
eMatchSite: Sequence Order-Independent Structure
Alignments of Ligand Binding Pockets in Protein Models
Michal Brylinski1,2*

1 Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America, 2 Center for Computation & Technology, Louisiana

State University, Baton Rouge, Louisiana, United States of America

Abstract

Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been
recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed
using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding
site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in
turn, complicates proteome scale applications, where only various quality structure models are available for the majority of
gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-
independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-
binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times
more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand
binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly
homologous protein models is only 4–9% lower than those aligned using crystal structures. This represents a significant
improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13%
higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically
correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-
protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and
rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone
software distribution at http://www.brylinski.org/ematchsite.
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Introduction

The ability of proteins to perform their molecular functions

often associates with the reversible binding of a variety of small

molecules, e.g. metabolites, neurotransmitters, hormones, and

peptides. Ligand binding occurs on specific interaction sites, where

depressions and pockets are formed at a protein molecular surface

to facilitate binding through various non-covalent intermolecular

forces including hydrogen bonds, electrostatic, and van der Waals

interactions. These direct protein-ligand contacts along with the

solvation and desolvation effects play a key role in the association

process determining the strength of binding, or binding affinity

[1]. Importantly, the specificity of binding sites towards small

molecules arises from their chemical composition as well as

geometric features. Many disease conditions can be directly linked

to the cellular activities of certain molecular targets, modulating of

which can restore homeostasis. Therefore, altering molecular

functions of proteins using high-affinity compounds is a key

strategy in pharmacotherapy. In particular, structure-based drug

discovery involves the development and further optimization of

synthetic and semi-synthetic compounds to target specific proteins

of pharmacological relevance [2,3]. Since modern drug discovery

is routinely supported by computational approaches, such as

virtual screening [4,5] and quantitative structure-activity relation-

ship methods [6,7], the accurate modeling of protein-ligand

interactions is of a paramount importance for the development of

new and effective biopharmaceuticals.

Selectivity of binding remains a salient issue in pharmacology.

Selective compounds have a tendency to bind to a limited number

of different molecular targets in the cell, whereas those more

promiscuous may affect the activity of a larger group of proteins

often leading to adverse effects. The classical picture of very

selective drug binding has been challenged by recent experimental
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and computational studies, which strongly suggest that the space of

protein-drug interactions is dense and highly connected [8].

Several independent studies attempted to estimate the promiscuity

of protein-drug interactions; for instance, a large-scale across-

target activity analysis carried out for 189,807 active compounds

from PubChem revealed that the majority (62%) of them exhibit

activity against multiple, often unrelated targets [9]. Furthermore,

a similar study conducted using a set of 3,138 compounds tested

on up to 79 targets reported that 47% and 24% of the compounds

can be classified as ‘‘promiscuous’’ and ‘‘highly promiscuous’’,

respectively, with multiple targets hit at the IC50 of ,10 mM [10].

Finally, a thorough survey carried out for a network of 5,215 drug-

target interactions connecting 829 drugs with 557 targets

estimated that the average number of target proteins per drug is

as high as 6.3 [11]. These numbers clearly indicate a high

complexity of the protein-drug interaction space, however, most of

the available data cover only a small subset of the ‘‘druggable’’

human proteome, which likely consists of .3,000 drug targets

[12]. Moreover, the interaction space is covered non-uniformly

with a couple of hundreds of the most actively pursued targets

covering 90% of the testing compounds [13].

Clearly, new approaches that can address these issues and

effectively support modern drug discovery are needed. Over the

past decade, we observed a growing interest in computational

methods that could give insights into the nature of protein-drug

interactions. Classical algorithms for the detection of relationships

between proteins widely used in bioinformatics and structural

bioinformatics cannot be applied to explore drug cross-reactivity

because many compounds bind to multiple proteins that are

completely unrelated to each other at the global sequence and

structure levels. For example, celecoxib, an inhibitor of cycloox-

ygenase-2, exhibit nanomolar affinity to an unrelated enzyme,

carbonic anhydrase [14]. Telmisartan, an angiotensin II receptor

antagonist used in the management of hypertension also acts as a

partial agonist of the peroxisome proliferator-activated receptor-c
that regulates fatty acid storage and glucose metabolism [15].

Therefore, investigating drug cross-reactivity requires a different

set of tools. Many of these explore ligand chemistry [16], similarity

of gene expression profiles [17] or literature-mined side effects

[18]. A direct comparison of binding sites has the capability to

describe ligand binding at the molecular level providing useful

insights into the drug mode of action. On that account, it is

considered one of the most promising computational tools in

computer-aided drug design and the prediction of biological

function [19].

Most of the algorithms for binding site matching fall into one of

two categories: alignment-free and alignment-based methods.

Geometric hashing is a typical example of the alignment-free

approach; it measures the overall similarity of two binding sites,

however, without providing structural information on the putative

ligand binding mode and its molecular interactions with the target

protein. For instance, PocketMatch represents binding sites as the

sorted lists of inter-residue distances that capture their shapes and

chemical properties [20]. The comparison of binding sites is

performed in a frame invariant manner by aligning the distance

lists rather than residue coordinates. A pocket similarity is then

computed based on the overlap between two ordered sequences of

distances. Another example is SitesBase, a binding sites database

that allows for a rapid retrieval of similar pockets, regardless of the

global protein sequence and fold similarities [21]. Here, the

underlying algorithm uses geometric matching at the level of

atomic triplets to detect common features through the identifica-

tion of cliques and maximum common sub-graphs; the similarities

between local environments indicate both structural and function-

al relationships [22]. Templates used in the geometric hashing-

based comparison of ligand binding pockets can be automatically

derived from protein structures as demonstrated in the TESS

program [23]. This algorithm employs a grid representation of

functionally relevant sites, constructed based on reference frames

defined individually for each of the 20 standard amino acid side

chains. Surrounding atoms within a user-defined distance are first

assigned to grid points; subsequently, the grid positions and the

corresponding atomic labels are converted into a hash table for a

rapid database searching. Templates automatically derived by

TESS for the catalytic triad of ribonucleases and lysozymes have

been used to identify several functionally interesting hits in the

Protein Data Bank (PDB) [24].

In contrast to alignment-free techniques, methods based on

binding site alignments elucidate why two sites are similar, identify

the sets of atoms/residues that contribute to the similarity and

describe putative ligand binding modes. However, a direct

comparison of binding sites is more complicated and requires

reliable sequence order-independent alignment techniques. Sev-

eral such methods have been reported recently; for instance,

SOIPPA performs sequence order-independent profile-profile

alignments of binding pockets using a coarse-grained representa-

tion of protein structures [25]. This algorithm integrates geomet-

ric, evolutionary and physical information into a unified frame-

work and assesses the alignment significance using the extreme

value distribution model [26]. SuMo (Surfing the Molecules) was

one of the first approaches to use a residue-independent

stereochemical group description combined with a fast graph-

based comparison heuristic to compare protein structures and

substructures [27]. Its successor, MED-SuMo, was significantly

improved to include functional annotation capabilities, new

chemical features and a cavity-detection algorithm [28]. The

effectiveness of MED-SuMo in detecting binding sites with similar

structure-activity profiles was demonstrated using a large dataset of

purine-binding proteins [29]. Another method, SiteEngine,

employs low-resolution molecular surfaces constructed by con-

verting triangles of physicochemical properties into a discrete set of

chemically important surface points [30]. Assuming no sequence

and fold similarity, SiteEngine offers hierarchical scoring schemes

for global, local and global-local surface matching between

proteins. A similar approach, ProBiS, recognizes structurally

similar sites by analyzing patterns of physicochemical properties

on the protein surface [31]. Using a fast maximum clique

algorithm, this method also performs the comparison of complete

protein surfaces. A clique-detection algorithm is also implemented

in Cavbase [32] to compare cavities identified by Ligsite [33] using

the degree of overlap between their exposed physicochemical

properties. Cavbase employs 3D descriptors in the form of

pseudocenters representing points important for molecular recog-

nition, e.g. hydrogen bonds, hydrophobic and hydrophilic

contacts. The application of Cavbase to the human kinome

created a ‘‘binding pocket space’’, which was shown to be highly

effective in rationalizing the cross-reactivity between unrelated

kinases [34]. In contrast to a sequence-based classification, which

is often unable to detect cross-relations between individual kinases,

approaches such as Cavbase provide useful insights to support the

development of more selective drugs.

Ligand binding sites can be represented by ‘‘clouds’’ of atoms

having certain properties, e.g. types, partial charges, etc., as

implemented in the sup-CK algorithm [35]. Sup-CK assesses the

similarity between two pockets using a convolution kernel upon

the optimal alignment of their atomic ‘‘clouds’’. A recently

developed method, TIPSA, employs the iterative closest point

algorithm to superpose and compare binding pockets using the
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atom-level representation of protein surfaces [36]. The maximum

number of superposable atoms between two binding sites is

identified based on the initial local alignments derived from 3D

Delaunay triangulations. To increase the prediction accuracy,

TIPSA incorporates additional global geometric information, the

radius of gyration of binding site atoms, and an effective nearest

neighbor classification scheme. Another example of a method that

employs sequence order-independent alignments of binding

surfaces is Solar (Signature Of Local Active Regions) [37]. This

approach introduces a concept of signature binding sites and

signature basis sets designed to capture information about the

conserved and variable atomic positions at multi-resolution levels.

Interesting features of Solar include hierarchically organized

degrees of partial structural similarity, and an effective procedure

for the identification of residues and atoms that are important for

binding affinity and specificity, as demonstrated for metalloendo-

peptidase enzymes. Despite the encouraging progress in the

development of sequence order-independent algorithms for ligand

binding site alignment, many of these approaches require high-

quality binding sites extracted from either experimental protein

structures complexed with ligands or close homology models

constructed using holo-templates in order to achieve a high

accuracy.

To mitigate this issue, we developed eMatchSite, a new

algorithm that performs sequence order-independent local binding

site alignments using computer-generated protein models. In

addition to its high tolerance to distortions in the target structures,

eMatchSite also aligns predicted ligand binding sites that may

contain inaccuracies in the definition of binding residues. A key

feature responsible for its high performance is the extensive use of

evolutionary information that can be extracted from only weakly

homologous templates complexed with ligands. Essentially, the

current work extends ideas already explored in binding pocket

prediction by algorithms such as FINDSITE [38] and its

successor, eFindSite [39], to address the problem of aligning and

quantifying the similarities between ligand binding sites in

proteins. The performance of eMatchSite is evaluated using

several datasets and compared to other algorithms for binding site

matching in large-scale benchmarking calculations. The results

demonstrate that eMatchSite maintains its high prediction

accuracy against protein models, which should prove useful in

systems-level applications, such as polypharmacology and rational

drug repositioning.

Design and Implementation

eMatchSite is a sequence-order independent algorithm for

ligand binding site alignment and comparison. It employs a set of

residue-level scores extracted from weakly homologous template

proteins complexed with small molecules that cover various

properties of binding ligands and residues. Evolutionary informa-

tion is included as sequence profiles and entropy, as well as

secondary structure profiles. Hydrophobicity parameters for

amino acids, the spatial distribution of residues and ligand binding

probabilities capture physicochemical and structural characteris-

tics of protein residues and their interactions with small molecules.

An important component is the chemical matching of template-

bound ligands that effectively explores the conservation of binding

site chemistry and ligand binding geometry across sets of

functionally related proteins. Individual scores are combined

using non-linear machine learning models and the alignments of

binding sites are constructed by the Kuhn-Munkres algorithm

[40,41] (also known as the Hungarian method) for solving

assignment problems.

Validation of the fold-independent matching of ligand binding

sites requires specific datasets of proteins that bind chemically

similar ligands despite having different sequences and structures.

In this study, we use four datasets, the SOIPPA dataset of adenine-

binding proteins [25], the Kahraman and Homogeneous datasets

comprising a variety of small molecules [35,42], and the Steroid

dataset of pharmacologically relevant steroid-binding proteins. In

addition to the crystal structures of target proteins, we constructed

high- and moderate-quality models to assess the performance of

binding site matching using computer-generated structures.

Moreover, we focus on predicted binding sites that may contain

some inaccuracies in binding residue definition rather than

experimental pockets.

The performance of eMatchSite is compared to several other

predictors, SOIPPA [25], PocketMatch [20], SiteEngine [30] and

sup-CK [35]. These approaches represent a variety of computa-

tional techniques developed to compare ligand binding sites in

proteins, including geometric hashing, surface-based methods and

sequence order-independent profile-profile alignments. Local

predictors are also compared to two naı̈ve approaches that employ

global sequence and structure alignments of target proteins. Using

global similarity helps detect any possible bias that may be present

in a particular dataset, i.e. pairs of proteins that bind similar

ligands may also be related at the global sequence and/or

structure level making them relatively easy targets. In the

subsequent sections, we provide a detailed description of the

datasets, eMatchSite implementation, evaluation metrics, and

validation protocols used in this study.

Datasets
The primary dataset used in this study to train and cross-

validate machine learning models implemented in eMatchSite

comprises adenine-binding proteins as well as control proteins that

do not bind ligands containing the adenine moiety. This dataset

was compiled previously to benchmark the performance of

another binding site alignment algorithm, SOIPPA [25]. Accord-

ing to the SCOP classification [43], target proteins represent 167

superfamilies and 146 folds. Ligands included in this dataset are

adenosine-59-diphosphate (ADP), adenosine-59-triphosphate

(ATP), flavin-adenine dinucleotide (FAD), nicotinamide-adenine-

dinucleotide (NAD), S-adenosyl-L-homocysteine (SAH), and S-

adenosylmethionine (SAM). Control ligands in the SOIPPA

dataset form 48 chemically representative clusters at a Tanimoto

coefficient [44] threshold of 0.7.

In addition, we assess the performance of binding site matching

using two other datasets. The Kahraman dataset was previously

developed to analyze the shapes of protein binding pockets with

respect to the shapes of their ligands [42]. This dataset comprises

proteins bound to adenosine monophosphate (AMP), 3-b-hy-

droxy-5-androsten-17-one (AND) adenosine-59-triphosphate

(ATP), estradiol (EST), flavin-adenine dinucleotide (FAD), flavin

mononucleotide (FMN), a-D-glucose (GLC), protoporphyrin IX

containing Fe (HEM), and nicotinamide-adenine-dinucleotide

(NAD). The Homogeneous dataset was compiled to benchmark

the performance of sup-CK, a method to quantify the similarity

between binding pockets [35]. It consists of proteins complexed

with the following ligands: pentaethylene glycol (1PE), B-

octylglucoside (BOG), glutathione (GSH), lauryl dimethylamine-

N-oxide (LDA), palmitic acid (PLM), 49-deoxy-49-aminopyridoxal-

59-phosphate (PMP), S-adenosylmethionine (SAM), sucrose

(SUC), and uridine-59-monophosphate (U5P). Although some

ligands, e.g. 1PE and BOG, may bind non-specifically to proteins

and are used to facilitate the crystallization process, we keep them

in the dataset to make the results comparable to those reported in
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the original publication [35]. When assessing the performance

using the Kahraman and Homogeneous datasets, positives are

defined as pairs of proteins that bind exactly the same ligand,

whereas those proteins that bind different ligands are considered

negatives.

The last dataset contains 8 pharmacologically relevant steroid-

binding proteins complexed with 17b-estradiol (EST), estradiol-

17b-hemisuccinate (HE7), and equilenin (EQU). As the control

dataset, we use 1,854 proteins that bind small molecules whose size

is comparable to that of steroids (15–25 heavy atoms), however,

these ligands have different chemical structures with a Tanimoto

coefficient [44] vs. EST of #0.1. Control ligands in the Steroid

dataset form 334 chemically representative clusters at a Tanimoto

coefficient threshold of 0.7. According to the SCOP classification

[43], target proteins represent 185 superfamilies and 150 folds.

Target structures
In addition to the crystal structures of target proteins, we

constructed weakly homologous protein models for the SOIPPA,

Kahraman, Homogeneous and Steroid datasets. The models were

assembled using template-based modeling by eThread [45,46],

excluding those templates whose sequence similarity to the target

is .40%. First, we built up to 20 models for each target, 10 using

eThread/Modeller and 10 using eThread/TASSER-Lite. Then,

one model with a TM-score to native of .0.7 was randomly

selected and included in the high-quality dataset. Similarly, a

randomly selected model with a TM-score of 0.4–0.7 was included

in the moderate-quality dataset. Other than crystal structures and

weakly homologous models, the SOIPPA dataset also comprises

artificially distorted structures, whose Ca-RMSD is within a

narrow range (RMSD stands for a root-mean-square deviation).

These structures were constructed by distorting the native

conformation using an in-house software that employs conforma-

tional Monte Carlo sampling to reach the desired RMSD from

native while preserving the secondary structure content [47].

Specifically, for each target in the SOIPPA dataset, we built three

non-native structures with a Ca-RMSD of 2 Å, 4 Å and 6 Å.

Ligand binding site prediction
Ligand binding sites were identified in target proteins using

eFindSite, a recently developed template-based approach [39,48].

Similar to structure modeling, binding pocket prediction was

performed using only weakly homologous templates with a

sequence identity to the target of #40%. In pocket matching

calculations, we used only those proteins, for which the center of

each of the best of top five binding sites is predicted within a

distance of 8 Å from the experimental pocket center, with the

corresponding Matthew’s correlation coefficient calculated over

binding residues of $0.4. The accuracy of ligand binding site

prediction certainly depends on the quality of target structures

[39], therefore, as shown in Tables 1 and S1, the structural subsets

of the SOIPPA, Kahraman, Homogeneous and Steroid datasets

(crystal structures, high- and moderate-quality models as well as

distorted conformations) comprise different numbers of proteins.

Implementation of eMatchSite
A unique feature of eMatchSite is its capability to estimate

pairwise Ca-Ca distances between binding residues upon the

alignment of two pockets using machine learning and a set of seven

residue-level scores. These features cover various physicochemical

and geometric characteristics and, importantly, can be extracted

from only weakly homologous template structures identified by

eFindSite. Residue-level scores implemented in eMatchSite

employ sequence and secondary structure profiles, hydrophobicity

parameters for amino acids, ligand binding probabilities, the

spatial distribution of neighboring residues, sequence entropy, and

the chemical matching of template-bound ligands.

Sequence profile score. For each target protein, a sequence

profile is constructed using PSI-BLAST [49] and a non-redundant

sequence database (nr) from NCBI [50]. The nr database was

filtered to remove low-complexity regions, transmembrane and

coiled-coil segments [51]. Given a pair of residues i and j, the

sequence profile score, S
seq
i,j , is the dot product of their profile

vectors:

S
seq
i,j ~

X20

k~1

seqk
i |seqk

j

� �
ð1Þ

where seqk
i is the value for the amino acid k in the i-th position of

the sequence profile of the first protein, and seqk
j is the value for

the amino acid k in the j-th position of the sequence profile of the

second protein.

Secondary structure score. PSIPRED [52] is used to assign

three probability values to each residue corresponding to an a-

helix, a b-structure and a loop conformation. The secondary

structure score for a pair of residues i and j, Ssec
i,j , is the Euclidean

distance between their secondary structure probability vectors.

Ssec
i,j ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pH

i {pH
j

� �2

z pE
i {pE

j

� �2

z pC
i {pC

j

� �2
r

ð2Þ

where pH
i , pE

i and pC
i are, respectively, the probability for a-helix

(Helix), b-structure (Extended) and loop (Coil) assigned by

PSIPRED to the i-th residue in the first protein. pH
j , pE

j and pC
j

are the equivalent values for the j-th residue in the second protein.

Hydrophobicity score. Each residue type is assigned a

vector of 20 hydrophobicity parameters according to the

following experimental and theoretical hydrophobicity scales

for amino acids: Abraham and Leo [53], Black and Mould [54],

Brylinski et al. [55], Bull and Breese [56], Cowan and Whittaker

[57], Eisenberg et al. [58], Fauchere and Pliska [59], Guy [60],

Hopp and Woods [61], Janin [62], Kyte and Doolittle [63],

Manavalan et al. [64], Miyazawa and Jernigan [65], Parket et
al. [66], Rao and Argos [67], Roseman [68], Tanford [69],

Welling et al. [70], Wilson et al. [71], and Wolfenden et al. [72].

The hydrophobicity score, S
hph
i,j , corresponds to the Pearson

correlation coefficient calculated between two hydrophobicity

vectors for residues i and j:

S
hph
i,j ~

n
X

hihj

� �
{

X
hi

� � X
hj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
X

h2
i

� �
{

X
hi

� �2
� �

n
X

h2
j

� �
{

X
hj

� �2
� �s ð3Þ

where n is the number of hydrophobicity scales (20), hi and hj

are hydrophobicity parameters for residues i (first protein) and j
(second protein), respectively. The summations of hydropho-

bicity parameters (hi and hj), squared (h2
i and h2

j ) and paired

(hihj) values are taken over 20 hydrophobicity scales.

Binding probability score. eFindSite assigns a ligand

binding probability to each predicted binding residue in the

protein target [39]. The binding probability score, Sbin
i,j , is a

squared difference between the binding probabilities assigned to a

pair of residues i and j:
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Sbin
i,j ~ pbin

i {pbin
j

� �2

ð4Þ

where pbin
i and pbin

j is a ligand binding probability assigned by

eFindSite to i-th residue in the first protein and j-th residue in the

second protein, respectively.

Neighbor distribution score. For each binding residue, we

first calculate the distribution of Ca distances to all other residues

in the same pocket:

di~ d1,d2, . . . ,dN{1ð Þ ð5Þ

where di is a vector of distances between i-th residue and the

remaining binding residues in the first protein, enumerated from

d1 to dN-1; dj is the equivalent vector for the j-th residue in the

second protein.

Then, given a pair of residues i and j belonging to different

pockets, we compare their neighbor distance distributions, di and

dj, using the non-parametric Fisher-Pitman permutation test for

independent samples [73]. The T-value returned by this test is

used as the neighbor distribution score, S
ngb
i,j .

Sequence entropy score. From sequence profiles generated

by PSI-BLAST, the amino acid variability at a given residue

position is quantified using the Shannon entropy, which provides a

simple measure of uncertainty in a data set [74]. The sequence

entropy score, Sent
i,j , is a squared difference between individual

entropies calculated for a pair of residues i and j:

Sent
i,j ~ {

X20

k~1

seqk
i log2 seqk

i

 !
{ {

X20

k~1

seqk
j log2 seqk

j

 !" #2

ð6Þ

where seqk
i and seqk

j have the same meaning as in Eq. 1.

Template ligand score. eFindSite predicts binding sites

using evolutionarily related holo-templates. Template structures

are superposed onto a target protein and template-bound ligands

are transferred to the target upon the global structure alignment.

eMatchSite uses these ligands to position two target proteins

relative to each other. Specifically, atomic equivalences are

established between two template ligands (one from each target

protein) using kcombu, a heuristic build-up algorithm for

determining one-to-one atom correspondences between chemical

compounds [75]. Next, the two target proteins are oriented in

space according to the superposition of template ligands and

pairwise Ca-Ca distances between binding residues in the targets

are calculated. We repeat this procedure m6n times, where m and

n are the number of template ligands collected by eFindSite for the

first and the second target protein, respectively. Given a pair of

binding residues i and j from both targets, the template ligand

score, S
lig
i,j , is a weighted average distance between their Ca atoms

calculated for all template ligand combinations:

S
lig
i,j ~

Xn

k~1

Xm

l~1

wk,ldk,l

Xn

k~1

Xm

l~1

wk,l

ð7Þ

where a weight wk,l corresponds to the squared Tanimoto

coefficient [44] between template ligands k and l reported by

kcombu. Thus, the contribution from highly similar ligand pairs is

larger than from those chemically less similar. dk,l is a distance

between the Ca atoms of residues i in the first protein and j in the

second protein when their structures are oriented according to the

alignment of template ligands k and l.

Note that the set of seven residue-level scores, S
seq
i,j , Ssec

i,j , S
hph
i,j ,

Sbin
i,j , S

ngb
i,j , Sent

i,j and S
lig
i,j , are calculated for putative binding sites

identified by eFindSite without using any information on the

actual target-bound ligands. Therefore, this procedure can be

applied to experimental structures in their apo conformations as

well as to computer-generated protein models. Next, we

constructed a machine learning model to estimate distances

between the Ca atoms of residues belonging to the two target

pockets upon their optimal local alignment. Reference distances

are calculated upon the superposition of protein structures using

the coordinates of bound ligands. SVR is used to predict these

distances using the set of seven residue-level scores; here, we use

the SVR implementation from libSVM 3.14 [76]. Machine

learning model is cross-validated against the SOIPPA dataset. We

use a non-exhaustive 6-fold cross-validation, where a subset of

dataset proteins binding to a particular ligand are excluded, the

model is trained on the remaining cases and Ca-Ca distances are

predicted for the excluded group. This procedure is applied to all 6

ligands in the SOIPPA dataset. In addition to the SVR model, we

also evaluated an equivalent procedure employing SVC using the

same set of seven residue-level scores. Here, rather than estimating

Ca-Ca distances, the model predicts whether a pair of binding

residues align to each other upon the optimal local superposition

of two binding sites. We found that the algorithm based on the

SVR model performs slightly better than that using SVC,

therefore the latter was not pursued further.

Using the machine learning-based procedure described above,

we calculate an all-against-all matrix containing the estimated Ca-

Table 1. Global and local structure quality of adenine-binding proteins from the SOIPPA dataset.

Dataset Number of targets Global structure Ligand binding pocket

Ca-RMSD [Å] TM-score RMSDa [Å] Distanceb [Å] MCCc

Crystal structures 211 - - - 1.761.4 0.7060.10

High-quality models 202 4.462.4 0.8360.07 2.061.4 1.861.4 0.6760.10

Moderate-quality models 174 13.264.6 0.5460.10 5.763.5 1.961.3 0.6260.10

aHeavy-atom RMSD calculated over binding residues.
bDistance between predicted pocket center and the geometric center of bound ligand.
cMatthew’s correlation coefficient for predicted binding residues.
High- and moderate-quality models are constructed by eThread. Ligand binding sites and residues are detected by eFindSite.
doi:10.1371/journal.pcbi.1003829.t001
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Ca distances between residues belonging to two target pockets.

The optimal alignment is found by applying the Kuhn-Munkres

algorithm [40,41] to identify a unique set of residue pairs that give

the shortest overall distance between their Ca atoms. This

technique, also known as the Hungarian method, solves combi-

natorial assignment problems in polynomial time. The sum of Ca-

Ca distances for the solution is guaranteed to be the smallest

amongst all possible alignment combinations. Moreover, this

algorithm produces fully sequence order-independent alignments,

whose length is equal to the number of binding residues in the

smaller pocket.

Pocket similarity score
Finally, optimal alignments of pairs of ligand binding pockets

are assigned a similarity score corresponding to the probability

that these sites bind similar ligands. The similarity score is

calculated using machine learning and an input vector of the

following features: a Ca-RMSD calculated over equivalent

binding residues, average residue-level scores, a chemical corre-

lation, the physicochemical properties of putative binding ligands,

and geometric hashing.

Pocket RMSD. The geometric fit between two pockets,

FRMS, corresponds to the minimum Ca-RMSD calculated for

residue equivalences from the optimal alignment.

Average residue-level scores. In addition to the actual

RMSD between two pockets, we include the predicted SVR and

SVC scores averaged over aligned residue pairs, FSVR and FSVC:

FSVR~
1

M

XM
i,jð Þ

SSVR
i,jð Þ ð8Þ

FSVC~
1

M

XM
i,jð Þ

SSVC
i,jð Þ ð9Þ

where the sum is taken over M aligned residue pairs (i,j) between

the two proteins. SSVR
i,jð Þ is a score reported by SVR that

corresponds to the expected distance between Ca atoms of

equivalent binding residues (i,j) and SSVC
i,jð Þ is a score reported by

SVC that gives the probability that residues (i,j) align to each

other.

Chemical correlation. eFindSite employs molecular finger-

prints constructed for ligands extracted from evolutionarily related

templates to conduct ligand-based virtual screening against

predicted binding pockets [48]. eMatchSite uses this capability

to perform virtual screening against the two predicted pockets and

calculates the Kendall t rank correlation coefficient, FTAU:

FTAU~
nC{nD

1

2
n n{1ð Þ

ð10Þ

where nC and nD are the numbers of concordant and discordant

pairs, respectively; the denominator is the total number of pair

combinations. Any pair of library compounds is concordant if their

ranks in the ordered lists for the two pockets agree, i.e. one

compound is consistently ranked higher than the other. Pairs of

compounds whose relative ranks are swapped in the two ordered

lists are considered discordant. To perform virtual screening, we

compiled a small library of 23,659 molecules selected from the

ZINC collection of organic compounds by removing the

redundancy at a Tanimoto coefficient [44] threshold of 0.5 using

the SUBSET program [77]. The chemical correlation was

formulated previously to construct a cross-reactivity virtual profile

for the human kinome [78].

Physicochemical properties. Each ligand binding site

identified by eFindSite is also assigned a set of consensus

physicochemical properties of putative binding ligands, including

the molecular weight (MW), the octanol/water partitioning

coefficient (logp), the polar surface area (PSA), and the number

of hydrogen bond donors and acceptors (HBD and HBA,

respectively) [39]. As a physicochemical feature, FPCF, we average

the differences between two binding pockets with respect to these

properties:

FPCF ~
1

5

X5

r~1

Pr
1st{Pr

2nd

�� �� ð11Þ

where the sum is taken over the five abovementioned physico-

chemical properties, and P1st and P2nd are the binding pockets in

the first and second protein, respectively.

Geometric hashing. The last feature is an alignment-free

matching score calculated using geometric hashing. Here, we

implemented in eMatchSite a scoring scheme from PocketMatch,

which represents each binding site as a sorted list of 90 distances

between Ca, Cb atoms, and the side chain geometric centers for

amino acid residues arranged into 5 groups: group-0: A, V, I, L,

M, G, P; group-1: K, R, H; group-2: D, E, Q, N; group-3: Y, F,

W; and group-4: C, S, T [20]. The pairs of distance-sets are

aligned using a greedy strategy and the similarity score is

calculated as the average fraction of matching elements across

the sorted lists of distances. This feature in eMatchSite is denoted

by FPMS, where PMS stands for the original PocketMatch score

[20].

The pocket similarity score is computed by combining the six

features described above using machine learning. The training and

validation of the machine learning model used to assess similarities

between pairs of pockets is carried out using adenine-binding

proteins from the SOIPPA dataset. We follow a similar 6-fold

cross-validation protocol as described above for assessing the inter-

residue distance prediction. Machine learning for the estimation of

pocket similarity is implemented using the Support Vector

Machines algorithm for classification problems provided by

libSVM 3.14 [76].

Evaluation metrics
The quality of local binding site alignments is assessed against

reference alignments using Matthew’s correlation coefficient

(MCC):

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ
p ð12Þ

where TP, FN and FP are the number of correctly aligned residue

positions, under- and overpredicted, respectively. TN is the

number of residue pairs correctly predicted not to align to each

other. Reference alignments are constructed by superposing a pair

of protein structures using the coordinates of bound ligands. We

note that similar pockets in the Kahraman and Homogeneous

datasets are defined as those that bind the same ligand, whereas in

the SOIPPA and Steroid datasets, similar pockets bind ligands

containing the adenine and estradiol moieties, respectively. Here,

the superposition is performed using the maximum common

substructures between two ligands identified by the Small

Alignment of Ligand Binding Sites in Protein Models
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Molecule Subgraph Detector (SMSD) [79]. Upon the superposi-

tion, the reference alignment is calculated by applying the

Hungarian algorithm [40,41] to a matrix of all-against-all

distances between binding residue Ca atoms (a similar procedure

is described in [36]). Subsequently, an optimal structure alignment

of two binding sites is constructed, where the alignment length is

equal to the number of residues in the smaller pocket. This

algorithm guarantees that the sum of Ca-Ca distances calculated

over aligned residue positions is the smallest amongst all possible

alignments with the same length.

The alignment quality is further assessed by a ligand heavy-

atom RMSD with an underlying assumption that the correct

alignment of binding residues would prompt two ligands to adopt

a similar orientation. Specifically, we superpose two proteins using

residue Ca atoms based on a given local binding site alignment,

which is followed by calculating an RMSD for bound ligands. The

SOIPPA, Kahraman and Homogeneous datasets contain flexible

compounds with multiple rotatable bonds that may have different

internal geometries when bound to different proteins. Therefore,

we use a method for correcting the RMSD by subtracting a heavy-

atom RMSD calculated upon the superposition of two ligands

alone; this corrected metric is denoted by DRMSD.

In addition to the quality of local binding site alignments, we

assess the capabilities of different algorithms to detect those

pockets binding similar ligands. The SOIPPA dataset comprises

two groups of structures, adenine-binding proteins and control

proteins that do not bind ligands containing the adenine moiety.

Here, positives are defined as pairs of adenine-binding proteins,

whereas pairs of an adenine-binding protein and a control protein

are considered negatives. An analogous definition of positives and

negatives is used for the steroid-binding and control proteins in the

Steroid dataset. For the Kahraman and Homogeneous datasets,

positives and negatives are pairs of proteins that bind the same and

different ligands, respectively. The ability to detect similar binding

sites in different proteins is assessed by a receiver operating

characteristics (ROC) and the corresponding area under the ROC

curve (AUC). In this analysis, a true positive rate (TPR, also called

sensitivity) and a false positive rate (FPR, also called fall-out) are

defined as:

TPR~
TP

TPzFN
ð13Þ

FPR~
FP

FPzTN
ð14Þ

where TP, TN, FP and FN are the numbers of true positives, true

negatives, false positives and false negatives, respectively.

Other predictors
The accuracy of eMatchSite is compared to that of several other

methods. The first two represent global sequence and structure

alignment approaches. Sequence alignments between two proteins

are calculated by Needleman-Wunsch dynamic programming [80]

with a sequence identity used as the alignment score. Global

structure alignments are performed by Fr-TM-align [81], where

the alignment significance is evaluated by a TM-score [82]. In

addition to these global similarity measures, we analyze the

performance of eMatchSite with respect to various local binding

site matching algorithms. PocketMatch represents an alignment-

free, geometric hashing approach that implements a PMScore to

measure the similarity between ligand binding sites [20]; the stand-

alone version of PocketMatch 2.0 is used in this study. SiteEngine

is a surface-based algorithm developed to recognize similar

functional sites shared by proteins that have different sequences

and folds [30]. It measures the similarity in terms of the overlap

between the physicochemical and geometric properties of binding

pockets. The stand-alone version of SiteEngine 1.0 was used in a

binding site comparison mode. Sup-CK is a method that

represents ligand binding pockets by clouds of atoms and assesses

the pocket similarity using a convolution kernel upon the optimal

superposition of their atomic clouds in space [35]. For each

program, PocketMatch, SiteEngine and sup-CK, the calculations

are conducted using the default set of parameters. Finally,

SOIPPA is a protein functional site comparison algorithm that

features sequence order-independent profile–profile alignments,

which are calculated for a reduced representation of protein

structures [25]. The comparison of eMatchSite to SOIPPA is

performed only for the crystal structures of target proteins, using

supplementary data reported in the original publication of

SOIPPA.

Results

Characteristics of target structures
eMatchSite was devised specifically for applications involving

protein models, therefore we first discuss the structural character-

istics of dataset proteins used in this study. In addition to crystal

structures, we perform local binding site alignment benchmarks

using weakly homologous protein models and artificially distorted

structures. The former are constructed using eThread, a template-

based approach to protein structure modeling [45,46]. Table 1

shows the structure quality of protein models generated for the

SOIPPA dataset. High- and moderate-quality models have an

average TM-score to native of 0.83 and 0.54, respectively; this

corresponds to the global Ca-RMSD (local binding pocket all-

atom RMSD) of 4.4 Å (2.0 Å) for high- and 13.2 Å (5.7 Å) for

moderate-quality models. Structures with a comparable quality

were constructed for the Kahraman, Homogeneous and Steroid

Figure 1. Effects of target structure distortions on the quality
of local alignments of ATP-binding sites. MCC is Matthew’s
correlation coefficient calculated against the reference alignments
constructed using target crystal structures.
doi:10.1371/journal.pcbi.1003829.g001
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datasets; see Supporting Information, Table S1. Furthermore, to

generate more uniform sets of non-native models, we distorted

crystal structures to the desired RMSD with a small standard

deviation. Table S1 shows that models deformed to 2 Å, 4 Å and

6 Å Ca-RMSD from native have an average TM-score of 0.91,

0.78 and 0.68, respectively; their binding sites are distorted to

1.3 Å, 2.4 Å and 3.2 Å all-atom RMSD.

In addition to the target structure, binding site matching also

requires a pre-defined set of binding residues, which can be identified

in experimental target structures complexed with small molecules.

However, this information is unavailable for apo conformations and

protein models. Therefore, an algorithm for binding site alignment

should tolerate to some extent inaccuracies in the binding residue

definition in order to incorporate predicted binding pockets. In that

regard, we focus on binding sites predicted using recently developed

eFindSite [39] rather than those obtained experimentally. Table 1

shows that the average distance between experimental and predicted

pockets for the SOIPPA dataset is 1.7 Å, 1.8 Å and 1.9 Å for crystal

structures, high- and moderate-quality models, respectively; the

corresponding average Matthew’s correlation coefficient (MCC)

calculated for binding residues is 0.70, 0.67 and 0.62. As shown in

Table S1, binding sites for the Kahraman, Homogeneous and

Steroid datasets are predicted with a slightly lower accuracy;

depending on the quality of target structures, the average distance

is 2.0–2.2 Å, 2.9–3.2 Å and 2.3–2.5 Å, with the corresponding MCC

of 0.59–0.65, 0.59–0.63 and 0.61–0.67, respectively.

We also investigate how structural imperfections in protein

models affect the alignment of binding sites. For the SOIPPA

dataset, we first derive reference alignments of binding pockets by

superposing ligands bound to target crystal structures. Then, we

repeat this procedure using binding sites predicted in protein

models as well as distorted structures to assess the alignment

accuracy by calculating MCC vs. the reference alignments.

Figures 1 and S1 show that even minor structural imperfections

combined with inaccuracies in binding residue prediction signif-

icantly alter the alignments. For instance, alignments constructed

for 22.2%, 4.1%, 48.9%, 10.9% and 3.8% pairs of ATP-binding

sites have MCC$0.5 when high-, moderate-quality models,

structures distorted to 2 Å, 4 Å and 6 Å are used (Figure 1).

Qualitatively similar accuracy is obtained for other ligands in the

SOIPPA dataset (Figure S1). This analysis indicates that non-

native target structures pose significant challenges to algorithms for

local ligand binding site alignment.

Residue-level scores extracted from weakly homologous
templates

eMatchSite constructs binding site alignments from all-against-

all pairwise Ca-Ca distances estimated by machine learning using

a set of residue-level scores. The accuracy of inter-residue distance

prediction is critical for the alignment quality. For the SOIPPA

dataset, Tables 2 and S2 show the Pearson correlation coefficients

(PCC) between the actual distances upon the superposition of

binding ligands and those predicted by Support Vector Machines

(for regression problems, SVR). The corresponding correlation

plots are presented in Figures 2 and S2. For example, PCC for

proteins binding S-adenosyl-L-homocysteine (SAH) is 0.95, 0.94

and 0.86, when the Ca-Ca distances are predicted using crystal

structures, high- and moderate-quality models, respectively

(Table 2 and Figures 2A–C). In addition to SVR, we constructed

another Support Vector Machines model (for classification

problems, SVC), which predicts aligned pairs using the same set

of residue-level scores. The accuracy of this classifier for SAH-

binding proteins from the SOIPPA dataset is shown in Figure 2D;

at a fixed false positive rate of 1%, the true positive rate is 63.6%,

60.6% and 52.6% for crystal structures, high- and moderate-

quality models, respectively. The performance of the SVC model

for other proteins is shown in Figure S3. These results demonstrate

that residue-level scores extracted from evolutionarily weakly

homologous templates can be used to accurately predict inter-

residue distances for local binding site alignments. Furthermore,

the SVR model performs slightly better than the SVC classifier in

constructing the actual alignments, therefore the former is used as

the default method in eMatchSite.

Binding pocket alignment by eMatchSite
The algorithm for the sequence order-independent alignment of

binding sites implemented in eMatchSite is illustrated in Figure 3

for two unrelated proteins, ATP-dependent DNA ligase (PDB-ID:

1a0iA) and histamine N-methyltransferase (PDB-ID: 2aotA). Both

proteins bind ligands that contain the adenine moiety, ATP and S-

adenosyl-L-homocysteine, respectively. However, they share little

similarity at the global sequence and structure levels; their pairwise

sequence identity is 23% and the TM-score between them is 0.28.

Using crystal structures, the distance between the experimental

pocket center and that predicted by eFindSite (MCC calculated

over binding residues) for 1a0iA and 2aotA is 2.55 Å (0.81) and

1.86 Å (0.68), respectively. Figure 3A shows the matrix of all-

Figure 2. Prediction of aligned residue pairs using machine learning for SAH-binding proteins from the SOIPPA dataset. The
correlation between the actual pairwise Ca-Ca distances upon the reference alignment of binding sites and those predicted by SVR is shown for (A)
crystal structures, (B) high-, and (C) moderate-quality protein models, respectively. (D) The ROC plot for the prediction of equivalent residue pairs
using SVC; CS – crystal structures, HQ – high-quality, MQ – moderate-quality models, R – random prediction.
doi:10.1371/journal.pcbi.1003829.g002
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against-all Ca-Ca distances estimated by machine learning using

SVR, where the pairs of residues selected by the Kuhn-Munkres

algorithm [40,41] to minimize the overall distance are highlighted

in green. These pairs are translated to the sequence order-

independent alignment of binding residues presented in Figure 3B.

Furthermore, Figure 3C shows the superposition of two target

proteins according to the local alignment of their binding sites; the

Ca-RMSD calculated over equivalent residue pairs is 2.13 Å. The

alignment accuracy can be evaluated using the relative orientation

of binding ligands upon the superposition of target proteins as

shown in Figure 3D. In addition to experimental structures,

Figures 3E–H show the performance of eMatchSite using weakly

homologous protein models, whose TM-score to the crystal

structures is 0.46 (1a0iA) and 0.57 (2aotA). For these structures

of 1a0iA and 2aotA, the distance between experimental and

predicted pocket center (MCC calculated over binding residues) is

2.92 Å (0.60) and 1.97 Å (0.61), respectively. Because of structural

distortions in the target models, both the matrix (Figures 3E) and

the alignment (Figure 3F) slightly differ from those generated using

crystal structures; however, eMatchSite still aligns binding residues

with a Ca-RMSD of 2.70 Å. According to this alignment, both

binding ligands adopt a similar orientation, which is shown in

Figure 3H. These case studies illustrate the procedure implement-

ed in eMatchSite and demonstrate that biologically correct

sequence order-independent alignments of ligand binding sites

can be constructed using protein models.

Performance on the SOIPPA dataset
The first comparative assessment of the performance of

eMatchSite in recognizing similar binding sites in globally

dissimilar proteins is evaluated on the SOIPPA dataset of

adenine-binding proteins [25]. In addition to target crystal

structures, we perform binding site matching calculations using

high- and moderate-quality protein models as well as distorted

conformations. Receiver operating characteristics (ROC) are

plotted in Figures 4 and S4 to evaluate the performance of

binding site alignment algorithms, eMatchSite, SiteEngine and

PocketMatch, in comparison to global similarity-based approaches

(the corresponding AUC values are reported in Table S3). Using

global sequence similarity yields an area under the ROC curve

(AUC) of 0.55–0.56 across all target structures. As expected, these

results are close to random, since the target proteins were selected

based on the low pairwise global sequence similarity [25].

Structure alignments produce slightly better results with the

AUC of 0.657, 0.655 and 0.671 for crystal structures, high- and

low-quality models, respectively, indicating that adenine-binding

proteins are slightly more similar at the global structure level

compared to control proteins. In contrast, the AUC for

eMatchSite, SiteEngine and PocketMatch using crystal structures

is 0.941, 0.933 and 0.603, respectively; thus eMatchSite and

SiteEngine perform comparably well, more efficiently detecting

similar binding sites than PocketMatch. When high- (moderate-)

quality protein models are used, the AUC for eMatchSite,

SiteEngine and PocketMatch is 0.953 (0.987), 0.893 (0.856) and

0.615 (0.627), respectively. We note that the SOIPPA datasets of

crystal structures and protein models comprise different numbers

of proteins. This is because for some non-native target conforma-

tions, ligand binding sites were not predicted with an acceptable

accuracy by eFindSite due to the deformations of their global

structures. Nevertheless, binding pocket matching algorithms can

still be compared to each other across the same set of target

structures. On that account, the AUC for eMatchSite is 6%

(13.1%) higher than that for SiteEngine using high- (moderate-)

quality protein models.
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Figure 3. Construction of sequence order-independent binding site alignments by eMatchSite. Two target proteins are ATP-dependent
DNA ligase (PDB-ID: 1a0iA, yellow) and histamine N-methyltransferase (PDB-ID: 2aotA, red). Left (A–D) and right (E–H) panels show the alignment of
binding sites in the crystal structures and protein models, respectively. (A, E) Matrices of pairwise Ca-Ca distances between two binding sites
predicted by SVR. Residue indexes are shown in the first column and row. Sets of residue pairs that have the smallest Ca-Ca distances identified by
the Kuhn-Munkres algorithm are highlighted in green. (B, F) Sequence order-independent alignments of two binding sites constructed from residue
pairs that have the smallest Ca-Ca distances; arrows indicate equivalent pairs. (C, G) Protein structures are superposed according to the local
alignment of their binding sites; binding residues and predicted pocket centers are shown as solid sticks and balls, respectively. (D, H) Relative
orientation of binding ligands upon the local alignment of target binding sites; ATP in 1a0iA and S-adenosyl-L-homocysteine in 2aotA are shown as
solid and transparent sticks, respectively.
doi:10.1371/journal.pcbi.1003829.g003

Figure 4. Performance of eMatchSite, PocketMatch and SiteEngine on the SOIPPA dataset of adenine-binding proteins. The accuracy
of local alignment predictors is compared to that using global sequence and structure alignments for (A) crystal target structures, (B) high-, and (C)
moderate-quality protein models. TPR and FPR are the true and false positive rates, respectively; gray area corresponds to a random prediction.
doi:10.1371/journal.pcbi.1003829.g004
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Next, we assess the accuracy of the actual alignments of ligand

binding sites between adenine-binding proteins. The performance

comparison for eMatchSite and SOIPPA in matching adenine-

binding sites is shown in Table 3. Here, the accuracy is evaluated

by an RMSD calculated over ligand heavy atoms upon the

superposition of aligned binding residues; correct alignments are

defined as those upon which binding ligands are positioned within

2 Å and 5 Å RMSD. Using crystal structures, eMatchSite

generates almost three times more accurate alignments than

SOIPPA. Furthermore, eMatchSite maintains its capabilities to

construct highly accurate alignments even when protein models of

varying quality are used. Table 3 shows that depending on the

model quality, the percentage of correctly aligned pairs of adenine-

binding sites is only 4–9% lower than those aligned using crystal

structures. This is an impressive result, given that the average Ca-

RMSD from native calculated over ligand binding residues is 2.0–

5.7 Å (Table 1). In addition to SOIPPA, we also compare the

performance of eMatchSite to SiteEngine across different confor-

mations of adenine-binding proteins. Table 4 reports the average

ligand heavy-atom RMSD calculated upon the superposition of

aligned binding residues (Table S5 shows the alignment accuracy

separately for different ligands). eMatchSite systematically gener-

ates more accurate local alignments than SiteEngine, with the

ligand RMSD better by roughly 1.0 Å, 1.5 Å and 2.5 Å when

crystal structures, high- and moderate-quality models are used,

respectively. These results demonstrate that eMatchSite not only

constructs more accurate sequence order-independent binding site

alignments, but also offers an improved tolerance to structural

deformations in non-native protein structures.

Performance on the Kahraman and Homogeneous
datasets

In the next assessment, we use the Kahraman and Homoge-

neous datasets compiled previously to evaluate the performance of

binding site matching algorithms. The Kahraman dataset

comprises proteins complexed with ligands of different sizes and

physicochemical properties [42], whereas the Homogeneous

dataset consists of ligands whose molecular weights are compara-

ble [35]. Similar to the SOIPPA dataset, we use three

conformations of the target proteins, crystal structures as well as

high- and moderate-quality models (their characteristics are

summarized in Table S1). Figure 5 shows the performance

assessment for eMatchSite compared to two global similarity-

based approaches as well as three binding site matching

algorithms, PocketMatch, SiteEngine and sup-CK (the corre-

sponding AUC values are reported in Table S3). Using the

Kahraman dataset, the performance of PocketMatch is compara-

ble to the global sequence and structure alignments and only

marginally better than random. The accuracy of sup-CK is similar

to SiteEngine, however, the latter performs slightly better using

modeled target structures. What stands out is that eMatchSite

systematically outperforms both sup-CK and SiteEngine with the

AUC larger by 3–4% for the crystal structures and by 8–12% for

protein models. In the original Kahraman dataset, three ligands

that contain the adenine moiety, ATP, ADP and NAD, are

considered as different molecules, thus recognizing a significant

similarity between, for example ATP and ADP binding sites,

counts as false positives. Therefore, similar to the SOIPPA dataset,

we also assess the performance of eMatchSite for adenine-binding

pockets grouped together, which is shown as dashed black lines in

Figures 5A–C. Using this classification, the corresponding AUC

for crystal structures, high- and moderate-quality models increases

to 0.786, 0.799 and 0.792, respectively. This represents roughly a

10% improvement with respect to the original classification,

suggesting that eMatchSite correctly recognizes similarities

between different ligands containing the adenine moiety. Note

that similar relationships were detected by applying MED-SuMo

to purine-binding proteins from the PDB [29]. The classification

of their binding sites revealed a number of distinct clusters, many

of which are heterogeneous, i.e. linked to various kinds of purine-

Table 3. Comparison of sequence order-independent binding site alignments constructed by SOIPPA and eMatchSite for adenine-
binding proteins.

Algorithm RMSD threshold Crystal structures High-quality models Moderate-quality models

SOIPPA 2 Å 6.3% - -

eMatchSite 15.6% 11.5% 6.5%

SOIPPA 5 Å 23.6% - -

eMatchSite 60.7% 56.4% 52.4%

The alignment accuracy is assessed by a ligand heavy-atom RMSD calculated upon the superposition of aligned binding residues. The percentage of benchmarking
protein pairs for which the ligand RMSD is below 2 Å and 5 Å is reported.
doi:10.1371/journal.pcbi.1003829.t003

Table 4. Comparison of sequence order-independent binding site alignments constructed by SiteEngine and eMatchSite for
adenine-binding proteins from the SOIPPA dataset.

Algorithm Crystal structures High-quality models Moderate-quality models

RMSD DRMSDa RMSD DRMSDa RMSD DRMSDa

SiteEngine 5.6363.37 3.6762.91 6.7863.29 4.8362.92 7.8963.68 6.0163.46

eMatchSite 4.8162.62 2.8562.40 5.2162.55 3.2662.33 5.3262.48 3.4462.22

The alignment accuracy is assessed by the average 6standard deviation ligand heavy-atom RMSD calculated upon the superposition of aligned binding residues.
aDRMSD is calculated by subtracting from RMSD a ligand heavy-atom root-mean-square deviation upon the superposition of two ligands.
doi:10.1371/journal.pcbi.1003829.t004
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Figure 5. Performance comparison for eMatchSite, PocketMatch, SiteEngine and sup-CK. Binding site matching is conducted using the
(A–C) Kahraman and (D–F) Homogeneous datasets. The accuracy of local alignment predictors is compared to that using global sequence and
structure alignments for (A, D) crystal target structures, (B, E) high-, and (C, F) moderate-quality protein models. TPR and FPR are the true and false
positive rates, respectively; gray area corresponds to a random prediction.
doi:10.1371/journal.pcbi.1003829.g005

Figure 6. Performance of eMatchSite, PocketMatch and SiteEngine on the Steroid dataset. The accuracy of local alignment predictors is
compared to that using global sequence and structure alignments for (A) crystal target structures, (B) high-, and (C) moderate-quality protein
models. TPR and FPR are the true and false positive rates, respectively; gray area corresponds to a random prediction.
doi:10.1371/journal.pcbi.1003829.g006
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containing ligands. Finally, we analyze separately adenine-binding

and other proteins from the Kahraman dataset. Figure S5 shows

that eMatchSite gives the best performance for both subsets across

different quality target structures.

The global structures of proteins binding different ligands in the

Homogeneous dataset are notably more similar to each other than

those from the Kahraman dataset. This explains a fairly high

accuracy of global structure alignments shown in Figures 5D–F for

the target crystal structures, high- and moderate-quality models;

here, the corresponding AUC values are 0.835, 0.810 and 0.808,

respectively (Table S3). The performance of PocketMatch,

SiteEngine and sup-CK is similar, with the latter providing a

slightly higher accuracy; however, it is still lower compared to the

global structure alignments. In contrast, the accuracy of

eMatchSite is significantly higher that using global as well as local

alignment predictors. Furthermore, the performance differences

increase when modeled structures are used as the targets; for

instance, the AUC for eMatchSite is 11.2% (18.8%), 15.9%

(21.0%) and 30.1% (25.0%) larger than that for sup-CK

(PocketMatch) using crystal structures, high- and moderate-quality

models, respectively.

Performance on the Steroid dataset
The last comparison is carried out using a dataset of steroid-

binding proteins and a large set of control proteins that bind

chemically dissimilar ligands, whose size is comparable to that of

estradiol. Figure 6 shows the performance of eMatchSite com-

pared to two global similarity-based approaches as well as two

binding site matching algorithms, PocketMatch and SiteEngine

(the corresponding AUC values are reported in Table S3). As for

the other datasets, we use three conformations of the target

proteins, crystal structures, high- and moderate-quality models,

which is shown in Figures 6A, 6B and 6C, respectively. Binding

site matching approaches perform better than the sequence-based

approach across all datasets of target structures. The accuracy of

PocketMatch, SiteEngine and the structure-based approach are

fairly comparable, except for the target crystal structures, for

which the structure-based approach performs better than Pock-

etMatch and SiteEngine. The AUC values for eMatchSite are

notably higher than those for PocketMatch and SiteEngine by 7–

15% using target crystal structures and high-quality models, and

by 20–26% using moderate-quality models. These results are

qualitatively similar to those obtained for the SOIPPA, Kahraman

and Homogeneous datasets and further demonstrate that

eMatchSite is less sensitive to structural distortions in target

proteins compared to other approaches.

Availability and Future Directions

In this study, we describe eMatchSite, a new method for

calculating the sequence order-independent alignments of ligand

binding sites in proteins. This approach employs a set of residue-

level scores derived from evolutionarily related templates and

machine learning to estimate inter-residue distances upon the

optimal superposition of ligand-binding sites. From these distanc-

es, local binding site alignments are constructed by the Kuhn-

Munkres algorithm. In addition to the alignments, eMatchSite

provides a calibrated significance score, which effectively identifies

those pockets binding chemically similar ligands regardless of any

global sequence and structure similarities between the target

proteins. Benchmarking calculations are performed using four

datasets of globally unrelated proteins that bind similar ligands.

Compared to several other algorithms for ligand binding site

matching, eMatchSite offers two unique features. The first is a

high tolerance to structural deformations in ligand binding regions

in protein models. For example, eMatchSite generates accurate

alignments of adenine-binding pockets in crystal structures for

almost three times more benchmarking protein pairs than

SOIPPA. Moreover, the percentage of correctly aligned pairs of

adenine-binding sites in weakly homologous protein models is only

4–9% lower than those aligned using crystal structures. This

represents a significant improvement over other algorithms, e.g.

the performance of eMatchSite in recognizing similar binding sites

is 6% and 13% higher than that for SiteEngine using high- and

moderate-quality protein models, respectively. Many proteins are

known to undergo conformational changes upon ligand binding,

however, a high tolerance to structural distortions in protein

models suggests that eMatchSite will work well with ligand-free

experimental structures as well. The second feature is the

applicability to predicted pockets that may contain inaccuracies

in the definition of binding residues. In general, the accuracy of

binding residue prediction depends on the quality of target

structures [39], thus using better models results in more accurate

local alignments of their binding sites. Moreover, using binding

residues predicted by evolution/structure-based approaches, such

as eFindSite [39], may yield better accuracy in pocket matching

between members of highly conserved protein families. These

residues correlate with the conserved aspects of molecular function

and are independent on the size of a particular ligand that was co-

crystallized with the target protein. In addition, if ligand binding

occurs outside cavities in protein structures, the corresponding

binding residues can still be correctly identified by eFindSite as

long as these are functionally conserved across sets of evolution-

arily related proteins. Since eMatchSite includes strong evolution-

ary components in its scoring function, we should expect more

accurate results for those target proteins belonging to functionally

conserved families with distinct ligand binding patterns.

Constructing biologically correct alignments using predicted

ligand binding sites in protein models opens up the possibility of

investigating drug-protein interaction networks for complete

proteomes. The prospective systems-level applications of

eMatchSite include the development of safer biopharmaceuti-

cals with reduced side effects, polypharmacology and rational

drug repositioning. eMatchSite is freely available to the

academic community as a web-server and a stand-alone

software package at http://www.brylinski.org/ematchsite. This

website also provides a complete documentation including

walkthrough tutorials and case studies demonstrating the

installation and execution procedures as well as the interpreta-

tion of results.

Supporting Information

Figure S1 Effects of target structure distortions on the quality of

local ligand binding site alignments. MCC is Matthew’s correla-

tion coefficient calculated against the reference alignments

constructed using target crystal structures. Alignment accuracy is

assessed separately for different ligands from the SOIPPA dataset:

(A) ADP, (B) ATP, (C) FAD, (D) NAD, (E) SAH, and (F) SAM.

(TIF)

Figure S2 Correlation between the actual pairwise Ca-Ca
distances upon the reference alignment of binding sites and those

predicted by SVR. The correlation is plotted separately for

different ligands from the SOIPPA dataset, ADP, ATP, FAD,

NAD, SAH, and SAM, using (A) target crystal structures, (B) high-

and (C) moderate-quality models, as well as structures distorted to

(D) 2 Å, (E) 4 Å and (F) 6 Å Ca-RMSD.

(TIF)

Alignment of Ligand Binding Sites in Protein Models

PLOS Computational Biology | www.ploscompbiol.org 13 September 2014 | Volume 10 | Issue 9 | e1003829

http://www.brylinski.org/ematchsite


Figure S3 ROC plots for the prediction of equivalent residue

pairs using SVC and different quality target structures. The

accuracy is assessed separately for different ligands from the

SOIPPA dataset, (A) ADP, (B) ATP, (C) FAD, (D) NAD, (E) SAH,

and (F) SAM. TPR and FPR are the true and false positive rates,

respectively; gray area corresponds to a random prediction.

(TIF)

Figure S4 Performance of eMatchSite, PocketMatch and

SiteEngine on the SOIPPA dataset of adenine-binding proteins.

The accuracy of local alignment predictors is compared to that

using global sequence and structure alignments for (A) crystal

target structures, (B) high- and (C) moderate-quality protein

models, as well as structures distorted to (D) 2 Å, (E) 4 Å and (F)

6 Å Ca-RMSD. TPR and FPR are the true and false positive

rates, respectively; gray area corresponds to a random prediction.

(TIF)

Figure S5 Performance of eMatchSite, PocketMatch, SiteEn-

gine and sup-CK on the Kahraman dataset. Binding site matching

is conducted using (A–C) adenine-binding and (D–F) other

proteins. The accuracy of local alignment predictors is compared

to that using global sequence and structure alignments for (A, D)

crystal target structures, (B, E) high-, and (C, F) moderate-quality

protein models. TPR and FPR are the true and false positive rates,

respectively; gray area corresponds to a random prediction.

(TIF)

Table S1 Global and local structure quality of benchmarking

proteins from the SOIPPA, Kahraman, Homogeneous and

Steroid datasets. High- and moderate-quality models are con-

structed by eThread. Distorted structures were generated by

deforming the crystal structures to a desired Ca-RMSD. Ligand

binding sites and residues are detected by eFindSite.

(PDF)

Table S2 Accuracy of inter-residue distance prediction for

adenine-binding proteins from the SOIPPA dataset. The Pearson

correlation coefficient (PCC) and the mean squared error (MSE)

are calculated for the actual pairwise Ca-Ca distances upon the

superposition of binding ligands and those predicted by SVR from

residue-level scores. The accuracy is reported separately for

different binding ligands and target protein conformations

including crystal structures, high- and moderate-quality protein

models, as well as structures distorted to 2 Å, 4 Å and 6 Å Ca-

RMSD.

(PDF)

Table S3 Performance of eMatchSite, PocketMatch, SiteEngine

and sup-CK in recognizing similar ligand binding sites. The

accuracy is assessed by the area under ROC. The performance of

local alignment predictors is compared to that using global

sequence and structure alignments for different target structures

from the SOIPPA, Kahraman, Homogeneous and Steroid

datasets.

(PDF)

Table S4 Comparison of sequence order-independent binding

site alignments constructed by SOIPPA and eMatchSite for

adenine-binding proteins. The alignment accuracy is assessed by a

ligand heavy-atom RMSD calculated upon the superposition of

aligned binding residues. The percentage of benchmarking protein

pairs for which the RMSD is below 2 Å and 5 Å is reported.

(PDF)

Table S5 Comparison of sequence order-independent binding

site alignments constructed by SiteEngine and eMatchSite for

adenine-binding proteins from the SOIPPA dataset. The align-

ment accuracy is assessed by the average 6standard deviation

ligand heavy-atom RMSD calculated upon the superposition of

aligned binding residues.

(PDF)
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