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Review
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Is the growth rate of Protein Data Bank sufficient 
to solve the protein structure prediction problem 
using template-based modeling?

Abstract: The Protein Data Bank (PDB) undergoes an 
exponential expansion in terms of the number of mac-
romolecular structures deposited every year. A pivotal 
question is how this rapid growth of structural informa-
tion improves the quality of three-dimensional models 
constructed by contemporary bioinformatics approaches. 
To address this problem, we performed a retrospective 
analysis of the structural coverage of a representative 
set of proteins using remote homology detected by COM-
PASS and HHpred. We show that the number of proteins 
whose structures can be confidently predicted increased 
during a 9-year period between 2005 and 2014 on account 
of the PDB growth alone. Nevertheless, this encouraging 
trend slowed down noticeably around the year 2008 and 
has yielded insignificant improvements ever since. At the 
current pace, it is unlikely that the protein structure pre-
diction problem will be solved in the near future using 
existing template-based modeling techniques. Therefore, 
further advances in experimental structure determina-
tion, qualitatively better approaches in fold recognition, 
and more accurate template-free structure prediction 
methods are desperately needed.

Keywords: comparative modeling; COMPASS; HHpred; 
Protein Data Bank; protein fold recognition; protein 
structure prediction; protein threading; template-based 
modeling.

DOI 10.1515/bams-2014-0024
Received December 22, 2014; accepted January 8, 2015; previously 
published online February 7, 2015

Introduction

Linus Pauling, a chemist, peace activist, educator, and 
the only person to be awarded two unshared Nobel Prizes 
(Nobel Prize in Chemistry in 1954 and Nobel Peace Prize 
in 1962), concluded his Nobel Lecture with the following 
remark: “We may, I believe, anticipate that the chemist 
of the future who is interested in the structure of pro-
teins, nucleic acids, polysaccharides, and other complex 
substances with high molecular weight will come to rely 
upon a new structural chemistry, involving precise geo-
metrical relationships among the atoms in the molecules 
and the rigorous application of the new structural prin-
ciples, and that great progress will be made, through this 
technique, in the attack, by chemical methods, on the 
problems of biology and medicine” [1]. Indeed, struc-
tural biology has been rapidly developing over the past 
half-century contributing to many major breakthroughs 
in life sciences.

The specific and unique three-dimensional struc-
tures give macromolecules the ability to perform various 
cellular functions. Consequently, macromolecular 
structure, folding, and structural alterations affecting 
the function of proteins and nucleic acids are of prime 
importance to biologists. Biological structures are typi-
cally resolved experimentally by X-ray crystallography 
and nuclear magnetic resonance spectroscopy; none-
theless, these techniques are often expensive and time 
consuming. As a result, known biological sequences 
greatly outnumber available structures; as of December 
2014, the National Center for Biotechnology Information 
Reference Sequence Database [2] contains 46,968,574 
sequences, whereas the Protein Data Bank [3] (PDB) 
features 105,097 structures. A high demand for protein 
structures stimulates the development of computational 
structure prediction methods, which in fact represent the 
only strategy to keep up with the rapidly growing volume 
of sequence data.
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Prediction of protein tertiary 
structures
Current techniques for protein structure prediction fall 
into two major categories: template-free and template-
based methods [4, 5]. The first group comprises various 
algorithms that simulate the folding of polypeptide chains 
into their native conformations [6–8]. These approaches 
build upon fundamental physical principles, that is, they 
do not directly use structural information extracted from 
related proteins. Despite the promising progress in our 
understanding of folding mechanisms and the develop-
ment of template-free methods [9], the quality of protein 
models constructed by template-free modeling is gener-
ally insufficient for subsequent functional annotation 
and drug discovery compared to experimental structures 
[10–12]. In contrast, template-based methods routinely 
generate models whose accuracy is often comparable to 
that of low-resolution experimental structures [13–15]. 
In comparative protein structure prediction, the three-
dimensional model of a target protein is constructed 
using a template that is typically an evolutionarily related 
protein whose structure has been solved experimentally 
[16–18]. In a nutshell, a template protein is first identified 
in the PDB and the target-to-template alignment is calcu-
lated. Next, according to this alignment, an initial model 
is generated using the coordinates of equivalent residues 
in the template. Missing residues and loops are added to 
the initial model, which is subsequently subjected to a 
refinement procedure to optimize intramolecular contacts 
and the packing of side chains.

Certainly, the recognition of quality templates and 
the construction of correct alignments are critical to the 
success of comparative modeling. This can be achieved 
using purely sequence-based methods to identify evolu-
tionarily closely related homologs [19–22]; however, detect-
ing remotely related templates in the “twilight zone” of 
sequence similarity [23] requires more sensitive algorithms 
such as protein threading and fold recognition [24]. Many 
of these methods employ sequence profile alignments [25, 
26] to compare a profile of the target protein constructed 
from homologous sequences against profiles generated for 
a nonredundant subset of proteins from the PDB. In addi-
tion, scoring functions used in threading commonly incor-
porate structural information in the form of pair potentials, 
solvent accessibility, secondary structure profiles, back-
bone dihedral angles, and hydrophobic interactions [27–
31]. Finally, the accuracy of protein fold recognition can 
be further improved by combining several threading algo-
rithms into meta-threading  pipelines [32, 33].

Cheshire Cat in structure 
bioinformatics
Unquestionably, the past two decades have seen an encour-
aging progress in protein structure prediction. The quality 
of modeled structures is constantly improving, making 
them suitable for a wide range of applications, including 
molecular function inference, the prediction of the effect 
of mutations, and rational drug design [34–39]. This pro-
gress can be attributed to two major factors: the advances 
in algorithms and methods for comparative protein struc-
ture modeling and the continuous growth of structure 
databases. It has been already established that the PDB 
is likely complete at the level of compact, single domain 
protein structures, viz. suitable structure templates are 
present in the PDB to reliably model any protein sequence 
[40, 41]. Therefore, developing efficient fold recognition 
algorithms that are capable of detecting these templates 
can, in principle, solve the protein folding problem [42].

On the other hand, perhaps the growth rate of the PDB 
is also sufficient for the current algorithms to be able to 
effectively detect structure templates and build accurate 
models for any biological sequence in the near future. If 
so, one can contentedly wait as a Cheshire Cat, a famous 
character in Lewis Carroll’s novel, for the protein folding 
problem to be solved just by having enough structures for 
a near-complete mapping to the sequence space using 
existing bioinformatics tools. For instance, it was esti-
mated that solving 16,000 carefully selected structures 
would provide structural models for approximately 90% of 
300,000 sequences available in the Swiss-Prot and TrEMBL 
[43] databases back in 2000 [44]. Considering the exponen-
tial growth of the PDB, these structures were anticipated to 
become available in about a decade [44, 45]. As expected, 
the structural coverage of Swiss-Prot during that period 
has increased [46]; nonetheless, the near-complete struc-
tural mapping of the sequence space has yet to be attained.

In this communication, we perform a retrospective 
analysis of the structural coverage of a representative set 
of proteins using remote homology. Two state-of-the-art 
sequence profile-based algorithms for fold recognition 
are tested: COMPASS [47] and HHpred [48]. We analyze 12 
time-snapshots of the PDB downloaded from the archive 
of the Research Collaboratory for Structural Bioinformat-
ics that cover a period from 2005 to 2014. The results are 
presented in terms of the success detecting structurally 
related proteins, the quality of target-to-template align-
ments, and the overall prediction confidence. Although 
the structural coverage is constantly increasing, we dem-
onstrate that the protein folding problem is unlikely to be 
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solved in the near future using a Cheshire Cat approach 
without further advances in the methods for protein struc-
ture prediction.

Growth of the PDB
The exponential growth rate of the PDB often found in 
literature is calculated from the total number of entries 
deposited on a regular basis [49–51]. Our analysis reveals 
a similar trend (Figure 1, black triangles). This exponential 
growth results from the increasing number of structures 
released in the PDB every year. Nevertheless, a nonre-
dundant content at both sequence and structure levels is 
more meaningful from a point of view of protein structure 
prediction. On that account, we first clustered each of the 
12 PDB snapshots at 40% sequence identity using CD-HIT 
[52] and counted the number of representative families. 
Figure 1 (gray squares) shows that the number of homolo-
gous clusters increases linearly at a rate of 1400 per year 
on average. Next, we partitioned each snapshot into a 
set of structurally related proteins by using the Fr-TM-
align program [53] to calculate the pairwise TM-score [54] 
between individual chains. The resulting structure simi-
larity matrix was subsequently clustered using a greedy 
algorithm [55] at the TM-score threshold of 0.5 [56]. Similar 

to sequence clusters, the number of structurally related 
groups of proteins increases linearly at a rate of 650 per 
year on average (Figure 1, crossed circles). Thus, despite 
the exponential growth of the PDB, its nonredundant 
sequence and structure components increase linearly at 
much slower pace.

Structural coverage of the protein 
sequence space
A pivotal question is how this growth of structural infor-
mation improves the quality of three-dimensional models 
constructed by contemporary bioinformatics approaches. 
To address this problem, we compiled a representative 
dataset of 7818 proteins 100–200 amino acids in length, 
whose experimental structures were available in the PDB 
as of April 2014. Here, the redundancy was removed at 
40% sequence identity using CD-HIT [52]. Next, we used 
two state-of-the-art fold recognition algorithms, COMPASS 
[47] and HHpred [48], to identify weakly homologous 
templates for the target proteins in 12 time-snapshots of 
the PDB covering a period from 2005 to 2014. By exclud-
ing those template proteins that share more than 40% 
sequence identity with their targets, we focus on the 
capability of sequence profile-based methods to identify 

Figure 1: Growth rate of the PDB.
At any given time, we counted the number of protein chains (black triangles), the number of sequence clusters obtained by clustering indi-
vidual chains at 40% sequence identity (gray squares), and the number of structure clusters calculated by clustering individual chains at a 
TM-score of 0.5 (crossed circles).
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structure templates in the “twilight zone” of sequence sim-
ilarity. Each top-ranked hit is compared to its target using 
sequence and structure similarity, the quality of threading 
alignment, and the estimated prediction confidence.

Figure 2A shows that the overall sequence identity 
between target proteins and the top hits detected by both 
programs increased over almost a decade by only a couple 
of percentage points within a narrow range of 24%–28%. 
We note that closely related templates with more than 
40% sequence identity to their targets are excluded in this 
study. Interestingly, the prediction confidence increased 
from the average E-value of approximately 0.18 in 2005 
and 2006 to 0.12 to 0.14 in 2010 to 2014 with a significant 
boost in the confidence scores during a period from 2007 
to 2009 (see Figure 2B). Confidence estimates provided by 
both fold recognition algorithms are well correlated with 
the actual prediction accuracy; therefore, as expected, 
the quality of detected templates improved as well. This 

is shown in Figure 2C for TM-score values calculated from 
structure alignments constructed by Fr-TM-align and in 
Figure 2D for TM-score values calculated over thread-
ing alignments reported by COMPASS and HHpred. For 
instance, using HHpred, the average TM-score of structure 
alignments increased in the first 3  years from 0.60±0.20 
in 2005 to 0.64±0.20 in 2008. This fast initial growth rate 
shown as dashed lines in Figure 2C and D slowed down 
afterward and the corresponding average TM-score values 
increased during the last 3  years from 0.66±0.19 in 2011 
to only 0.67±0.19 in 2014. Of course, threading algorithms 
should also generate correct alignments that would allow 
for the construction of high-quality models of the target 
proteins. Therefore, in Figure 2D, we plot TM-score values 
calculated over threading alignments. In general, the 
quality of threading alignments is approximately 10% 
lower than those reported by Fr-TM-align; however, it 
has been increasing at fairly similar rates. For example, 

Figure 2: Quality of template structures detected by COMPASS and HHpred over time.
(A) Target-template global sequence identity, (B) expect values that correspond to the prediction confidence, and the TM-score calculated 
using (C) structure and (D) threading alignments. Only the top-ranked templates are considered; each data point represents the average 
value calculated over the benchmarking proteins. The dashed regression lines in C and D are calculated by fitting a linear equation to the 
first five data points (2005–2008).
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the average TM-score for threading alignments reported 
by HHpred increased from 0.48±0.28 in 2005 to 0.54±0.27 
in 2008 and from 0.56±0.25 to 0.58±0.25 during the last 
3-year period. Note that these trends are independent of 
the fold recognition algorithm and qualitatively similar 
results are obtained for COMPASS, although with a some-
what lower accuracy compared to HHpred.

Finally, using the t statistic, we calculated p-values 
for the TM-score distribution for each time-snapshot 
with respect to the preceding release of the PDB. The 
results reported in Table 1 indicate that highly significant 
improvements with p < 0.01 for both the template quality 
(structure alignments) and the accuracy of the corre-
sponding threading alignments occur between 2005 and 
2008. Still, significant improvements with p < 0.05 are 
observed during a period from 2009 to 2010; however, 
improvements after 2010 are statistically insignificant.

Conclusions
Current approaches to protein structure modeling rou-
tinely construct high-quality models for biological 
sequences, provided that reliable template structures 
can be identified in the PDB. Nonetheless, fold recog-
nition fails to detect structurally related proteins for 
many targets despite that these templates are present 

Table 1: Time-dependent improvement of the quality of template 
structures detected by COMPASS and HHpred. Each row represents 
one snapshot of the PDB.

Date Structure alignments Threading alignments

COMPASS HHpred COMPASS HHpred

01/06/05
01/03/06 0.001a  < 0.001a  < 0.001a  < 0.001a

01/02/07  < 0.001a  < 0.001a  < 0.001a  < 0.001a

01/07/08 0.002a 0.001a  < 0.001a  < 0.001a

01/05/09 0.099 0.020b 0.035b 0.014b

01/04/10 0.169 0.032b 0.106 0.029b

01/03/11 0.193 0.098 0.123 0.105
01/02/12 0.203 0.183 0.168 0.117
01/01/13 0.472 0.207 0.302 0.146
01/02/14 0.292 0.151 0.189 0.135

First, we calculated the average TM-score and the corresponding SD 
using structure alignments and threading alignments of the identi-
fied templates against experimental structures. Then, the statisti-
cal significance was evaluated using the t statistic and a p-value 
calculated versus the preceding snapshot with those values  < 0.05 
(significant) and 0.01 (highly significant) marked by superscripts b 
and a, respectively.

in threading libraries. Because the PDB undergoes an 
exponential expansion in terms of the number of mac-
romolecular structures deposited every year, one could 
expect that there will be enough structures at some point 
to solve the protein folding problem using contemporary 
structural bioinformatics tools. In this communication, 
we investigate this issue by performing fold recognition 
for a representative set of proteins using state-of-the-art 
algorithms against a dozen of PDB snapshots covering 
a period from 2005 to 2014. We show that the number of 
proteins whose structures can be confidently predicted 
indeed continuously increases on account of the growth 
of the PDB; however, this encouraging trend noticeably 
slowed down around the year 2008. At the current pace, 
it is unlikely that the protein structure prediction problem 
will be solved in the near future using existing modeling 
techniques. Therefore, in addition to advances in experi-
mental structure determination, qualitatively better 
approaches to fold recognition as well as more accurate 
template-free structure prediction techniques would be 
required to achieve a complete structural coverage of the 
protein sequence space.
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