
CHAPTER

ACCELERATED STRUCTURAL
BIOINFORMATICS FOR DRUG
DISCOVERY 5

Wei P. Feinstein, Michal Brylinski
Louisiana State University, USA

Computer-aided design is one of the critical components of modern drug discovery. Drug develop-
ment is routinely streamlined using computational approaches to improve hit identification and lead
selection, to enhance bioavailability, and to reduce toxicity. In the last decade, a mounting body of
genomic knowledge has been accumulated due to advancements in genome-sequencing technologies,
presenting great opportunities for pharmaceutical research. However, new challenges also arose
because processing this large volume of data demands unprecedented computing resources. On
the other hand, the state-of-the-art heterogeneous systems currently deliver petaflops of peak per-
formance to accelerate scientific discovery. In this chapter, we describe the development and
benchmarking of a parallel version of eFindSite, a structural bioinformatics algorithm for the
identification of drug-binding sites in proteins and molecular fingerprint-based virtual screening.
Thorough code profiling reveals that structure alignment calculations in eFindSite consume appro-
ximately 90% of the wall-clock time. Parallelizing this portion of the code using pragma-based
OpenMP enables the desired performance improvements, scaling well with the number of
computing cores.

Compared to a serial version, the parallel code runs 11.8 and 10.1 times faster on the processor and
the coprocessor, respectively; when both resources are utilized simultaneously, the speedup is 17.6. By
comparing the serial and parallel versions of eFindSite, we show the OpenMP implementation of struc-
ture alignments for many-core devices. With minimal modifications, a complex, hybrid C++/Fortran77
code was successfully ported to a heterogeneous architecture yielding significant speedups. This dem-
onstrates howmodern drug discovery can be accelerated by parallel systems equipped with Intel®Xeon
Phi™ coprocessors.

In this chapter, we show solutions to challenges in moving this code to parallelism that are lessons
with wide applicability. For instance, we tackle porting extensive use of thread-unsafe common blocks
in the Fortran77 code using OpenMP to make thread-private copies. We also enlarged stack sizes to
avoid segmentation fault errors [ulimit -s]. Serial and parallel versions of eFindSite are freely avail-
able; please see “For more information” at the end of this chapter.

55

PARALLELISM ENABLES PROTEOME-SCALE STRUCTURAL BIOINFORMATICS
Advances in genome-sequencing technologies gave rise to the rapid accumulation of raw genomic data.
Currently, one of the biggest challenges is to efficiently annotate this massive volume of biological
sequences. Due to the prohibitively high costs associated with large-scale experiments, the most prac-
tical strategy is computation-based protein structure modeling followed by function inference,
also known as structural bioinformatics. This approach routinely produces functional knowledge
facilitating a wide range of research in biological sciences; for instance, cellular mechanisms can
be investigated by constructing complex networks of molecular interactions at the level of complete
proteomes. Systems-level research provides useful insights to support the development of new treat-
ments for complex diseases, which often require a simultaneous targeting of multiple proteins. Con-
sequently, polypharmacology that builds upon systems biology and drug discovery holds a great
promise in modern medicine. Incorporating large biological datasets has become one of the central
components in systems-level applications; however, significant challenges arise given the vast amount
of data awaiting functional annotation. In order to achieve an acceptable time-to-completion in large
projects, unprecedented computing power is needed.

In that regard, modern research-driven computer technology is shifting from the traditional
single-thread to multiple-thread architectures in order to boost the computing power. Parallel high-
performance computing (HPC) has become a key element in solving large-scale computational
problems. For example, the Intel® Xeon Phi™ coprocessor featuring Intel® Many Integrated Cores
(MIC) architecture offers massively parallel capabilities for a broad range of applications. The under-
lying x86 architecture supports common parallel programming models providing familiarity and
flexibility in porting scientific codes. To take advantage of this unique architecture, we developed a
parallel version of eFindSite for HPC systems equipped with Intel Xeon Phi coprocessors. eFindSite
is a template-based modeling tool used in structural bioinformatics and drug discovery to accurately
identify ligand-binding sites and binding residues across large datasets of protein targets. In most of the
cases, we may expect the sequence similarity between a target protein and a template to be quite low,
therefore, eFindSite was designed to make reliable predictions using only weakly homologous
templates selected from the so-called “twilight zone” of sequence similarity. Consequently, its primary
applications are genome-wide protein function annotation, drug design, and systems biology, which
demand a sufficient computational throughput as well.

Briefly, eFindSite extracts ligand-binding knowledge from evolutionarily related templates stored
in the Protein Data Bank (PDB), which are identified using highly sensitive protein threading and meta-
threading techniques. Subsequently, ligand-bound templates are structurally aligned onto the target
protein in order to detect putative binding pockets and residues. eFindSite predictions have a broad
range of biological applications, such as molecular function inference, the reconstruction of biological
networks and pathways, drug docking, and virtual screening. In the original version of eFindSite,
template-to-target structure alignments are performed sequentially, thus many processor hours may
be required to identify ligand-binding sites in a target protein. The slow modeling process complicates
genome-wide applications that typically involve a considerable number of protein targets and large
template libraries. In this chapter, we describe porting eFindSite to Intel Xeon Phi coprocessors and
demonstrate the improved performance of the parallel code in detecting ligand-binding sites across
large protein datasets. We show that executing eFindSite on computing nodes equipped with
coprocessors greatly reduces the simulation time offering a feasible approach for genome-wide protein
function annotation, structural bioinformatics, and drug discovery.

56 CHAPTER 5 ACCELERATED BIOINFORMATICS FOR DRUG DISCOVERY

OVERVIEW OF eFindSite
How do drugs cure diseases? This is a complex question that can be simplified by focusing on the pro-
cess of protein-ligand binding. In general, small ligand molecules, such as metabolites and drugs, bind
to their protein targets at specific sites, often referred to as binding pockets. Ligand binding to proteins
induces biological responses either as normal cellular functions or as therapeutic effects to restore
homeostasis. On that account, the study of protein-ligand binding is of paramount importance in drug
discovery. Since only ligand-free experimental structures and computationally constructed models are
available for many pharmacologically relevant proteins, the detection of possible ligand-binding sites
is typically the first step to infer and subsequently modulate their molecular functions. Currently,
evolution/structure-based approaches for ligand-binding prediction are the most accurate and, conse-
quently, the most widely used. Here, structural information extracted from evolutionarily weakly
related proteins, called templates, is exhaustively exploited in order to identify ligand-binding sites
and binding residues in target proteins that are linked to certain disease states. One example of an
evolution/structure-based approach is eFindSite, a ligand-binding site prediction tool. It employs var-
ious state-of-the-art algorithms, such as meta-threading by eThread to collect template proteins, clus-
tering by Affinity Propagation to extract ligand information, and machine learning to further increase
the accuracy of pocket detection. An important feature of eFindSite is an improved tolerance to struc-
tural imperfections in protein models, thus it is well suited to annotate large proteomic datasets. For a
given target protein, eFindSite first conducts structural alignments between the target and each tem-
plate from the ligand-bound template library. Next, it clusters the aligned structures into a set of
discrete groups, which are subsequently ranked in order to predict putative ligand-binding pockets.

BENCHMARKING DATASET
All simulations in this study are performed using a benchmark dataset of protein-ligand complexes
comprising proteins of different sizes and a varying number of associated ligand-bound templates.
These proteins were selected from the original set of 3659 complexes used previously to develop
and parameterize eFindSite to mimic a typical proteomic dataset. As shown in Figure 5.1, we first

FIGURE 5.1

Benchmarking dataset of 501 proteins.

57BENCHMARKING DATASET

defined 12 bins with an increasing number of amino acids in target proteins ranging from 200 to 500 as
well as the number of associated templates varying from 50 to 250. Next, we randomly selected up to 50
proteins to populate each bin. The benchmarking dataset used in this project contains 501 proteins. For
each protein, we use its experimental conformation as the target structure and weakly homologous tem-
plates identified by eThread sharing less than 40% sequence identity with the target.

CODE PROFILING
Before converting the serial version of eFindSite to a parallel implementation, we conducted
a thorough code profiling in order to figure out which portions of the code consume the most CPU
cycles. According to the Pareto principle, also known as the 80/20 rule, most computer programs spend
80% of the wall time executing only 20% of the code. On that account, the single most important step
prior to porting eFindSite to Intel Xeon Phi coprocessors was to identify a block of code that uses the
majority of computing time. To conduct code profiling, we randomly selected one protein from each
bin presented in Figure 5.1. Figure 5.2 shows the profiling outcome using gprof, a widely used perfor-
mance analysis tool generating a function list based on the execution time. Four functions were iden-
tified as the most time-consuming: tmsearch, cal_tmscore, dp, and get_score taking 29%, 27%, 21%,
and 15% of the entire execution time, respectively. Importantly, all these functions contribute to the
calculation of structure alignments utilizing up to 92% of the computing time. Next, we measured the
wall time by dividing eFindSite into three major steps, pre-alignment calculations, structure align-
ments, and post-alignment processing. As shown in Figure 5.2, structure alignments take 88% of
the simulation time, which is consistent with the timings reported by gprof. These profiling results
clearly point out at the template-to-target structure alignments as the most computationally expensive
operations, thus parallelizing that this portion of the eFindSite code should result in the most cost-
effective performance improvement in predicting ligand-binding sites.

In principle, there are three approaches to port serial codes to the coprocessor, native, offload, and
symmetric modes. In the native mode, the entire code is first cross-compiled on the processor with the
parallel regions marked by OpenMP pragmas, and then it is executed directly on the coprocessor. In
contrast, the offload mechanism moves only portions of the code to the coprocessor for parallel

Method Main functions Time (%)

Gprof
tmsearch 29
cal_tmscore 27
dp 21
get_score 15

Wall time Pre-alignment 11

FIGURE 5.2

Profiling of eFindSite. Low-level function usage reported by gprof and the wall-clock time measured for the
individual stages of eFindSite.

58 CHAPTER 5 ACCELERATED BIOINFORMATICS FOR DRUG DISCOVERY

computation while leaving the rest of the serial code running on the processor. In the symmetric im-
plementation, coprocessors are used independently as self-sufficient computing nodes often through an
MPI protocol. We looked into the source code to determine which parallel mode would be optimal for
eFindSite. We gave careful thought to several considerations. The framework of eFindSite is written in
C++, whereas protein structure alignments are implemented in Fortran77. For each individual
template-to-target structure alignment, the subroutine frtmalign is called from the main function.
Figure 5.3 shows the detailed call graph generated by Doxygen, illustrating nested function calls by
frtmalign and its subroutines. Transferring structure alignment computations to the coprocessor using
Fortran-specific OpenMP pragmas would require the minimum code conversion. In addition, several
pre- and post-alignment functions such as the Affinity Propagation clustering used to group template-
bound ligands are available only as external libraries precompiled for Linux hosts. Moreover, accord-
ing to the code profiling carried out previously, the total memory footprint of eFindSite grows with
the target protein size and the number of associated templates to values that are prohibitively large
considering the memory space available on the coprocessor. Therefore, we ruled out the native exe-
cution and decided to “offload” only the structure alignment portion to the coprocessor leaving the rest

FIGURE 5.3

Call graph of subroutines for protein structure alignments. The top subroutine of frtmalign is called within themain
function of eFindSite.

59CODE PROFILING

of the code, including pre- and post-alignment calculations, on the processor. In this chapter, we discuss
the parallelization of eFindSite using the offload mode followed by the performance analysis against
501 target proteins.

PORTING eFindSite FOR COPROCESSOR OFFLOAD
The flowchart of the parallel version of eFindSite is shown in Figure 5.4. eFindSite takes a target
protein structure and a ligand-bound template library as an input to identify ligand-binding sites.
As a result, it produces a series of informative predictions, including putative ligand-binding sites
and binding residues, structure alignments between the target and template proteins, and ligand mo-
lecular fingerprints for virtual screening. The workflow central to the binding site prediction breaks
down into three stages. During the pre-alignment step, eFindSite extracts template information from
the library and constructs global sequence alignments to the target; these computations are performed
sequentially on the processor. Next, it structurally aligns each template onto the target; this section is
well suited for parallel computing since individual alignments are fully independent of each other.
The code profiling also identified this portion of the code as the most computing intense. Therefore,
we decided to parallelize the structure alignment loop in order to perform the calculations using

FIGURE 5.4

Workflow of eFindSite. Pre- and post-alignment calculations are performed using a single processor thread.
Structure alignments are executed in parallel using multiple threads on the processor and/or coprocessor.

60 CHAPTER 5 ACCELERATED BIOINFORMATICS FOR DRUG DISCOVERY

multiple processor and/or coprocessor threads. Figure 5.4 shows that each structure alignment is
assigned to a unique hardware thread, so that different threads concurrently carry out calculations
for different templates against the target protein. Once structure alignments are completed, the results
are sent back to the processor, which clusters and ranks the identified binding pockets, and predicts the
corresponding binding residues in the final post-alignment step.

In the following sections, we discuss some details of porting eFindSite to the coprocessor. Within
the main function, structure alignments are executed inside a master loop iterating over the template
library. The parallelization of structure alignments is implemented by executing each alignment con-
currently using standard OpenMP pragmas as shown in Figure 5.5. The execution of a structure align-
ment starts when the wrapper function frtmalign is called within the main function, where the serial
subroutine frtmalign implemented in Fortran77 is invoked to conduct the actual alignment calculation.
We found that this portion of the code extensively uses common blocks making structure alignments
thread-unsafe. To guarantee the thread safety, we marked all Fortran77 common blocks as private to
threads using [!$omp threadprivate (/block_name/)], which is shown in Figure 5.6.

This implementation of eFindSite offloads portions of the code to the coprocessor, executes structure
alignments on the coprocessor, and then transfers the results back to the processor to perform the final
post-alignment calculations. Because the coprocessor has its own memory, the offload mode requires
data transfer between the processor and coprocessor. eFindSite implements C++ classes to store and ma-
nipulate data associated with template proteins, such as atomic coordinates, amino acid residues, and
sequences. To facilitate data transfer, we devoted extra work converting the original data structures into
flat, bitwise copy-able data arrays before transferring them to the coprocessor as illustrated in Figure 5.7.
We note that arrays containing the target protein and the template library are copied to the coprocessor
only once, thus there is virtually no overhead frommoving data back and forth. Each structure alignment

//loop through the library of template proteins to conduct structure alignments
std::multimap< int, Template *, greater<int> >::iterator tpl1;
//parallelize the loop
#pragma omp parallel for schedule(dynamic) private(tpl1)
for (tpl1 = template_set.begin(); tpl1 != template_set.end(); tpl1++){

char template_seq[MAXPRO];
int template_res[MAXPRO];
double template_xyz[MAXPRO][3];

//assemble protein residue, sequence and coordinate from the template library
int template_len = ((*tpl1).second)->getProteinResiduesTotal();
strcpy(template_seq, (((*tpl1).second)->getProteinSequence()).c_str());
for (int t_i = 0; t_i < template_len; t_i++){

template_res[t_i] = t_i + 1;
}
((*tpl1).second)->getProteinCoordsCA(template_xyz);
int t_score1, t_alig[MAXPRO];
double t_score2, t_score3, t_score4, t_t[3], t_u[3][3];

// call structure alignment subroutine
frtmalign_(&t_score1, &t_score2, &t_score3, &t_score4, &template_len,\
&target_len, &template_seq, &target_seq, &t_alig, &template_res,\
&target_res, &template_xyz, &target_xyz, &t_t, &t_u, &align_len);

}

FIGURE 5.5

OpenMP parallelization of themaster loop performing structure alignments between the target protein and a set of
ligand-bound templates.

61PORTING eFindSite FOR COPROCESSOR OFFLOAD

executed on the coprocessor extracts data required for a given template from the transferred data block
using an offset mechanism. In addition, we use compiler directives to mark the offload execution, as pre-
sented in Figure 5.8. Specifically, all Fortran77 subroutines and global variables for structure alignment
calculations on the coprocessor are tagged with the offload attributes [!dir$attributesoffload:mic::

subroutine_name] and [!dir$ attributes offload:mic::variable_name], respectively. Moreover,
when the OpenMP is invoked within the offloaded block, environment variables for the coprocessor
are set using the “MIC_” prefix, i.e., [export MIC_OMP_NUM_THREADS¼n]. Since the memory footprint
for individual structure alignments in eFindSite is larger than the default OpenMP stack size, we increase
it by using [export MIC_OMP_STACKSIZE¼64M].

The Intel Xeon Phi coprocessor model SE10P features 61 cores and supports up to 240 parallel
threads with the 61st core reserved for operating system, I/O operations, etc., when using offload.
The physical distribution of threads over hardware cores is controlled by the thread affinity settings,

subroutine
frtmalign(tm_score1,tm_score2,tm_score3,tm_score4,target_len,template_len,

& target_seq,template_seq,tm_align,target_res,template_res,
& target_xyz,template_xyz,tm_tt1,tm_uu1,align_length)

parameter (maxres=1000) ! no. of residues
parameter (maxlen=2*maxres) ! for alignment
parameter (npr=2) ! no. of proteins to align
double precision tm_score2,tm_score3,tm_score4,tm_xyz1a(0:2,0:maxres-1),

& template_xyz(0:2,0:maxres-1), tm_tt1(0:2),tm_uu1(0:2,0:2)
integer tm_score1,target_len,template_len, align_length,
& tm_align(0:maxres-1), target_res(0:maxres-1),
& template_res(0:maxres-1)

character*1 target_seq(0:maxres-1), template_seq(0:maxres-1)
character*3 resa(maxres,npr),resn(maxres,0:1)
character*1 seqa(maxres,npr),seqn(maxres,0:1)
dimension invmap0(maxres),ires(maxres,0:1)
dimension xtm1(maxres),ytm1(maxres),ztm1(maxres)
dimension xtm2(maxres),ytm2(maxres),ztm2(maxres)
dimension m1(maxres),m2(maxres)
dimension xyz(3,maxres,npr),length(npr)
common /coord/ xa(3,maxres,0:1)
common /length/ nseq1,nseq2
common /pdbinfo/ ires1(maxres,npr),resa,seqa
common /secstr/ isec(maxres),jsec(maxres) !secondary structure
common /n1n2/ n1(maxres),n2(maxres)
common /dinfo/ d8
common /stru/xt(maxres),yt(maxres),zt(maxres),xb(maxres),yb(maxres),
& zb(maxres)

// OpenMP pragma to mark thread private
!$omp threadprivate(/coord/)
!$omp threadprivate(/length/)
!$omp threadprivate(/pdbinfo/)
!$omp threadprivate(/secstr/)
!$omp threadprivate(/n1n2/)
!$omp threadprivate(/dinfo/)
!$omp threadprivate(/stru/)

cc call other routines...
end

FIGURE 5.6

Thread-safe implementation of common blocks in Fortran77.

62 CHAPTER 5 ACCELERATED BIOINFORMATICS FOR DRUG DISCOVERY

int i_offset = 0;
// flatten the data structure to data array
for (tpl1 = template_set.begin(); tpl1 != template_set.end(); tpl1++){

template_len[i_offset] = ((*tpl1).second)->getProteinResiduesTotal();
char t_seqt[MAXPRO];
strcpy(t_seqt, (((*tpl1).second)->getProteinSequence()).c_str());
for (int t_i=0;t_i<((*tpl1).second)->getProteinResiduesTotal();

t_i++){
template_seq[t_i+t_offset[i_offset]] = t_seqt[t_i];

}
for (int t_i=0;t_i<((*tpl1).second)->getProteinResiduesTotal();t_i++){

template_res[t_i+t_offset[i_offset]] = t_i + 1;
}
double *t_xyzt=new double [((*tpl1).second)->getProteinResiduesTotal()
*3];
((*tpl1).second)->getProteinCoords1D(t_xyzt);
for (int t_i 0;t_i<((*tpl1).second)->getProteinResiduesTotal()*3;t_i++)
{

template_xyz[t_i+t_offset[i_offset]*3] = t_xyzt[t_i];
}
delete [] t_xyzt;
i_offset++;

}
// offload to the coprocessor, data transfer
#pragma offload target(mic) in(n_offset,t_offset,t_len1) \

in(template_len:length(n_set)) \
in(target_seq,target_res:length(n_tar)) \
in(template_seq,template_res:length(n_off)) \
in(target_xyz:length(n_tar*3)) \
in(template_xyz:length(n_off*3)) \
out(t_score1,t_score2,t_score3,\

t_score4:length(n_set)) \
out(t_alig:length(n_tar*n_set)) \
out(t_rmat:length(n_set*12)){

int tm_i;
// parallelize the for loop
#pragma omp parallel for schedule(dynamic) private(tm_i)
for (tm_i = 0; tm_i < n_offset; tm_i++){

int o_score1;
double o_score2, o_score3, o_score4;
int target_o_len = target_len;
int template_o_len = template_len[tm_i];
char target_o_seq[MAXPRO];
char template_o_seq[MAXPRO];
int target_o_res[MAXPRO], template_o_res[MAXPRO];
double target_o_xyz[MAXPRO][3], template_o_xyz[MAXPRO][3];
for (int t_i = 0; t_i < target_o_len; t_i++){

target_o_seq[t_i] = target_seq[t_i];
target_o_res[t_i] = target_res[t_i];
for (int t_j = 0; t_j < 3; t_j++){

target_o_xyz[t_i][t_j] = target_xyz[t_i*3+t_j];
}

}
for (int t_i = 0; t_i < o_len2; t_i++){

template_o_seq[t_i] = template_seq[t_offset[tm_i]+t_i];
template_o_res[t_i] = template_res[t_offset[tm_i]+t_i];
for (int t_j = 0; t_j < 3; t_j++){

mplate_o_xyz[t_i][t_j]=template_xyz[t_offset[tm_i]*3+t_i*3+t_j];
}

}
int o_alig[MAXPRO];
double o_t[3], o_u[3][3];
frtmalign_(&o_score1, &o_score2, &o_score3, &o_score4, &tempalte_o_len, \

&target_o_len, &template_o_seq, &target_o_seq, &o_alig, \
&template_o_res, &target_o_res, &template_o_xyz, \
&target_o_xyz, &o_t, &o_u, &align_o_len);

}
//end of the parallel for loop

FIGURE 5.7

Data flattening and transfer for offloading structure alignments to the coprocessor.

which are typically set to either compact, balanced, or scatter modes. Since the affinity mode may
have an impact on the parallel performance, we first benchmarked eFindSite using different Intel
KMP affinity settings, [export MIC_KMP_AFFINITY¼compact/scatter/balanced].

In order to analyze the performance of eFindSite, we first developed a reliable measure to quantify its
computing speed. As shown in Figure 5.3, the subroutine u3b is a frequently called low-level function that
calculates a root-mean-square deviation (RMSD) between two sets of atomic coordinates. We found that
the total number of RMSDcalculations correlateswell with the total wall time and the structure alignment
time; the corresponding Pearson correlation coefficients are as high as 0.963 and 0.960, respectively.
Thus, we use the number of RMSD calculations per second to measure the eFindSite performance.

In Figure 5.9, we plot the performance of eFindSite with the structure alignment portion of the code
offloaded to the coprocessor. Note that the pre- and post-alignment steps are sequentially executed on
the processor. Because some proteins in the benchmark dataset have less than 50 templates, we only
consider parallel execution using up to 24 threads per task in order to avoid idle threads. Encouragingly,
increasing the number of threads on the coprocessor clearly improves the performance of eFindSite.
The average performance is 4.27"104 and 2.30"105 RMSD calculations per second as the number of
threads increases from 4 to 24. Considering structure alignment calculations alone, almost a perfect
linear scaling is achieved (open circles in Figure 5.9). In contrast, the performance of eFindSite reaches
a plateau when the total wall time is plotted (black circles in Figure 5.9). Here, the number of RMSD
calculations per second improves from 3.98"104 for 4 threads to 1.76"105 for 24 threads, which can
be explained by Amdahl’s Law describing the relationship between the expected speedup of a parallel
implementation relative to the serial algorithm. These performance measurements are carried out for
the balanced and scatter thread affinity modes that maximize hardware utilization by evenly spreading

c Fr-TM-align converted into a subroutine
!dir$ attributes offload:mic::frtmalign
!dir$ attributes offload:mic::d8
!dir$ attributes offload:mic::xa
!dir$ attributes offload:mic::nseq1
!dir$ attributes offload:mic::nseq2
!dir$ attributes offload:mic::ires1
!dir$ attributes offload:mic::resa
!dir$ attributes offload:mic::seqa
!dir$ attributes offload:mic::isec
!dir$ attributes offload:mic::jsec
!dir$ attributes offload:mic::n1
!dir$ attributes offload:mic::n2
!dir$ attributes offload:mic::xt
!dir$ attributes offload:mic::yt
!dir$ attributes offload:mic::zt
!dir$ attributes offload:mic::xb
!dir$ attributes offload:mic::yb
!dir$ attributes offload:mic::zb
subroutine frtmalign(tm_score1,tm_score2,tm_score3,tm_score4,target_len,

& template_len,target_seq,template_seq,tm_align,target_res,
& template_res,target_xyz,template_xyz,tm_tt1,tm_uu1,align_length)
.
.

end

FIGURE 5.8

Fortran77 subroutine frtmalign offloaded to the coprocessor.

64 CHAPTER 5 ACCELERATED BIOINFORMATICS FOR DRUG DISCOVERY

threads across coprocessor cores. For the compact affinity setting placing four threads on a single core
before moving to the next one, the rate of RMSD calculations increases from 2.27"104 to 1.25"105

for the alignment time (open squares in Figure 5.9), and from 2.19"104 to 1.06"105 for the total time
(black squares in Figure 5.9). Although the balanced/scatter thread affinity yields an approximately 1.8
times higher performance per thread compared to the compact affinity mode, its advantage starts
diminishing when the total number of threads on the coprocessor exceeds 120, and all affinity modes
become essentially the same when the thread count reaches 240. In fact, a core-to-core performance
comparison shows a slightly higher performance of the compact mode at 2.44"104 RMSD calcula-
tions per second compared to 2.38"104 for the balanced and scatter modes.

PARALLEL VERSION FOR A MULTICORE PROCESSOR
In addition to the Intel Xeon Phi coprocessor version of eFindSite, we also implemented a parallel
code that can be executed on multicore processors. Similarly, we employed pragma-based OpenMP
to parallelize structure alignment calculations with both pre- and post-alignment steps executed
sequentially. We also increased the memory available to each thread to 64M using [export

FIGURE 5.9

Performance of eFindSite using parallel coprocessor threads. The speed is measured by the number of RMSD
calculations per second (mean#standard deviation) for 4, 8, 16, and 24 threads across the benchmarking
dataset of 501 proteins. Solid and open symbols correspond to the total time and the time spent calculating
structure alignments, respectively. Circles and squares show the performance using balanced/scatter and
compact thread affinity, respectively.

65PARALLEL VERSION FOR A MULTICORE PROCESSOR

OMP_STACKSIZE¼64M]. In Figure 5.10, we plot the performance of the multi-threaded version of eFind-
Site on the Intel® Xeon® E5-2680 processor. Using the total simulation time, the serial (1 thread) and
parallel (16 threads) versions have an average performance across the benchmarking dataset of
1.06"105 and 6.16"105 RMSD calculations per second, respectively. When considering the time
spent calculating structure alignments, the average performance increases to 1.24"105 and
1.85"106 RMSD calculations per second. A good linear scaling is achieved with a speedup over
the serial execution of 15 when 16 processor threads are utilized. The performance reaches a plateau
at a speedup of 5.8 for the total wall time; we note that according to Amdahl’s law, the maximum
theoretical speedup of a code that is 90% parallelized using 16 threads is 6.4.

TASK-LEVEL SCHEDULING FOR PROCESSOR AND COPROCESSOR
Computing nodes equipped with Intel Xeon Phi coprocessor cards provide massively parallel capabi-
lities through multicore processors and many-core coprocessors. Therefore, our ultimate goal was to
develop a production code of eFindSite that takes full advantage of both resources. The production scheme

FIGURE 5.10

Performance of eFindSite using parallel processor threads. The speed is measured by the number of RMSD
calculations per second (mean#standard deviation) for 2, 4, 8, and 16 threads across the benchmarking
dataset of 501 proteins. Solid triangles and open squares correspond to the total time and the time spent
calculating structure alignments, respectively.

66 CHAPTER 5 ACCELERATED BIOINFORMATICS FOR DRUG DISCOVERY

for predicting ligand-binding sites across large datasets of proteins using eFindSite involves using both the
processor and the coprocessor simultaneously. The processor executes the serial portion of the code, while
structure alignments are offloaded to the coprocessor with the compact affinitymode tomaximize the per-
formance of eFindSite. At the same time, the processor also runs a parallel version of eFindSite as well,
using relatively few threads.Thisway,weprocessmultiple proteins concurrentlybymultiple parallel tasks
executed simultaneously on both computing units.

We developed a job scheduler in Perl to launch up to 4 parallel tasks on the processor with 4 threads
per task, and up to 10 parallel tasks on the coprocessor, each using 24 threads in the compact affinity
mode. As shown in Figure 5.11, we first sort target proteins by a product of the residue count and the
number of templates, which estimates the wall time required to complete the calculations. Because we

use Proc::Background;
my $n_mic = 10; // 10 parallel jobs on a coprocessor
my $n_cpu = 4; // four parallel jobs on a processor
my @lst3 = (); // template protein list
foreach my $wlst2 (sort { $lst2{$a} <=> $lst2{$b} } keys %lst2){

push(@lst3, $wlst2);
}
while (@lst3){

dispatching jobs to Xeon processor
for (my $xa = 0; $xa < $n_cpu; $xa++){

start a new process if the current is finished
if (@lst3 and !$j_cpu[$xa]->alive){

#get an item from the top of the list (smaller template)
my $job = shift(@lst3);
printf("CPU%d <- %s ... %.1f%s\n", $xa, $job, \

(++$prg1/$nlst3)*100.0, '%');
$j_cpu[$xa]=Proc::Background->new("$ef_omp -s $job.pdb \

-t $job.ethread-fun -i $job.ss -e $job.prf -o $job- \
efindsite -b $foptb -x $foptx > $job.log 2>&1");

$c_cpu[$xa]++;
$l_cpu[$xa] += $lst2{$job};

}
}
offloading jobs to Xeon MIC jobs
for (my $xa = 0; $xa < $n_mic; $xa++){

if (@lst3 and !$j_mic[$xa]->alive){
#get an item from the bottom of the list (larger template)
my $job = pop(@lst3);
my $kpt='export \

MIC_KMP_PLACE_THREADS=6c,4t,'.int($xa*6).'O';
printf("MIC%d <- %s ... %.1f%s\n", $xa, $job, \

(++$prg1/$nlst3)*100.0, '%');
$j_mic[$xa] = Proc::Background->new("$kpt ; $ef_mic -s \

$job.pdb -t $job.ethread-fun -i $job.ss -e $job.prf -o \
$job-efindsite -b $foptb -x $foptx > $job.log 2>&1");

$c_mic[$xa]++;
$l_mic[$xa] += $lst2{$job};

}
}
sleep(2) if (@lst3);

}

FIGURE 5.11

Part of the task scheduler implemented in Perl dispatching four parallel tasks (4 threads per task) on the
processor and 10 parallel tasks (10 threads per task) on the coprocessor.

67TASK-LEVEL SCHEDULING FOR PROCESSOR AND COPROCESSOR

use 24 threads per task on the coprocessor and 4 threads per task on the processor, we dispatch longer
tasks to the coprocessor, whereas shorter jobs are executed on the processor. Running 4 parallel tasks
on the processor and 10 parallel tasks on the coprocessor ensures that both resources are fully utilized.
To avoid the oversubscription of coprocessor cores, the production code features an explicit map-
ping of parallel tasks to hardware threads at the compact thread affinity. Specifically, [export
MIC_KMP_PLACE_THREADS¼6c,4t,(i*6).’o’] defines the set of logical units assigned to each task,
where 6c requests six cores, 4t starts four threads on each core, and (i*6).’o’ is an offset of six cores
between individual task. For example, when i¼0, the first task runs on cores 0-5 with 4 threads per core
totaling 24 threads, the next task sets i¼1 to run on cores 6 through 11, and so forth. This way, the
scheduler assigns different cores to different parallel tasks in order to conduct protein structure align-
ments at the maximum utilization of the accelerator hardware. Figure 5.12 lists partitioning details for
the parallel execution for the benchmarking dataset using a computing node equipped with two 8-core
Intel Xeon E5-2680 processors (8 threads, hyper-threading disabled) and one 61-core Intel Xeon Phi
SE10P coprocessor (240 threads, compact thread affinity).

Hardware Core range Number of threads Percentage of computations

Processor

1-4 4 12.2

5-6 4 12.5

7-11 4 12.7

12-16 4 11.8

Coprocessor

1-6 24 5.1

7-12 24 5.1

13-18 24 5.1

19-24 24 5.0

25-30 24 5.3

31-36 24 5.0

37-42 24 4.7

43-48 24 5.0

49-54 24 5.4

55-60 24 5.1

Processor 1-16 16 49.2

Coprocessor 1-60 240 50.8

FIGURE 5.12

Partitioning details for processing 501 benchmarking proteins using eFindSite simultaneously on the processor
and coprocessor. The amount of computations is approximated by the product of the target protein length
and the number of template structures.

68 CHAPTER 5 ACCELERATED BIOINFORMATICS FOR DRUG DISCOVERY

We processed the entire dataset of 501 proteins using task-level parallelism and measured the time-
to-completion, defined as the total time required for the prediction of ligand-binding sites. Figure 5.13
compares the results for the serial version and three parallel processing schemes. The speedup over the
serial version is 11.8, 10.1, and 17.6 for the parallel processing using the processor, the coprocessor,
and both resources, respectively. Therefore, using the coprocessor in addition to the processor accel-
erates the prediction of binding sites across large protein datasets. We also monitored the utilization of
computing resources to demonstrate that all hardware threads are utilized. Figure 5.14 shows that the
average usage of the processor and the coprocessor during production simulations is 99.9% and 82.2%,
respectively. The coprocessor threads periodically become idle while waiting for the processor to start
the pre-alignment (reading input files, performing sequence alignments) and finish the post-alignment
(pocket clustering and ranking) tasks resulting a relatively lower utilization of the coprocessor. On the
other hand, the processor remains fully utilized not only facilitating tasks offloaded to the coprocessor
but also performing eFindSite calculations by itself. Finally, we checked for the numerical correctness
of the results. Different versions of eFindSite produce identical results, thus the parallelization
of eFindSite using OpenMP and offloading to the Intel Xeon Phi coprocessor fully maintains the
functionality of the original code with a great benefit of much shorter simulation times.

FIGURE 5.13

Speedups of the parallel versions of eFindSite over the serial code. Computations are performed using three
parallel versions: multiple processor threads (4 tasks, each running on 4 threads), multiple coprocessor
threads (10 tasks, each running on 24 threads), and multiple processor and coprocessor threads running
simultaneously.

69TASK-LEVEL SCHEDULING FOR PROCESSOR AND COPROCESSOR

CASE STUDY
Finally, we present a case study to illustrate binding pocket prediction using eFindSite. The target
protein selected from the benchmarking dataset is human arginase I (PDB-ID: 3gn0, chain A), a binuc-
lear manganese metalloenzyme hydrolyzing L-arginine. The abnormal activity of this protein is
implicated in various disease states including erectile dysfunction, atherosclerosis, and cerebral ma-
laria. eFindSite predicted a total of 10 pockets for this protein and assigned a confidence score of
91.9% to the top-ranked binding site. Figure 5.15 shows the crystal structure of this protein (transparent
ribbons) with the top-ranked binding pocket predicted by eFindSite marked by a solid ball. The cor-
responding predicted binding residues are shown as a transparent gray surface. Two additional smaller
balls mark the location of pockets at ranks 2 and 3. The prediction accuracy can be evaluated by
revealing the location of a ligand α-difluoromethylornithine bound to the target protein in the exper-
imental complex structure represented by solid sticks. We note that the ligand position was not part of
the prediction procedure and it is used for validation purposes only. The distance between the predicted
top-ranked binding site and the geometric center of the ligand is only 2.22 Å, demonstrating a high
prediction accuracy of eFindSite. As a reliable tool for ligand-binding prediction, eFindSite is well
suited for a broad range of applications ranging from protein function annotation to virtual screening
and drug discovery.

SUMMARY
eFindSite is a ligand-binding site prediction software used in drug discovery and design. To meet the
challenges of proteome-scale applications, we implemented a parallel version of eFindSite for proces-
sing large datasets using HPC systems equipped with Intel Xeon Phi coprocessors. This parallel version
of eFindSite achieves 17.6 speedup over the serial code using both processor and coprocessor

FIGURE 5.14

Resource utilization during the execution of the heterogeneous parallel version of eFindSite. Time courses of
the percentage of processor usage (black line) are compared to that of the coprocessor (gray line).

70 CHAPTER 5 ACCELERATED BIOINFORMATICS FOR DRUG DISCOVERY

resources, which is considered significant when normalized by the cost of the hardware. The x86
coprocessor architecture allows for open-standard and portable parallel programming on both tradi-
tional processors as well as coprocessors. In particular, using OpenMP makes it relatively easy to
parallelize portions of the code. eFindSite represents a typical scientific software written mostly by
domain scientists, who contributed different components to the code using different programming
languages and styles. From our porting experience, even fairly complex codes, such as the hybrid
C++/Fortran77 source code of eFindSite, can be successfully ported to utilize both Intel Xeon proces-
sors and Intel Xeon Phi coprocessors together yielding speedups at minimal coding efforts.

The development of the parallel version of eFindSite was fairly straightforward; however, we
would like to discuss a couple of problems encountered throughout this process. First, due to the
extensive use of thread-unsafe common blocks in the Fortran77 code, we initially attempted to
rewrite those subroutines to pass parameters explicitly instead of accessing common blocks. However,
these efforts took a very long time and considering the “spaghetti-like” nature of the code with multiple
access points to common blocks, we could not reproduce the correct results in a timely fashion. For that
reason, we decided to use OpenMP pragmas to mark the global variables as thread-private in the orig-
inal code. This method turned out to be very practical and time efficient in the process of developing a
thread-safe parallel implementation. Another issue we ran into was related to the stack size. We
found that the default stack size on some HPC systems is smaller than that set for eFindSite using
OMP_STACKSIZE causing segmentation fault errors. Consequently, in addition to OpenMP pragmas,
modifying the default system stack size using [ulimit -s] may be required.

FIGURE 5.15

Ligand-bindingpocket prediction for humanarginase I using eFindSite. The crystal structure of the target protein and
the binding ligand is displayed as transparent gray ribbons and solid black sticks, respectively. The top-ranked
predicted binding site is shown as a solid ball representing the pocket center and a transparent molecular surface
around the binding residues. Two smaller balls represent the centers of binding pockets predicted at ranks 2 and 3.

71SUMMARY

Notwithstanding the 17-fold speedup, there is still room for improvements to fully benefit from
wide single instruction, multiple data (SIMD) vectors featured by the coprocessor. For instance, a
proper loop vectorization is critical to increase the overall performance. Vectorization reports collected
for eFindSite show that the majority of loops taking the most execution time are indeed vectorized.
However, other issues related to data dependency and alignment indicated in the reports need to be
addressed by rearranging loops, data structure padding, improving register utilization, and data cach-
ing. Therefore, in addition to the parallelization of the remaining portions of the serial code, future
directions of this project include a thorough code optimization to take better advantage of the Intel
Xeon processor and Intel Xeon Phi coprocessor SIMD architectures. We plan to hand tune a relatively
small portion of the kernel for RMSD calculations to further boost the parallel performance of
eFindSite.

FOR MORE INFORMATION
• The source code for eFindSite can be found at www.brylinski.org/efindsite. This Web site also

provides compilation and installation instructions, as well as a detailed tutorial on processing large
datasets using heterogeneous computing platforms.

• Feinstein, W.P., Moreno, J., Jarrell, M., Brylinski, M., 2015. Accelerating the pace of protein
functional annotation with Intel Xeon Phi coprocessors. IEEE Trans. Nanobiosci. DOI: 10.1109/
TNB.2015.2403776.

• Brylinski, M., Feinstein, W.P., 2013. eFindSite: Improved prediction of ligand binding sites in
protein models using meta-threading, machine learning and auxiliary ligands. J. Comput. Aided
Mol. Des. 27, 551-567.

• Feinstein, W.P., Brylinski, M., 2014. eFindSite: Enhanced fingerprint-based virtual screening
against predicted ligand binding sites in protein models. Mol. Inform. 33, 135-150.

• Download the code from this, and other chapters, http://lotsofcores.com.

72 CHAPTER 5 ACCELERATED BIOINFORMATICS FOR DRUG DISCOVERY

	Front Cover
	High Performance Parallelism Pearls: Multicore and Many-core Programming Approaches
	Copyright
	Contents
	Contributors
	Acknowledgments
	Foreword
	Making a bet on many-core
	2013 Stampede—Intel Many-Core System - A First
	HPC journey and revelation
	Stampede users discover: Its parallel programming
	This book is timely and important

	Preface
	Inspired by 61 cores: A new era in programming

	Chapter 1: Introduction
	Applications and techniques
	SIMD and vectorization
	OpenMP and nested parallelism
	Latency optimizations
	Python
	Streams
	Ray tracing
	Tuning prefetching
	MPI shared memory
	Using every last core
	OpenCL vs. OpenMP
	Power analysis for nodes and clusters
	The future of many-core
	Downloads
	For more information

	Chapter 2: Numerical Weather Prediction Optimization
	Numerical weather prediction: Background and motivation
	WSM6 in the NIM
	Shared-memory parallelism and controlling horizontal vector length
	Array alignment
	Loop restructuring
	Compile-time constants for loop and array bounds
	Performance improvements
	Summary
	For more information

	Chapter 3: WRF Goddard Microphysics Scheme Optimization
	The motivation and background
	WRF Goddard microphysics scheme
	Goddard microphysics scheme
	Benchmark setup
	Code optimization
	Removal of the vertical dimension from temporary variables for a reduced memory footprint
	Collapse i- and j-loops into smaller cells for smaller footprint per thread
	Addition of vector alignment directives
	Summary of the code optimizations
	Analysis using an instruction Mix report
	VTune performance metrics
	Performance effects of the optimization of Goddard microphysics scheme on the WRF

	Summary
	Acknowledgments
	For more information

	Chapter 4: Pairwise DNA Sequence Alignment Optimization
	Pairwise sequence alignment
	Parallelization on a single coprocessor
	Multi-threading using OpenMP
	Vectorization using SIMD intrinsics

	Parallelization across multiple coprocessors using MPI
	Performance results
	Summary
	For more information

	Chapter 5: Accelerated Structural Bioinformatics for Drug Discovery
	Parallelism enables proteome-scale structural bioinformatics
	Overview of eFindSite
	Benchmarking dataset
	Code profiling
	Porting eFindSite for coprocessor offload
	Parallel version for a multicore processor
	Task-level scheduling for processor and coprocessor
	Case study
	Summary
	For more information

	Chapter 6: Amber PME Molecular Dynamics Optimization
	Theory of MD
	Acceleration of neighbor list building using the coprocessor
	Acceleration of direct space sum using the coprocessor
	Additional optimizations in coprocessor code
	Removing locks whenever possible
	Exclusion list optimization
	Reduce data transfer and computation in offload code

	Modification of load balance algorithm
	PME direct space sum and neighbor list work
	PME reciprocal space sum work
	Bonded force work

	Compiler optimization flags
	Results
	Conclusions
	For more information

	Chapter 7: Low-Latency Solutions for Financial Services Applications
	Introduction
	The opportunity
	Packet processing architecture
	The symmetric communication interface
	Memory registration
	Mapping remote memory via scif_mmap()

	Optimizing packet processing on the coprocessor
	Optimization #1: The right API for the job
	Optimization #2: Benefit from write combining (WC) memory type
	Optimization #3: "Pushing" versus "pulling" data
	Optimization #4: "Shadow" pointers for efficient FIFO management
	Optimization #5: Tickless kernels
	Optimization #6: Single thread affinity and CPU "isolation"
	Optimization #7: Miscellaneous optimizations

	Results
	Conclusions
	For more information

	Chapter 8: Parallel Numerical Methods in Finance
	Overview
	Introduction
	Pricing equation for American option
	Initial C/C++ implementation
	Scalar optimization: Your best first step
	Compiler invocation switches
	Microarchitecture specification
	Floating point numeric operation control

	Transcendental functions
	Identify special cases to avoid unnecessary function call
	Use the correct parameter types

	Reuse as much as possible and reinvent as little as possible
	Subexpression evaluation

	SIMD parallelism—Vectorization
	Define and use vector data
	Vector arithmetic operations
	Vector function call
	Branch statements
	Calling the vector version and the scalar version of the program
	Loading to and storing from vector registers
	Calling vector version of the program
	Comparing vector and scalar version

	Vectorization by annotating the source code: #pragma SIMD
	C/C++ vector extension versus #pragma SIMD

	Thread parallelization
	Memory allocation in NUMA system
	Thread binding and affinity interface

	Scale from multicore to many-core
	Summary
	For more information

	Chapter 9: Wilson Dslash Kernel from Lattice QCD Optimization
	The Wilson-Dslash kernel
	Performance expectations
	Refinements to the model
	Additional tricks—compression

	First implementation and performance
	Running the naive code on Intel Xeon Phi coprocessor
	Evaluation of the naive code

	Optimized code: QPhiX and QphiX-Codegen
	Data layout for vectorization
	3.5D blocking
	Load balancing
	SMT threading
	Lattice traversal

	Code generation with QphiX-Codegen
	QphiX-codegen code structure
	Implementing the instructions
	Generating Dslash
	Prefetching
	Generating the code

	Performance results for QPhiX
	Other benefits

	The end of the road?
	For more information

	Chapter 10: Cosmic Microwave Background Analysis: Nested Parallelism in Practice
	Analyzing the CMB with Modal
	Optimization and modernization
	Splitting the loop into parallel tasks

	Introducing nested parallelism
	Nested OpenMP parallel regions
	OpenMP 4.0 teams
	Manual nesting
	Inner loop optimization

	Results
	Comparison of nested parallelism approaches

	Summary
	For more information

	Chapter 11: Visual Search Optimization
	Image-matching application
	Image acquisition and processing
	Scale-space extrema detection
	Keypoint localization
	Orientation assignment
	Keypoint descriptor

	Keypoint matching
	Applications
	Hospitality and retail industry
	Social interactions
	Surveillance

	A study of parallelism in the visual search application
	Database (DB) level parallelism
	Flann library parallelism
	Experimental evaluation
	Setup
	Database threads scaling
	Flann threads scaling
	KD-tree scaling with dbthreads
	Summary
	For more information

	Chapter 12: Radio Frequency Ray Tracing
	Background
	StingRay system architecture
	Optimization examples
	Parallel RF simulation with OpenMP
	Parallel RF visualization with ispc

	Summary
	Acknowledgments
	For more information

	Chapter 13: Exploring Use of the Reserved Core
	The Uintah computational framework
	Radiation modeling with the UCF

	Cross-compiling the UCF
	Toward demystifying the reserved core
	Exploring thread affinity patterns
	Thread placement with PThreads
	Implementing scatter affinity with PThreads

	Experimental discussion
	Machine configuration
	Simulation configuration
	Coprocessor-side results
	Host-side results
	Further analysis

	Summary
	Acknowledgments
	For more information

	Chapter 14: High Performance Python Offloading
	Background
	The pyMIC offload module
	Design of pyMIC
	The high-level interface
	The low-level interface

	Example: singular value decomposition
	GPAW
	Overview
	DFT algorithm
	Offloading

	PyFR
	Overview
	Runtime code generation
	Offloading

	Performance
	Performance of pyMIC
	GPAW
	PyFR

	Summary
	Acknowledgments
	For more information

	Chapter 15: Fast Matrix Computations on Heterogeneous Streams
	The challenge of heterogeneous computing
	Matrix multiply
	Basic matrix multiply
	Tiling for task concurrency
	Heterogeneous streaming: concurrency among computing domains
	Pipelining within a stream
	Stream concurrency within a computing domain
	Trade-offs in pipelining, tiling, and offload
	Small matrix performance

	Trade-offs in degree of tiling and number of streams
	Tiled hStreams algorithm

	The hStreams library and framework
	Features
	How it works
	Related work

	Cholesky factorization
	Performance

	LU factorization
	Continuing work on hStreams
	Acknowledgments
	Recap
	Summary
	For more information
	Tiled hStreams matrix multiplier example source

	Chapter 16: MPI-3 Shared Memory Programming Introduction
	Motivation
	MPIs interprocess shared memory extension
	When to use MPI interprocess shared memory
	1-D ring: from MPI messaging to shared memory
	Modifying MPPTEST halo exchange to include MPI SHM
	Evaluation environment and results
	Summary
	For more information

	Chapter 17: Coarse-Grained OpenMP for Scalable Hybrid Parallelism
	Coarse-grained versus fine-grained parallelism
	Flesh on the bones: A FORTRAN "stencil-test" example
	Fine-grained OpenMP code
	Partial coarse-grained OpenMP code
	Fully coarse-grained OpenMP code

	Performance results with the stencil code
	Parallelism in numerical weather prediction models
	Summary
	For More Information

	Chapter 18: Exploiting Multilevel Parallelism in Quantum Simulations
	Science: better approximate solutions
	About the reference application
	Parallelism in ES applications
	Multicore and many-core architectures for quantum simulations
	OpenMP 4.0 Affinity and hot Teams of Intel OpenMP runtime
	Hot teams motivation

	Setting up experiments
	MPI versus OpenMP
	DGEMM experiments
	FFT experiments

	User code experiments
	Summary: try multilevel parallelism in your applications
	For more information

	Chapter 19: OpenCL: There and Back Again
	The GPU-HEOM application
	The Hexciton kernel
	Building expectations

	Optimizing the OpenCL Hexciton kernel
	OpenCL in a nutshell
	The Hexciton kernel OpenCL implementation
	Vectorization in OpenCL
	Memory layout optimization
	Compile-time constants
	Prefetching
	OpenCL performance results

	Performance portability in OpenCL
	Nvidia GPGPU-specific optimizations
	Mapping of work-items to hardware threads
	Work-groups
	Local memory
	Memory layout

	OpenCL performance portability results

	Porting the OpenCL kernel to OpenMP 4.0
	OpenMP 4.0 vs. OpenCL
	Substituting the OpenCL runtime
	C++ SIMD libraries
	Further optimizing the OpenMP 4.0 kernel
	OpenMP benchmark results

	Summary
	Acknowledgments
	For more information

	Chapter 20: OpenMP Versus OpenCL: Difference in Performance?
	Five benchmarks
	Experimental setup and time measurements
	HotSpot benchmark optimization
	Avoiding an array copy
	Applying blocking and reducing the number of instructions
	Changing divisions to reciprocals
	Vectorization of the inner block code
	Final touch: Large pages and affinity
	HotSpot optimization conclusions

	Optimization steps for the other four benchmarks
	LUD benchmark
	CFD benchmark
	NW benchmark
	BFS benchmark

	Summary
	For more information

	Chapter 21: Prefetch Tuning Optimizations
	The importance of prefetching for performance
	Prefetching on Intel Xeon Phi coprocessors
	Software prefetching
	Compiler intrinsics for VPREFETCH instructions
	Hardware prefetching

	Throughput applications
	Stream Triad
	Smith-Waterman
	SHOC MD

	Tuning prefetching
	Prefetch distance tuning on the coprocessor

	Results—Prefetch tuning examples on a coprocessor
	Prefetching metrics for Stream Triad
	Useful coprocessor hardware event counters for more in-depth analysis
	Compiler prefetch distance tuning for Stream Triad
	Compiler prefetch distance tuning for Smith-Waterman
	Using intrinsic prefetches for hard-to-predict access patterns in SHOC MD

	Results—Tuning hardware prefetching on a processor
	Tuning hardware prefetching for stream on a processor
	Tuning hardware prefetching for Smith-Waterman on a processor
	Tuning hardware prefetching for SHOC MD on a processor

	Summary
	Acknowledgments
	For more information

	Chapter 22: SIMD Functions Via OpenMP
	SIMD vectorization overview
	Directive guided vectorization
	Loop vectorization
	SIMD-enabled functions

	Targeting specific architectures
	Optimizing for an architecture with compiler options and the processor(...) clause
	Supporting multiple processor types

	Vector functions in C++
	uniform(this) clause

	Vector functions in Fortran
	Performance results
	Summary
	For more information

	Chapter 23: Vectorization Advice
	The importance of vectorization
	About DL_MESO LBE
	Intel vectorization advisor and the underlying technology
	A life cycle for experimentation

	Analyzing the Lattice Boltzmann code
	Optimizing the compute equilibrium loop (lbpSUB:744)
	The fGetEquilibriumF function
	Advisor survey
	Trip count analysis
	Fixing the problem

	Analysis of the calculate mass density loop (lbpGET:42)
	The fGetOneMassSite function
	Advisor survey
	Fixing the problem

	Balancing overheads and optimization trade-offs
	Optimizing the move particles to neighboring grid loop (lbpSUB:1247)
	The loop in function fPropagationSwap
	Dependency analysis
	Introducing a dependency

	Exploring possible vectorization strategies
	Projected gain and efficiency
	Memory access patterns analysis
	A final MAP analysis
	Fixing the problem

	The results

	Summary
	For more information

	Chapter 24: Portable Explicit Vectorization Intrinsics
	Related work
	Why vectorization?
	Portable vectorization with OpenVec
	The vector type
	Memory allocation and alignment
	Built-in functions
	If else vectorization
	To mask or not to mask?
	Handling vector tails
	Math reductions
	Compiling OpenVec code

	Real-world example
	Performance results
	Developing toward the future
	Summary
	For more information

	Chapter 25: Power Analysis for Applications and Data Centers
	Introduction to measuring and saving power
	Motivation to act: Importance of power optimization
	Processor features: Modern power management features
	Thread mapping matters: OpenMP affinity

	Application: Power measurement and analysis
	Basic technique
	Methodology
	Data collection
	Analysis

	Data center: Interpretation via waterfall power data charts
	NWPerf
	Waterfall charts generated with Cview from Nwperf data
	Installing and configuring NWPerf and CView
	Interpreting the waterfall charts

	Summary
	For more information

	Author Index
	Subject Index

