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-0:2 � PCC < 0:0ð Þ between energy and CMS was obtained for

3.43%, 15.20%, 28.43%, 25.49%, and 14.22% of the Astex/

CCDC complexes, respectively; only 13.24% of the cases give

the undesired positive correlation. Altogether, these results

demonstrate that the scoring function in GeauxDock is cor-

rectly optimized to drive MMC simulations toward experimen-

tally determined ligand binding modes.

Case studies

We select a couple of examples to demonstrate the accuracy

of GeauxDock in finding near-native ligand binding modes,

cathepsin K complexed with a peptidomimetic inhibitor (PDB-

ID: 1bgo, chain A),[73] and actinidin complexed with an inhibi-

tor E-64 (PDB-ID: 1aec, chain A).[74] Both compounds were

docked into the active sites of their target protein using

GeauxDock starting from a random initial conformation. The

results are shown in Figure 6 (panels a–c for cathepsin K and

d-f for actinidin). First, we plot the values of CMS calculated

against inhibitors bound in the crystal complex structures, and

the total pseudoenergy, E, extracted from MMC trajectories. A

high pseudoenergy and a low CMS for initial configurations

indicate that ligands are far away from their native states (Fig-

ures 6a and 6d). During MMC simulations, a gradually decreas-

ing energy E guides the conformational sampling to the

vicinity of the experimental binding modes of inhibitors as

indicated by high CMS values at the end of simulations. Fig-

ures 6b and 6e demonstrate that in both cases, the optimized

Figure 5. Quality assessment for the optimized force field implemented in GeauxDock. Histograms of a) Z-score and b) the PCC calculated from the Monte

Carlo trajectories collected for the Astex/CCDC dataset.

Figure 6. Docking results for a–c) cathepsin K and d–f ) actinidin from GeauxDock. a, d) Monte Carlo trajectories for the Contact Mode Score (CMS) and the

pseudoenergy, b, e) scatter plots of the CMS versus pseudoenergy, c, f ) representative conformations taken from docking trajectories. In b, c, e, and f

selected non-native, intermediate, and near-native conformations are colored in red, orange, and green, respectively, whereas the experimental binding

poses are shown in ice blue. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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force field yields a negative correlation between CMS and E,

where each dot represents one MMC snapshot. Next, we select

three representative conformations from those scatter plots for

each inhibitor, non-native (red), intermediate (orange), and

near-native (green), whose CMS are 0.38, 0.49, and 0.90 for

cathepsin K, and 0.38, 0.49, and 0.86 for actinidin, respectively.

The corresponding molecular representations are shown in

Figures 6c and 6f using the same color scheme. In both cases,

low-energy binding modes (green) significantly overlap with

bound inhibitors in the experimental structures of cathepsin K

and actinidin complexes (ice blue sticks), whereas non-native

and intermediate conformations are characterized by notably

higher pseudoenergy values.

Evolution- and physics-based components

A descriptor-based force field in GeauxDock combines evolu-

tion- and physics-based scoring terms. The former are derived

from evolutionary related complex structures at two different

sequence similarity thresholds, 80% to allow force field param-

eters to be calculated from close homologs, and 40% to use

only those templates that are weakly related to their targets.

Therefore, we can analyze how the level of homology affects

the accuracy of molecular docking. Using the Astex/CCDC

dataset, the results are reported in Table 5 as the area under

the ROC curve. As expected, the AUC significantly increases

when close homologs are included in force field optimization

and the docking conformations are evaluated by evolution-

based components alone. In contrast, the performance of

physics-based scoring terms remains, to a large extent, unaf-

fected by the maximum target-template sequence identity,

because these features are calculated from physical interac-

tions that are more universal.[75] Interestingly, the performance

of GeauxDock using a complete force field at a homology

threshold of 80% is only slightly better than that at 40%, sug-

gesting that the descriptor-based scoring function is able to

adapt to the supplied amount of evolutionary information to

maintain its accuracy.

To further investigate this intriguing observation, we calcu-

lated the relative contribution of both classes of scoring terms

to the total pseudoenergy at the two homology thresholds.

Figure 7 shows that the contribution from evolution-based

components to the total score is about 5% higher at 80%

homology compared with 40%. Considering only a slightly

better performance of GeauxDock using close homologs, this

analysis suggests that the scarcity of evolutionary information

can be effectively compensated by the increased contribution

from physics-based scoring terms. This unique feature of

GeauxDock is particularly important in its large-scale applica-

tions at the proteome level, such as in inverse VS[76,77] and

rational drug repositioning,[78–80] where the availability of only

weakly homologous complex structures for the majority of

drug targets will not compromise the accuracy of molecular

docking.

A well-balanced contribution of physics- and evolution-

based energy terms to the total pseudoenergy also suggests

that these two classes of scoring features effectively comple-

ment each other. Nevertheless, AUC values reported in Table 5

indicate that a linear combination of individual energy terms

perhaps does not fully exploit their predictive power; for

instance, adding the evolution-based component improves the

AUC of physics-based terms by about 3%. This may be caused

by the feature intercorrelation, which is known to limit the

performance improvements despite adding more descrip-

tors.[81] A possible solution is to combine individual energy

terms using a nonlinear model, under the assumption that

noncovalent interactions often depend on one another in a

nonlinear manner.[82] We will explore the feasibility of a

machine learning-based force field in ligand molecular docking

in the near future.

Conclusions

In this study, we describe the development of GeauxDock, a

molecular docking approach featuring a novel descriptor-

based scoring function and a mixed-resolution description of

protein-ligand complexes. The scoring function was parameter-

ized on a large dataset of crystal structures and further opti-

mized using sets of computer-generated native-like and decoy

conformations. Encouragingly, benchmarking calculations dem-

onstrate that GeauxDock has a strong capacity to recognize

native-like binding modes with the area under ROC of 0.85.

The descriptor-based scoring function implemented in Geaux-

Dock incorporates two distinct classes of energy terms,

Table 5. Performance of GeauxDock on the Astex/CCDC dataset assessed

by the area under the curve (AUC).

Scoring function

AUC

40% homology 80% homology

Complete 0.831 0.848

Evolution-based 0.699 0.745

Physics-based 0.801 0.814

The force field is optimized at the homology thresholds of 40 and 80%

and the performance of the complete scoring function is compared

with physics- and evolution-based components.

Figure 7. Balance of various energy terms in the optimized force field. The

contribution from physics- and evolution-based components is calculated

at the thresholds of 80 and 40% for the maximum target-template

sequence identity.
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physics- and evolution-based. As the latter are derived from

evolutionary related complex structures, their strength

depends on the level of homology between the target and

template systems. Interestingly, weak evolutionary constraints

are effectively compensated by the increased contribution

from physics-based terms, which, in turn, help maintain the

accuracy of the GeauxDock scoring function at the lower levels

of protein sequence similarity. Therefore, this new ligand dock-

ing approach is well suited for proteome-scale applications

taking advantage of the increasingly growing protein

sequence and structural data. GeauxDock is available at http://

www.institute.loni.org/lasigma/package/dock/.
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