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Computer-aided design is one of the critical components of modern drug discovery. Drug develop-
ment is routinely streamlined using computational approaches to improve hit identification and lead
selection, to enhance bioavailability, and to reduce toxicity. In the last decade, a mounting body of
genomic knowledge has been accumulated due to advancements in genome-sequencing technologies,
presenting great opportunities for pharmaceutical research. However, new challenges also arose
because processing this large volume of data demands unprecedented computing resources. On
the other hand, the state-of-the-art heterogeneous systems currently deliver petaflops of peak per-
formance to accelerate scientific discovery. In this chapter, we describe the development and
benchmarking of a parallel version of eFindSite, a structural bioinformatics algorithm for the
identification of drug-binding sites in proteins and molecular fingerprint-based virtual screening.
Thorough code profiling reveals that structure alignment calculations in eFindSite consume appro-
ximately 90% of the wall-clock time. Parallelizing this portion of the code using pragma-based
OpenMP enables the desired performance improvements, scaling well with the number of
computing cores.

Compared to a serial version, the parallel code runs 11.8 and 10.1 times faster on the processor and
the coprocessor, respectively; when both resources are utilized simultaneously, the speedup is 17.6. By
comparing the serial and parallel versions of eFindSite, we show the OpenMP implementation of struc-
ture alignments for many-core devices. With minimal modifications, a complex, hybrid C++/Fortran77
code was successfully ported to a heterogeneous architecture yielding significant speedups. This dem-
onstrates how modern drug discovery can be accelerated by parallel systems equipped with Intel® Xeon
Phi™ coprocessors.

In this chapter, we show solutions to challenges in moving this code to parallelism that are lessons
with wide applicability. For instance, we tackle porting extensive use of thread-unsafe common blocks
in the Fortran77 code using OpenMP to make thread-private copies. We also enlarged stack sizes to
avoid segmentation fault errors [ulimit -s]. Serial and parallel versions of eFindSite are freely avail-
able; please see “For more information” at the end of this chapter.
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PARALLELISM ENABLES PROTEOME-SCALE STRUCTURAL BIOINFORMATICS

Advances in genome-sequencing technologies gave rise to the rapid accumulation of raw genomic data.
Currently, one of the biggest challenges is to efficiently annotate this massive volume of biological
sequences. Due to the prohibitively high costs associated with large-scale experiments, the most prac-
tical strategy is computation-based protein structure modeling followed by function inference,
also known as structural bioinformatics. This approach routinely produces functional knowledge
facilitating a wide range of research in biological sciences; for instance, cellular mechanisms can
be investigated by constructing complex networks of molecular interactions at the level of complete
proteomes. Systems-level research provides useful insights to support the development of new treat-
ments for complex diseases, which often require a simultaneous targeting of multiple proteins. Con-
sequently, polypharmacology that builds upon systems biology and drug discovery holds a great
promise in modern medicine. Incorporating large biological datasets has become one of the central
components in systems-level applications; however, significant challenges arise given the vast amount
of data awaiting functional annotation. In order to achieve an acceptable time-to-completion in large
projects, unprecedented computing power is needed.

In that regard, modern research-driven computer technology is shifting from the traditional
single-thread to multiple-thread architectures in order to boost the computing power. Parallel high-
performance computing (HPC) has become a key element in solving large-scale computational
problems. For example, the Intel® Xeon Phi™ coprocessor featuring Intel® Many Integrated Cores
(MIC) architecture offers massively parallel capabilities for a broad range of applications. The under-
lying x86 architecture supports common parallel programming models providing familiarity and
flexibility in porting scientific codes. To take advantage of this unique architecture, we developed a
parallel version of eFindSite for HPC systems equipped with Intel Xeon Phi coprocessors. eFindSite
is a template-based modeling tool used in structural bioinformatics and drug discovery to accurately
identify ligand-binding sites and binding residues across large datasets of protein targets. In most of the
cases, we may expect the sequence similarity between a target protein and a template to be quite low,
therefore, eFindSite was designed to make reliable predictions using only weakly homologous
templates selected from the so-called “twilight zone” of sequence similarity. Consequently, its primary
applications are genome-wide protein function annotation, drug design, and systems biology, which
demand a sufficient computational throughput as well.

Briefly, eFindSite extracts ligand-binding knowledge from evolutionarily related templates stored
in the Protein Data Bank (PDB), which are identified using highly sensitive protein threading and meta-
threading techniques. Subsequently, ligand-bound templates are structurally aligned onto the target
protein in order to detect putative binding pockets and residues. eFindSite predictions have a broad
range of biological applications, such as molecular function inference, the reconstruction of biological
networks and pathways, drug docking, and virtual screening. In the original version of eFindSite,
template-to-target structure alignments are performed sequentially, thus many processor hours may
be required to identify ligand-binding sites in a target protein. The slow modeling process complicates
genome-wide applications that typically involve a considerable number of protein targets and large
template libraries. In this chapter, we describe porting eFindSite to Intel Xeon Phi coprocessors and
demonstrate the improved performance of the parallel code in detecting ligand-binding sites across
large protein datasets. We show that executing eFindSite on computing nodes equipped with
coprocessors greatly reduces the simulation time offering a feasible approach for genome-wide protein
function annotation, structural bioinformatics, and drug discovery.
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OVERVIEW OF eFindSite

How do drugs cure diseases? This is a complex question that can be simplified by focusing on the pro-
cess of protein-ligand binding. In general, small ligand molecules, such as metabolites and drugs, bind
to their protein targets at specific sites, often referred to as binding pockets. Ligand binding to proteins
induces biological responses either as normal cellular functions or as therapeutic effects to restore
homeostasis. On that account, the study of protein-ligand binding is of paramount importance in drug
discovery. Since only ligand-free experimental structures and computationally constructed models are
available for many pharmacologically relevant proteins, the detection of possible ligand-binding sites
is typically the first step to infer and subsequently modulate their molecular functions. Currently,
evolution/structure-based approaches for ligand-binding prediction are the most accurate and, conse-
quently, the most widely used. Here, structural information extracted from evolutionarily weakly
related proteins, called templates, is exhaustively exploited in order to identify ligand-binding sites
and binding residues in target proteins that are linked to certain disease states. One example of an
evolution/structure-based approach is eFindSite, a ligand-binding site prediction tool. It employs var-
ious state-of-the-art algorithms, such as meta-threading by eThread to collect template proteins, clus-
tering by Affinity Propagation to extract ligand information, and machine learning to further increase
the accuracy of pocket detection. An important feature of eFindSite is an improved tolerance to struc-
tural imperfections in protein models, thus it is well suited to annotate large proteomic datasets. For a
given target protein, eFindSite first conducts structural alignments between the target and each tem-
plate from the ligand-bound template library. Next, it clusters the aligned structures into a set of
discrete groups, which are subsequently ranked in order to predict putative ligand-binding pockets.

BENCHMARKING DATASET

All simulations in this study are performed using a benchmark dataset of protein-ligand complexes
comprising proteins of different sizes and a varying number of associated ligand-bound templates.
These proteins were selected from the original set of 3659 complexes used previously to develop
and parameterize eFindSite to mimic a typical proteomic dataset. As shown in Figure 5.1, we first

Number of templates
50-100 | 100-150 | 150-200 | 200-250

50 50 50 50

50 50 50 50

34 32 23 12

Target length (# residues)
400-500 | 300-400 | 200-300

FIGURE 5.1
Benchmarking dataset of 501 proteins.




58 CHAPTER 5 ACCELERATED BIOINFORMATICS FOR DRUG DISCOVERY

defined 12 bins with an increasing number of amino acids in target proteins ranging from 200 to 500 as
well as the number of associated templates varying from 50 to 250. Next, we randomly selected up to 50
proteins to populate each bin. The benchmarking dataset used in this project contains 501 proteins. For
each protein, we use its experimental conformation as the target structure and weakly homologous tem-
plates identified by eThread sharing less than 40% sequence identity with the target.

CODE PROFILING

Before converting the serial version of eFindSite to a parallel implementation, we conducted
a thorough code profiling in order to figure out which portions of the code consume the most CPU
cycles. According to the Pareto principle, also known as the 80/20 rule, most computer programs spend
80% of the wall time executing only 20% of the code. On that account, the single most important step
prior to porting eFindSite to Intel Xeon Phi coprocessors was to identify a block of code that uses the
majority of computing time. To conduct code profiling, we randomly selected one protein from each
bin presented in Figure 5.1. Figure 5.2 shows the profiling outcome using gprof, a widely used perfor-
mance analysis tool generating a function list based on the execution time. Four functions were iden-
tified as the most time-consuming: tmsearch, cal_tmscore, dp, and get_score taking 29%, 27%, 21%,
and 15% of the entire execution time, respectively. Importantly, all these functions contribute to the
calculation of structure alignments utilizing up to 92% of the computing time. Next, we measured the
wall time by dividing eFindSite into three major steps, pre-alignment calculations, structure align-
ments, and post-alignment processing. As shown in Figure 5.2, structure alignments take 88% of
the simulation time, which is consistent with the timings reported by gprof. These profiling results
clearly point out at the template-to-target structure alignments as the most computationally expensive
operations, thus parallelizing that this portion of the eFindSite code should result in the most cost-
effective performance improvement in predicting ligand-binding sites.

In principle, there are three approaches to port serial codes to the coprocessor, native, offload, and
symmetric modes. In the native mode, the entire code is first cross-compiled on the processor with the
parallel regions marked by OpenMP pragmas, and then it is executed directly on the coprocessor. In
contrast, the offload mechanism moves only portions of the code to the coprocessor for parallel

Method Main functions Time (%)
tmsearch 29
cal_tmscore 27

£ _

Gpro dp 21
get_score 15
Pre-alignment 11

Wall time

Structure alignment 88

FIGURE 5.2

Profiling of eFindSite. Low-level function usage reported by gprof and the wall-clock time measured for the
individual stages of eFindSite.
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computation while leaving the rest of the serial code running on the processor. In the symmetric im-
plementation, coprocessors are used independently as self-sufficient computing nodes often through an
MPI protocol. We looked into the source code to determine which parallel mode would be optimal for
eFindSite. We gave careful thought to several considerations. The framework of eFindSite is written in
C++, whereas protein structure alignments are implemented in Fortran77. For each individual
template-to-target structure alignment, the subroutine frtmalign is called from the main function.
Figure 5.3 shows the detailed call graph generated by Doxygen, illustrating nested function calls by
frtmalign and its subroutines. Transferring structure alignment computations to the coprocessor using
Fortran-specific OpenMP pragmas would require the minimum code conversion. In addition, several
pre- and post-alignment functions such as the Affinity Propagation clustering used to group template-
bound ligands are available only as external libraries precompiled for Linux hosts. Moreover, accord-
ing to the code profiling carried out previously, the total memory footprint of eFindSite grows with
the target protein size and the number of associated templates to values that are prohibitively large
considering the memory space available on the coprocessor. Therefore, we ruled out the native exe-
cution and decided to “offload” only the structure alignment portion to the coprocessor leaving the rest

make_sec
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—

FIGURE 5.3

Call graph of subroutines for protein structure alignments. The top subroutine of frimalign is called within the main
function of eFindSite.
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of the code, including pre- and post-alignment calculations, on the processor. In this chapter, we discuss
the parallelization of eFindSite using the offload mode followed by the performance analysis against
501 target proteins.

PORTING eFindSite FOR COPROCESSOR OFFLOAD

The flowchart of the parallel version of eFindSite is shown in Figure 5.4. eFindSite takes a target
protein structure and a ligand-bound template library as an input to identify ligand-binding sites.
As a result, it produces a series of informative predictions, including putative ligand-binding sites
and binding residues, structure alignments between the target and template proteins, and ligand mo-
lecular fingerprints for virtual screening. The workflow central to the binding site prediction breaks
down into three stages. During the pre-alignment step, eFindSite extracts template information from
the library and constructs global sequence alignments to the target; these computations are performed
sequentially on the processor. Next, it structurally aligns each template onto the target; this section is
well suited for parallel computing since individual alignments are fully independent of each other.
The code profiling also identified this portion of the code as the most computing intense. Therefore,
we decided to parallelize the structure alignment loop in order to perform the calculations using

g | Target protein ‘ | Target protein ‘
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FIGURE 5.4

Workflow of eFindSite. Pre- and post-alignment calculations are performed using a single processor thread.
Structure alignments are executed in parallel using multiple threads on the processor and/or coprocessor.




PORTING eFindSite FOR COPROCESSOR OFFLOAD 61

multiple processor and/or coprocessor threads. Figure 5.4 shows that each structure alignment is
assigned to a unique hardware thread, so that different threads concurrently carry out calculations
for different templates against the target protein. Once structure alignments are completed, the results
are sent back to the processor, which clusters and ranks the identified binding pockets, and predicts the
corresponding binding residues in the final post-alignment step.

In the following sections, we discuss some details of porting eFindSite to the coprocessor. Within
the main function, structure alignments are executed inside a master loop iterating over the template
library. The parallelization of structure alignments is implemented by executing each alignment con-
currently using standard OpenMP pragmas as shown in Figure 5.5. The execution of a structure align-
ment starts when the wrapper function frtmalign is called within the main function, where the serial
subroutine frtmalign implemented in Fortran77 is invoked to conduct the actual alignment calculation.
We found that this portion of the code extensively uses common blocks making structure alignments
thread-unsafe. To guarantee the thread safety, we marked all Fortran77 common blocks as private to
threads using [!$omp threadprivate (/block_name/)], which is shown in Figure 5.6.

This implementation of eFindSite offloads portions of the code to the coprocessor, executes structure
alignments on the coprocessor, and then transfers the results back to the processor to perform the final
post-alignment calculations. Because the coprocessor has its own memory, the offload mode requires
data transfer between the processor and coprocessor. eFindSite implements C++ classes to store and ma-
nipulate data associated with template proteins, such as atomic coordinates, amino acid residues, and
sequences. To facilitate data transfer, we devoted extra work converting the original data structures into
flat, bitwise copy-able data arrays before transferring them to the coprocessor as illustrated in Figure 5.7.
We note that arrays containing the target protein and the template library are copied to the coprocessor
only once, thus there is virtually no overhead from moving data back and forth. Each structure alignment

//loop through the library of template proteins to conduct structure alignments
std::multimap< int, Template *, greater<int> >::iterator tpll;
//parallelize the loop
#pragma omp parallel for schedule(dynamic) private (tpll)
for (tpll = template set.begin(); tpll != template set.end(); tpll++ ){
char template seq[MAXPRO];
int template res[MAXPRO];
double template xyz[MAXPRO] [3];
//assemble protein residue, sequence and coordinate from the template library

int template len = ((*tpll).second)->getProteinResiduesTotal();
strcpy (template seq, (((*tpll).second)->getProteinSequence()).c_str());
for ( int t i = 0; t i < template len; t_ i++ ){

template res[t i] = t i + 1;

}

((*tpll) .second) ->getProteinCoordsCA (template xyz);

int t scorel, t alig[MAXPRO];

double t_score2, t score3, t_scored4, t t[3], t ul3]I[3];

// call structure alignment subroutine
frtmalign (&t _scorel, &t score2, &t score3, &t scored4, &template len,\
&target len, &template seq, &target seq, &t alig, &template res,\
&target_res, &template xyz, &target xyz, &t_t, &t_u, &align_len);

}

FIGURE 5.5

OpenMP parallelization of the master loop performing structure alignments between the target protein and a set of
ligand-bound templates.
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subroutine
frtmalign (tm_scorel, tm score2, tm score3, tm score4,target len,template len,
& target seq,template seq,tm align,target res,template res,
& target xyz,template xyz,tm ttl,tm uul,align_length)
parameter (maxres=1000) ! no. of residues
parameter (maxlen=2*maxres) ! for alignment
parameter (npr=2) ! no. of proteins to align
double precision tm score2,tm score3,tm scored,tm xyzla(0:2,0:maxres-1),
& template xyz(0:2,0:maxres-1), tm ttl1(0:2),tm uul(0:2,0:2)
integer tm scorel,target len,template len, align length,
& tm align(0:maxres-1), target res(0O:maxres-1),
& template res (0:maxres-1)

character*l target seq(0:maxres-1), template seq(0O:maxres-1)
character*3 resa (maxres,npr),resn(maxres,0:1)
character*l sega (maxres,npr),seqn (maxres,0:1)
dimension invmapO (maxres),ires (maxres,0:1)
dimension xtml (maxres),ytml (maxres),ztml (maxres)
dimension xtm2 (maxres),ytm2 (maxres),ztm2 (maxres)
dimension ml (maxres),m2 (maxres)
dimension xyz (3,maxres,npr), length (npr)
common /coord/ xa(3,maxres,0:1)
common /length/ nseqgl,nseqg2
common /pdbinfo/ iresl (maxres,npr),resa,seqa
common /secstr/ isec (maxres),jsec (maxres) !secondary structure
common /nln2/ nl (maxres),n2 (maxres)
common /dinfo/ d8
common /stru/xt (maxres),yt (maxres),zt (maxres),xb(maxres),yb (maxres),
& zb (maxres)
// OpenMP pragma to mark thread private
!'Somp threadprivate (/coord/)
!Somp threadprivate (/length/)
!'Somp threadprivate (/pdbinfo/)
!'Somp threadprivate (/secstr/)
!Somp threadprivate(/nln2/)
!'Somp threadprivate (/dinfo/)
!'Somp threadprivate (/stru/)

cc call other routines...
end

FIGURE 5.6
Thread-safe implementation of common blocks in Fortran77.

executed on the coprocessor extracts data required for a given template from the transferred data block
using an offset mechanism. In addition, we use compiler directives to mark the offload execution, as pre-
sented in Figure 5.8. Specifically, all Fortran77 subroutines and global variables for structure alignment
calculations on the coprocessor are tagged with the offload attributes [!dir$ attributesoffload:mic::
subroutine_name] and [!dir$ attributes offload:mic::variable_name], respectively. Moreover,
when the OpenMP is invoked within the offloaded block, environment variables for the coprocessor
are set using the “MIC_" prefix, i.e., [export MIC_OMP_NUM_THREADS=n]. Since the memory footprint
for individual structure alignments in eFindSite is larger than the default OpenMP stack size, we increase
it by using [export MIC_OMP_STACKSIZE=64M].

The Intel Xeon Phi coprocessor model SE10P features 61 cores and supports up to 240 parallel
threads with the 61st core reserved for operating system, I/O operations, etc., when using offload.
The physical distribution of threads over hardware cores is controlled by the thread affinity settings,



int 1 offset 0;
// flatten the data structure to data array
for ( tpll = template set.begin(); tpll != template set.end(); tpll++ ){
template len[i offset] = ((*tpll).second)->getProteinResiduesTotal();
char t seqt [MAXPRO];
strcpy (t_seqt, (((*tpll).second)->getProteinSequence()).c str());
for (int t i=0;t i< ((*tpll) .second)->getProteinResiduesTotal ()
t o i++ ) {
template seqlt i+t offset[i offset]] = t seqt(t i];

}

for (int t_1=0;t i< ((*tpll).second)->getProteinResiduesTotal ();t_ i++) {
template res[t i+t offset[i offset]] =t i + 1;
}

double *t xyzt=new double [((*tpll).second)->getProteinResiduesTotal ()
*31;

((*tpll) .second)->getProteinCoordslD (t xyzt);

for (int t i 0;t i< ((*tpll).second)->getProteinResiduesTotal () *3;t i++)
{

}
delete [] t xyzt;
i offset++;

template xyz[t i+t offset[i offset]*3] = t xyzt[t i];

// offload to the coprocessor, data transfer
#pragma offload target (mic) in(n offset,t offset,t lenl) \
in(template len:length(n_set)) \
in(target seq, target res:length(n_tar)) \
in(template seq,template res:length(n off)) \
in(target xyz:length(n tar*3)) \
in(template xyz:length(n off*3)) \
out (t_scorel,t score2,t score3,\
t score4:length(n_set)) \
out (t_alig:length(n tar*n set)) \
out (t _rmat:length(n set*12)) {
int tm i;
// parallelize the for loop
#pragma omp parallel for schedule(dynamic) private(tm 1)
for ( tm i = 0; tm i < n_offset; tm i++ ){
int o scorel;
double o score2, o score3, o score4;
int target o _len = target len;
int template o len = template len[tm i];
char target o seq[MAXPRO];
char template o seq[MAXPRO];
int target o res[MAXPRO], template o res[MAXPRO];
double target o xyz[MAXPRO] [3], template o xyz[MAXPRO][3];
for ( int t i = 0; t i < target o len; t i++ ){

target o seqlt i] = target seq[t i];

target o res[t i] = target res[t i];

for ( int t j = 0; t J < 3; t j++ ){
target o xyzl[t i][t j] = target xyz[t i*3+t j];

}
}
for (int t 1 = 0; t 1 < o len2; t i++ ){
template o seqg[t i] = template seq[t offset[tm i]+t i];
template o res[t i] = template res[t offset[tm il+t 1i];
for (int t j = 0; t J < 3; t J++ ){ - -
mplate o xyz[t i][t jl=template xyz[t offset[tm i]*3+t i*3+t j];
}
}
int o _alig[MAXPRO];
double o t[3], o ul[3][3];

frtmalign (&o_scorel, &o score2, &o score3, &o_scored4, &tempalte o len, \
&target o len, &template o seq, &target o seq, &o_alig, \
&template o res, &target o res, &template o xyz, \
&target o xyz, &o t, &o_ u, &align o len );
}
//end of the parallel for loop

FIGURE 5.7

Data flattening and transfer for offloading structure alignments to the coprocessor.
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c Fr-TM-align converted into a subroutine
!dir$ attributes offload:mic::frtmalign

'dir$ attributes offload:mic::d8
!dir$ attributes offload:mic::xa
!dir$ attributes offload:mic::nseql
!dir$ attributes offload:mic::nseqg2
!dir$ attributes offload:mic::iresl
!dir$ attributes offload:mic::resa
'dir$ attributes offload:mic::seqga
!dir$ attributes offload:mic::isec
!dir$ attributes offload:mic::jsec
!dir$ attributes offload:mic::nl
!dir$ attributes offload:mic::n2
!dir$ attributes offload:mic::xt
!'dir$ attributes offload:mic::yt
!dir$ attributes offload:mic::zt
!dir$ attributes offload:mic::xb
!'dir$ attributes offload:mic::yb
!dir$ attributes offload:mic::zb

subroutine frtmalign (tm scorel,tm score2,tm score3,tm score4,target len,
& template len,target seq, template seq,tm align,target res,
& template res, target xyz,template xyz,tm ttl,tm uul,align_ length)

end

FIGURE 5.8

Fortran77 subroutine frtmalign offloaded to the coprocessor.

which are typically set to either compact, balanced, or scatter modes. Since the affinity mode may
have an impact on the parallel performance, we first benchmarked eFindSite using different Intel
KMP affinity settings, [export MIC_KMP_AFFINITY=compact/scatter/balanced].

In order to analyze the performance of eFindSite, we first developed a reliable measure to quantify its
computing speed. As shown in Figure 5.3, the subroutine u3b is a frequently called low-level function that
calculates a root-mean-square deviation (RMSD) between two sets of atomic coordinates. We found that
the total number of RMSD calculations correlates well with the total wall time and the structure alignment
time; the corresponding Pearson correlation coefficients are as high as 0.963 and 0.960, respectively.
Thus, we use the number of RMSD calculations per second to measure the eFindSite performance.

In Figure 5.9, we plot the performance of eFindSite with the structure alignment portion of the code
offloaded to the coprocessor. Note that the pre- and post-alignment steps are sequentially executed on
the processor. Because some proteins in the benchmark dataset have less than 50 templates, we only
consider parallel execution using up to 24 threads per task in order to avoid idle threads. Encouragingly,
increasing the number of threads on the coprocessor clearly improves the performance of eFindSite.
The average performance is 4.27 x 10* and 2.30 x 10> RMSD calculations per second as the number of
threads increases from 4 to 24. Considering structure alignment calculations alone, almost a perfect
linear scaling is achieved (open circles in Figure 5.9). In contrast, the performance of eFindSite reaches
a plateau when the total wall time is plotted (black circles in Figure 5.9). Here, the number of RMSD
calculations per second improves from 3.98 x 10 for 4 threads to 1.76 x 10° for 24 threads, which can
be explained by Amdahl’s Law describing the relationship between the expected speedup of a parallel
implementation relative to the serial algorithm. These performance measurements are carried out for
the balanced and scatter thread affinity modes that maximize hardware utilization by evenly spreading
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FIGURE 5.9

Performance of eFindSite using parallel coprocessor threads. The speed is measured by the number of RMSD
calculations per second (mean =+ standard deviation) for 4, 8, 16, and 24 threads across the benchmarking
dataset of 501 proteins. Solid and open symbols correspond to the total time and the time spent calculating
structure alignments, respectively. Circles and squares show the performance using balanced/scatter and
compact thread affinity, respectively.

threads across coprocessor cores. For the compact affinity setting placing four threads on a single core
before moving to the next one, the rate of RMSD calculations increases from 2.27 x 10* to 1.25 x 10°
for the alignment time (open squares in Figure 5.9), and from 2.19 x 10* to 1.06 x 10° for the total time
(black squares in Figure 5.9). Although the balanced/scatter thread affinity yields an approximately 1.8
times higher performance per thread compared to the compact affinity mode, its advantage starts
diminishing when the total number of threads on the coprocessor exceeds 120, and all affinity modes
become essentially the same when the thread count reaches 240. In fact, a core-to-core performance
comparison shows a slightly higher performance of the compact mode at 2.44 x 10* RMSD calcula-
tions per second compared to 2.38 x 10* for the balanced and scatter modes.

PARALLEL VERSION FOR A MULTICORE PROCESSOR

In addition to the Intel Xeon Phi coprocessor version of eFindSite, we also implemented a parallel
code that can be executed on multicore processors. Similarly, we employed pragma-based OpenMP
to parallelize structure alignment calculations with both pre- and post-alignment steps executed
sequentially. We also increased the memory available to each thread to 64M using [export
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FIGURE 5.10

Performance of eFindSite using parallel processor threads. The speed is measured by the number of RMSD
calculations per second (mean +standard deviation) for 2, 4, 8, and 16 threads across the benchmarking
dataset of 501 proteins. Solid triangles and open squares correspond to the total time and the time spent
calculating structure alignments, respectively.

OMP_STACKSIZE=64M]. In Figure 5.10, we plot the performance of the multi-threaded version of eFind-
Site on the Intel® Xeon® E5-2680 processor. Using the total simulation time, the serial (1 thread) and
parallel (16 threads) versions have an average performance across the benchmarking dataset of
1.06 x 10° and 6.16 x 10° RMSD calculations per second, respectively. When considering the time
spent calculating structure alignments, the average performance increases to 1.24x 10° and
1.85 x 10° RMSD calculations per second. A good linear scaling is achieved with a speedup over
the serial execution of 15 when 16 processor threads are utilized. The performance reaches a plateau
at a speedup of 5.8 for the total wall time; we note that according to Amdahl’s law, the maximum
theoretical speedup of a code that is 90% parallelized using 16 threads is 6.4.

TASK-LEVEL SCHEDULING FOR PROCESSOR AND COPROCESSOR

Computing nodes equipped with Intel Xeon Phi coprocessor cards provide massively parallel capabi-
lities through multicore processors and many-core coprocessors. Therefore, our ultimate goal was to
develop a production code of eFindSite that takes full advantage of both resources. The production scheme
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for predicting ligand-binding sites across large datasets of proteins using eFindSite involves using both the
processor and the coprocessor simultaneously. The processor executes the serial portion of the code, while
structure alignments are offloaded to the coprocessor with the compact affinity mode to maximize the per-
formance of eFindSite. At the same time, the processor also runs a parallel version of eFindSite as well,
using relatively few threads. This way, we process multiple proteins concurrently by multiple parallel tasks
executed simultaneously on both computing units.

We developed a job scheduler in Perl to launch up to 4 parallel tasks on the processor with 4 threads
per task, and up to 10 parallel tasks on the coprocessor, each using 24 threads in the compact affinity
mode. As shown in Figure 5.11, we first sort target proteins by a product of the residue count and the
number of templates, which estimates the wall time required to complete the calculations. Because we

use Proc::Background;

my $n mic = 10; // 10 parallel jobs on a coprocessor

my $n cpu = 4; // four parallel jobs on a processor

my @lst3 = (); // template protein list

foreach my S$wlst2 ( sort { $1st2{$a} <=> $1st2{S$b} } keys %$1st2 ){

push (@1lst3, Swlst2);
}
while ( @lst3 ) {
# dispatching jobs to Xeon processor
for ( my $xa = 0; $xa < $n_cpu; S$xat++ ){
# start a new process if the current is finished
if ( @lst3 and !$j cpul$xal->alive ) {
#get an item from the top of the list (smaller template)
my $job = shift(@lst3);
printf ("CPU%d <- %s ... %.1f%s\n", $xa, $job, \
(++Sprgl/$nlst3) *100.0, 'S');
$j_cpul$xal=Proc::Background->new ("Sef omp -s $job.pdb \
-t $job.ethread-fun -i $job.ss -e $job.prf -o $job- \
efindsite -b $foptb -x $foptx > $job.log 2>&1");
Sc_cpulSxal++;
$1 cpul$xal] += $1lst2{$job};
}
}
# offloading jobs to Xeon MIC jobs
for ( my $xa = 0; $xa < $n mic; S$xa++ ) {
if ( @lst3 and !$j mic[$xal->alive ) {
#get an item from the bottom of the list (larger template)
my $job = pop(@lst3);
my S$kpt='export \
MICiKMPiPLACEiTHREADS=6C, 4t,'.int ($xa*6).'0"';

printf ("MIC%d <- %s ... %.1f%s\n", $xa, $job, \
(++Sprgl/$nlst3) *100.0, '$');
$3 mic[$xa] = Proc::Background->new ("Skpt ; Sef mic -s \

$job.pdb -t $job.ethread-fun -i $job.ss -e $job.prf -o \
$job-efindsite -b S$foptb -x $foptx > $job.log 2>&l1");
Sc mic[Sxal++;
$1 mic[$xa] += $1st2{$job};
}
}
sleep(2) 1if ( @lst3 );
}

FIGURE 5.11

Part of the task scheduler implemented in Perl dispatching four parallel tasks (4 threads per task) on the
processor and 10 parallel tasks (10 threads per task) on the coprocessor.
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use 24 threads per task on the coprocessor and 4 threads per task on the processor, we dispatch longer
tasks to the coprocessor, whereas shorter jobs are executed on the processor. Running 4 parallel tasks
on the processor and 10 parallel tasks on the coprocessor ensures that both resources are fully utilized.
To avoid the oversubscription of coprocessor cores, the production code features an explicit map-
ping of parallel tasks to hardware threads at the compact thread affinity. Specifically, [export
MIC_KMP_PLACE_THREADS=6c,4t, (i*6). 0] defines the set of logical units assigned to each task,
where 6¢ requests six cores, 4t starts four threads on each core, and (1*6). 0" is an offset of six cores
between individual task. For example, when i=0, the first task runs on cores 0-5 with 4 threads per core
totaling 24 threads, the next task sets i=1 to run on cores 6 through 11, and so forth. This way, the
scheduler assigns different cores to different parallel tasks in order to conduct protein structure align-
ments at the maximum utilization of the accelerator hardware. Figure 5.12 lists partitioning details for
the parallel execution for the benchmarking dataset using a computing node equipped with two 8-core
Intel Xeon E5-2680 processors (8 threads, hyper-threading disabled) and one 61-core Intel Xeon Phi
SE10P coprocessor (240 threads, compact thread affinity).

Hardware Core range Number of threads Percentage of computations
1-4 4 12.2
5-6 4 12.5
Processor
7-11 4 12.7
12-16 4 11.8
1-6 24 5.1
7-12 24 5.1
13-18 24 5.1
19-24 24 5.0
25-30 24 5.3
Coprocessor
31-36 24 5.0
37-42 24 4.7
43-48 24 5.0
49-54 24 5.4
55-60 24 5.1
Processor 1-16 16 49.2
Coprocessor 1-60 240 50.8
FIGURE 5.12

Partitioning details for processing 501 benchmarking proteins using eFindSite simultaneously on the processor
and coprocessor. The amount of computations is approximated by the product of the target protein length
and the number of template structures.
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Speedups of the parallel versions of eFindSite over the serial code. Computations are performed using three
parallel versions: multiple processor threads (4 tasks, each running on 4 threads), multiple coprocessor
threads (10 tasks, each running on 24 threads), and multiple processor and coprocessor threads running
simultaneously.

We processed the entire dataset of 501 proteins using task-level parallelism and measured the time-
to-completion, defined as the total time required for the prediction of ligand-binding sites. Figure 5.13
compares the results for the serial version and three parallel processing schemes. The speedup over the
serial version is 11.8, 10.1, and 17.6 for the parallel processing using the processor, the coprocessor,
and both resources, respectively. Therefore, using the coprocessor in addition to the processor accel-
erates the prediction of binding sites across large protein datasets. We also monitored the utilization of
computing resources to demonstrate that all hardware threads are utilized. Figure 5.14 shows that the
average usage of the processor and the coprocessor during production simulations is 99.9% and 82.2%,
respectively. The coprocessor threads periodically become idle while waiting for the processor to start
the pre-alignment (reading input files, performing sequence alignments) and finish the post-alignment
(pocket clustering and ranking) tasks resulting a relatively lower utilization of the coprocessor. On the
other hand, the processor remains fully utilized not only facilitating tasks offloaded to the coprocessor
but also performing eFindSite calculations by itself. Finally, we checked for the numerical correctness
of the results. Different versions of eFindSite produce identical results, thus the parallelization
of eFindSite using OpenMP and offloading to the Intel Xeon Phi coprocessor fully maintains the
functionality of the original code with a great benefit of much shorter simulation times.
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FIGURE 5.14

Resource utilization during the execution of the heterogeneous parallel version of eFindSite. Time courses of
the percentage of processor usage (black line) are compared to that of the coprocessor (gray line).

CASE STUDY

Finally, we present a case study to illustrate binding pocket prediction using eFindSite. The target
protein selected from the benchmarking dataset is human arginase I (PDB-ID: 3gn0, chain A), a binuc-
lear manganese metalloenzyme hydrolyzing r-arginine. The abnormal activity of this protein is
implicated in various disease states including erectile dysfunction, atherosclerosis, and cerebral ma-
laria. eFindSite predicted a total of 10 pockets for this protein and assigned a confidence score of
91.9% to the top-ranked binding site. Figure 5.15 shows the crystal structure of this protein (transparent
ribbons) with the top-ranked binding pocket predicted by eFindSite marked by a solid ball. The cor-
responding predicted binding residues are shown as a transparent gray surface. Two additional smaller
balls mark the location of pockets at ranks 2 and 3. The prediction accuracy can be evaluated by
revealing the location of a ligand a-difluoromethylornithine bound to the target protein in the exper-
imental complex structure represented by solid sticks. We note that the ligand position was not part of
the prediction procedure and it is used for validation purposes only. The distance between the predicted
top-ranked binding site and the geometric center of the ligand is only 2.22 A, demonstrating a high
prediction accuracy of eFindSite. As a reliable tool for ligand-binding prediction, eFindSite is well
suited for a broad range of applications ranging from protein function annotation to virtual screening
and drug discovery.

SUMMARY

eFindSite is a ligand-binding site prediction software used in drug discovery and design. To meet the
challenges of proteome-scale applications, we implemented a parallel version of eFindSite for proces-
sing large datasets using HPC systems equipped with Intel Xeon Phi coprocessors. This parallel version
of eFindSite achieves 17.6 speedup over the serial code using both processor and coprocessor
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FIGURE 5.15

Ligand-binding pocket prediction for human arginase | using eFindSite. The crystal structure of the target protein and
the binding ligand is displayed as transparent gray ribbons and solid black sticks, respectively. The top-ranked

predicted binding site is shown as a solid ball representing the pocket center and a transparent molecular surface
around the binding residues. Two smaller balls represent the centers of binding pockets predicted at ranks 2 and 3.

resources, which is considered significant when normalized by the cost of the hardware. The x86
coprocessor architecture allows for open-standard and portable parallel programming on both tradi-
tional processors as well as coprocessors. In particular, using OpenMP makes it relatively easy to
parallelize portions of the code. eFindSite represents a typical scientific software written mostly by
domain scientists, who contributed different components to the code using different programming
languages and styles. From our porting experience, even fairly complex codes, such as the hybrid
C++/Fortran77 source code of eFindSite, can be successfully ported to utilize both Intel Xeon proces-
sors and Intel Xeon Phi coprocessors together yielding speedups at minimal coding efforts.

The development of the parallel version of eFindSite was fairly straightforward; however, we
would like to discuss a couple of problems encountered throughout this process. First, due to the
extensive use of thread-unsafe common blocks in the Fortran77 code, we initially attempted to
rewrite those subroutines to pass parameters explicitly instead of accessing common blocks. However,
these efforts took a very long time and considering the “spaghetti-like” nature of the code with multiple
access points to common blocks, we could not reproduce the correct results in a timely fashion. For that
reason, we decided to use OpenMP pragmas to mark the global variables as thread-private in the orig-
inal code. This method turned out to be very practical and time efficient in the process of developing a
thread-safe parallel implementation. Another issue we ran into was related to the stack size. We
found that the default stack size on some HPC systems is smaller than that set for eFindSite using
OMP_STACKSIZE causing segmentation fault errors. Consequently, in addition to OpenMP pragmas,
modifying the default system stack size using [ulimit -s] may be required.
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Notwithstanding the 17-fold speedup, there is still room for improvements to fully benefit from
wide single instruction, multiple data (SIMD) vectors featured by the coprocessor. For instance, a
proper loop vectorization is critical to increase the overall performance. Vectorization reports collected
for eFindSite show that the majority of loops taking the most execution time are indeed vectorized.
However, other issues related to data dependency and alignment indicated in the reports need to be
addressed by rearranging loops, data structure padding, improving register utilization, and data cach-
ing. Therefore, in addition to the parallelization of the remaining portions of the serial code, future
directions of this project include a thorough code optimization to take better advantage of the Intel
Xeon processor and Intel Xeon Phi coprocessor SIMD architectures. We plan to hand tune a relatively
small portion of the kernel for RMSD calculations to further boost the parallel performance of
eFindSite.

FOR MORE INFORMATION

» The source code for eFindSite can be found at www.brylinski.org/efindsite. This Web site also
provides compilation and installation instructions, as well as a detailed tutorial on processing large
datasets using heterogeneous computing platforms.

» Feinstein, W.P., Moreno, J., Jarrell, M., Brylinski, M., 2015. Accelerating the pace of protein
functional annotation with Intel Xeon Phi coprocessors. IEEE Trans. Nanobiosci. DOI: 10.1109/
TNB.2015.2403776.

* Brylinski, M., Feinstein, W.P., 2013. eFindSite: Improved prediction of ligand binding sites in
protein models using meta-threading, machine learning and auxiliary ligands. J. Comput. Aided
Mol. Des. 27, 551-567.

» Feinstein, W.P., Brylinski, M., 2014. eFindSite: Enhanced fingerprint-based virtual screening
against predicted ligand binding sites in protein models. Mol. Inform. 33, 135-150.

* Download the code from this, and other chapters, http://lotsofcores.com.
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