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Against Predicted Ligand Binding Sites in Protein Models
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1 Introduction

Ligand virtual screening is a computational methodology
for selecting small molecules (ligands) that bind to target
proteins (receptors). Of particular interest in modern drug
discovery, this technique is cost-effective in predicting po-
tential hit compounds before undertaking experimental
drug screening. Therefore, ligand virtual screening has
become a standard practice in pharmaceutical industry as
well as in drug related research.[1] Currently, one of the
most commonly used techniques in computer-aided drug
design is ligand virtual screening by molecular docking,
which predicts physical interactions between receptor pro-
teins and drug candidates at the atomic level.[2,3] This pro-
cess requires two keys elements: an effective search algo-
rithm and a reliable scoring function. In order to identify an
optimal conformation of a ligand-protein complex, a robust
searching algorithm is pivotal ; here, the major challenge is
to efficiently explore the protein-ligand conformational
space, which can be potentially very large. Equally impor-
tant is an accurate scoring function to evaluate binding af-
finities of docked compounds, so that bioactive molecules
are assigned higher ranks than inactive ligands. Over the
past years, a significant progress has been made and
a number of molecular docking algorithms and tools have
been developed. Docking methods, e.g. AutoDock,[4,5]

DOCK,[6] FlexX,[7] GOLD,[8,9] Glide,10] and Surflex-Dock,[11]

employ their own searching schemes and scoring func-

tions, thus present individual strengths and weaknesses.
Studies demonstrating successful experimental validation
of many of these tools have also been reported;[12–15] how-
ever, significant challenges exist.[16,17] For example, high-res-
olution protein structures are typically required for reliable
virtual screening and ligand ranking, which hinders the ap-
plication of ligand virtual screening in large-scale projects
at the proteome level.

As one of scientific breakthroughs, genome sequencing
of hundreds of organisms including human has been com-
pleted. A constantly increasing pace of sequencing leads to
the exponential accumulation of genomic data. Benefiting
from this unique scientific advancement, systems biology
has emerged to accelerate studies of complex interactions
at the proteome-level.[18] Clearly, systems-level approaches
require a comprehensive knowledge of the entire reper-
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Abstract : A standard practice for lead identification in drug
discovery is ligand virtual screening, which utilizes comput-
ing technologies to detect small compounds that likely
bind to target proteins prior to experimental screens. A
high accuracy is often achieved when the target protein
has a resolved crystal structure; however, using protein
models still renders significant challenges. Towards this
goal, we recently developed eFindSite that predicts ligand
binding sites using a collection of effective algorithms, in-
cluding meta-threading, machine learning and reliable con-
fidence estimation systems. Here, we incorporate finger-
print-based virtual screening capabilities in eFindSite in ad-
dition to its flagship role as a ligand binding pocket predic-
tor. Virtual screening benchmarks using the enhanced Di-

rectory of Useful Decoys demonstrate that eFindSite
significantly outperforms AutoDock Vina as assessed by
several evaluation metrics. Importantly, this holds true re-
gardless of the quality of target protein structures. As a first
genome-wide application of eFindSite, we conduct large-
scale virtual screening of the entire proteome of Escherichia
coli with encouraging results. In the new approach to fin-
gerprint-based virtual screening using remote protein ho-
mology, eFindSite demonstrates its compelling proficiency
offering a high ranking accuracy and low susceptibility to
target structure deformations. The enhanced version of
eFindSite is freely available to the academic community at
http://www.brylinski.org/efindsite.
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toire of gene products within a given proteome, preferably
including structural information. However, for the human
genome as an example, experimentally solved protein
structures only account for less than a quarter of the entire
proteome. This dire situation calls for alternative methods
to fill in the gap. Providentially, fast advancements in com-
puting technologies have empowered computational ap-
proaches to protein structure modeling facilitating a broad
range of research activities. In protein structure prediction
thus far, two primary approaches are widely used. Compa-
rative modeling is suitable for generating structures for
proteins closely homologous to those with known struc-
tures (templates), whereas threading/fold recognition uti-
lizes weakly homologous templates found by mining the
“twilit zone” of sequence similarity.[19] The latter is based on
the observation that protein structure is more conserved
than sequence.[20,21] For either approach, the basic concept
is to identify a template or a set of templates from the Pro-
tein Database Bank,[22] which are subsequently used to gen-
erate a structure model of the target protein. Incorporating
computationally generated models of gene products signif-
icantly expands the structural coverage of the human pro-
teome and, consequently, improves proteome-wide func-
tional inference and annotation.[23–25] Across-genome pro-
tein structure modeling should also benefit drug design by
accelerating the discovery of leads for polypharmacolo-
gy[26,27] as well as facilitating drug repositioning.[28,29] Despite
continuous improvements in modeling techniques, the
quality of protein models remains lower than experimental-
ly solved structures. Thus, the key question is whether pro-
tein models can be reliably used in structure-based func-
tion annotation.[30] In drug development, the question be-
comes whether protein models of varying quality can be
routinely utilized in ligand virtual screening without com-
promising its ranking capabilities, which is particularly im-
portant for proteome-wide applications.

In this spirit, we extended eFindSite, a recently devel-
oped approach for ligand binding site prediction,[31] to per-
form virtual screening. eFindSite is an evolution/structure-
based method that employs a collection of advanced tech-
niques including highly sensitive meta-threading and unsu-
pervised as well as supervised machine learning algorithms.
It is especially powerful in the prediction of ligand binding
pockets in weakly homologous protein models. eFindSite
exploits a tendency of proteins to preserve the locations of
ligand binding sites in certain folds.[32] Consequently, re-
gions possessing functionally important features tend to be
evolutionarily conserved. These include ligand attributes as
well ; for instance, compounds binding to evolutionarily re-
motely related homologues contain strongly conserved
anchor functional groups.[33] Based on these observations,
eFindSite extracts binding ligands and their chemical prop-
erties from holo-templates detected by sequence profile-
driven meta-threading[34] for use in fingerprint-based virtual
screening. Note that despite implementing similar tech-
niques to these widely used in ligand-based virtual screen-

ing, eFindSite is conceptually more similar to structure-
based methods, viz. it requires only target protein struc-
tures, but no a priori knowledge on sets of binding mole-
cules. Using target crystal structures as well as weakly ho-
mologous protein models, we evaluate the performance of
eFindSite in virtual screening to identify small organic mol-
ecules that likely bind to the predicted binding pockets
using KEGG Compound[35] and ZINC12[36] libraries. Further-
more, in large-scale benchmarks using the enhanced ver-
sion of the Directory of Useful Decoys (DUD-E),[37] we com-
pare eFindSite to AutoDock Vina,[5] which is one of the
most widely used tools for structure-based virtual screen-
ing. We show that eFindSite maintains its high ligand rank-
ing accuracy at a fairly constant level regardless of the
structure quality of target proteins. Finally, as the example
of a genome-wide application, we perform virtual screening
against the entire proteome of Escherichia coli with encour-
aging results. Data collected through the work described in
this study as well as stand-alone software distribution and
online services for eFindSite are freely available to the aca-
demic community at http://www.brylinski.org/efindsite.

2 Materials and Methods

2.1 Holo-Template Library and PDB-Bench Dataset

eFindSite requires a template library of protein-ligand com-
plexes, which was compiled using ligand-bound proteins
from the Protein Small Molecule Database.[38] Template re-
dundancy was removed using PISCES[39] and a threshold of
40 % pairwise sequence identity. However, proteins that
bind multiple ligands at different locations separated by at
least 8 �, were included even if their global sequence simi-
larity is >40 %. With respect to ligand selection, we kept
only small organic compounds composed of 6–100 heavy
atoms non-covalently bound to template proteins. This fil-
tering process produced a non-redundant and representa-
tive holo-template library composed of 15,285 proteins
complexed with 20,215 ligands.

The first benchmarking dataset, referred to as PDB-
bench, was compiled from the template library using three
additional selection criteria. First, proteins 50–600 residues
in length were identified. Second, we kept only those pro-
teins, for which at least three weakly homologous and
structurally related ligand-bound templates were identified
using meta-threading. Here, weak homology is demarcated
by a maximum sequence identity of 40 %, whereas the
structural relationship is measured by a TM-score[40] report-
ed by Fr-TM-align[41] with a significance threshold set to 0.4.
The last criterion considers only those proteins that bind
either a single ligand or multiple ligands, but in approxi-
mately the same location according to the Protein Data
Bank (PDB).[22] Applying these criteria yields a non-redun-
dant dataset of 3,659 protein-ligand complexes, PDB-
bench. In addition to the default target-template sequence
identity threshold of 40 %, we also benchmark binding
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pocket prediction and ligand ranking against the PDB-
bench dataset using only those templates whose sequence
identity is below 30 %, 20 % and 10 %.

2.2 Directory of Useful Decoys, Enhanced (DUD-E) Dataset

DUD-E is a database specifically designed to perform rigor-
ous tests of docking algorithms, scoring functions and vir-
tual screening tools.[37] Compared to the original DUD data-
set,[42] DUD-E comprises a more diverse set of 102 proteins
including ion channels and G-protein coupled receptors.
The total number of experimentally validated active com-
pounds in DUD-E is 22,886, which gives an average
number of 224 ligands per protein target. Furthermore,
sets of property-matching decoy molecules are significantly
expanded to 50 per one active compound.

2.3 Benchmarking Protein Structures

For both datasets, PDB-bench and DUD-E, we compiled
three sets of target protein structures. The first set compris-
es crystal structures obtained from the PDB.[22] In addition,
we generated two sets of protein models of high and mod-
erate quality, which are used to assess the sensitivity of
ligand virtual screening to structural deformations in target
protein structures. Weakly homologous protein models
were constructed by eThread, a recently developed
method for template-based protein structure modeling.[34,43]

eThread employs structure assembly using either Model-
ler[44] or TASSER-Lite;[45] we used both protocols to generate
up to 20 models excluding those templates that share
>40 % sequence identity with the target protein. Next, one
model with a TM-score to native of >0.7 was randomly se-
lected for the high-quality dataset. Similarly, another model
from a TM-score range of 0.4–0.7 was randomly chosen
and included in the moderate-quality dataset. When the
model construction procedure did not produce structures
of preferred quality for either dataset, the crystal structure
was artificially distorted to a desired resolution using
a simple Monte Carlo procedure.[46]

2.4 Virtual Screening Using eFindSite

The flowchart for virtual screening by eFindSite is present-
ed in Figure 1. eFindSite utilizes holo-templates with known
structures to identify binding pockets in target proteins.[31]

For each predicted binding site, e.g. the one shown in Fig-
ure 1A, template-bound ligands are extracted and convert-
ed to a fingerprint representation. Molecular fingerprints
are bit strings that represent the structural and chemical
features of organic compounds.[47] Here, we employ two
fingerprints commonly used in cheminformatics : 166-bit
MACCS[48] and 1024-bit Daylight (http://www.daylight.com/
dayhtml/doc/theory/). The calculation of Daylight finger-
prints is conducted by OpenBabel[49] and MACCS finger-
prints by MayaChemTools (http://www.mayachemtools.org/).

Next, using an average linkage clustering with the Tanimo-
to coefficient threshold of 0.7, template-bound compounds
are clustered into n groups. This procedure results in two
types of clusters: Daylight and MACCS, denoted in Fig-
ure 1B as CD and CM, respectively. Each cluster has a weight,

which corresponds to the fraction of compounds that
belong to this cluster. In addition, from individual finger-
prints of template-bound compounds, we calculate two fin-
gerprint profiles: Daylight and MACCS. Molecular finger-
prints are binary, i.e. each bit position is set either on or off,
whereas in a fingerprint profile, it is replaced by a fraction
of compounds that have this bit position set on.

In order to maximize compound ranking accuracy, we in-
corporate 3 different measures of fingerprint overlap be-
tween a query compound and template-bound molecules:
traditional (TC), average (aveTC) and continuous (conTC) Ta-
nimoto coefficient. These scores are calculated separately
for Daylight and MACCS fingerprints, see Figure 1D. Tani-
moto coefficient, TC, is one of the most popular measures
to quantify the similarity of two sets of bits and it is tradi-
tionally defined as:[50]

TC ¼ c
aþ bþ c

ð1Þ

where a is the count of bits on in the 1st string but not in
the 2nd string, b is the count of bits on in the 2nd string but
not in the 1st string, and c is the count of the bits on in
both strings. In addition, the overlap between two molecu-
lar fingerprints can be measured by the average Tanimoto
coefficient, aveTC :[51]

Figure 1. Flowchart of virtual screening using eFindSite. (A) eFind-
Site starts with the prediction of binding sites in the target struc-
ture and collects ligands bound to the template proteins at similar
locations. (B) Template-bound ligands are partitioned into n clus-
ters using two molecular fingerprints: Daylight (CD) and MACCS
(CM). Compounds from a virtual screening library (C) are scored
using template ligand clusters and three versions of the Tanimoto
coefficient, TC, aveTC and conTC, calculated for Daylight (super-
script D) and MACCS (superscript M) fingerprints (D). (E) A variety
of scoring functions are available to rank the query compounds in-
cluding single fingerprint-based scores, data fusion techniques as
well as machine learning, leading to the final ranked library (F).
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aveTC ¼ TC þ TC 0

2
ð2Þ

where TC’ is the Tanimoto coefficient calculated for bit posi-
tions set off rather than set on. Furthermore, we use a ver-
sion of the Tanimoto coefficient for continuous variables:[52]

conTC ¼
P

xpixciP
x2

pi þ
P

x2
ci �

P
xpixci

ð3Þ

where xpi is the i-th descriptor of a fingerprint profile and
xci is the i-th descriptor of a query compound. Tanimoto co-
efficient for continuous variables, conTC, measures a consen-
sus score between a query compound and all template li-
gands, which are represented by a fingerprint profile. Tradi-
tional, TC, and average Tanimoto coefficient, aveTC, scores
are calculated using a weighted average over the template
ligand clusters:

TCD ¼
Xn

j

wjTCj ð4Þ

where the superscript D stands for Daylight fingerprints, n
is the number of template ligand clusters, wj is the weight
of j-th cluster as defined above, and TCj is the traditional Ta-
nimoto coefficient between a query compound and a repre-
sentative template ligand (cluster centroid) from j-th clus-
ter. The remaining single scores, aveTCD, conTCD, TCM,
aveTCM and conTCM, are calculated in a similar fashion.

Figure 1E lists scoring functions available for virtual
screening using eFindSite. In addition to the 6 individual
scoring functions: TC, aveTC and conTC calculated using
1024-bit Daylight and 166-bit MACCS molecular finger-
prints, we developed 3 composite scoring functions using
data fusion techniques, in which information on the same
dataset is integrated for a more coherent representation.[53]

Data fusion-based scoring functions combine 6 individual
fingerprint scores and apply SUM, MIN and MAX rules. That
is, library compounds are re-ranked by the sum of their in-
dividual scores, the minimal and the maximal values, re-
spectively. Other than data fusion, we also designed a ma-
chine learning approach to ligand ranking using Support
Vector Machines (SVM) for classification problems (SVC).
Here, we use an SVC implementation from libSVM[54] and
a feature vector for machine learning consisting of 6 indi-
vidual scoring functions: TCD, aveTCD, conTCD, TCM, aveTCM,
and conTCM. A two-class (binding/non-binding) SVC model
is used to estimate the probability that a given ligand
binds to the predicted pocket. The implemented machine
learning model is cross-validated against the DUD-E dataset
using a leave-one-out protocol. Specifically, one protein is
removed from the dataset before constructing an SVC
model and the performance of the model is evaluated by

the excluded case; this procedure is repeated for the entire
dataset.

2.5 C + + Implementation of Fingerprints

eFindSite stores molecular fingerprints using the class tem-
plate bitset of fixed-size sequences of N bits, where N is
1024 for Daylight and 166 for MACCS fingerprints (C + +
syntax is std::bitset<1024> and std::bitset<166> , re-
spectively). This particular implementation allows a rapid
comparison of two fingerprints using standard logic opera-
tors: XOR, AND, OR (C + + operators are ^ = , & = and j = ,
respectively) and a public member function std::bitset::-
count. Using these operations, the traditional Tanimoto co-
efficient, TC, can be expressed as:

TC ¼ OR� AND
OR� ANDþ XOR

ð5Þ

The calculation of aveTC can be done in a similar fashion,
additionally including a public member function std::bit-
set::flip to calculate the Tanimoto coefficient for bit posi-
tions set off rather than set on. We note that this algorithm
eliminates expensive iterations through containers, which
are required when using standard array-like implementa-
tions of fingerprints. Finally, each element of the class tem-
plate bitset occupies only one bit, thus this design is also
highly optimized for space allocation.

2.6 Confidence Index

Irrespective of the scoring function used, virtual screening
confidence is assessed using a Z-score calculated for the
top ranked compound. For instance, the Z-score when
using TCD is defined as:

Z�score ¼
TCD

top � TCD
� �

sTCD
ð6Þ

where TCD
top is the TCD for the top-ranked compound, and

hTCDi and sTCD are the average TCD and the standard devia-
tion calculated over all library compounds. Z-score confi-
dence estimates for aveTCD, conTCD, TCM, aveTCM and
conTCM, are calculated in a similar fashion.

We also developed a machine learning-based confidence
index for virtual screening using eFindSite and composite
(data fusion) scoring functions. Specifically, we assign
ligand ranking with either “low” or “high” confidence by an
SVM classification model, which uses Z-score values calcu-
lated for the top-ranked compound by 6 individual finger-
print-based scoring functions. Similar to compound scoring
using SVC, we also use a machine learning implementation
from libSVM;[54] the model is cross-validated against the
PDB-bench dataset using a leave-one-out protocol. A two-
class (“low”/”high”) classifier estimates a probability that
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the native ligand is ranked within the top 1 % and 10 % of
the screening library.

2.7 Virtual Screening Using AutoDock Vina

The performance of eFindSite is compared to AutoDock
Vina, version 1.1.2.[5] Target protein structures are converted
to the required PDBQT format using MGL Tools, version
1.5.4.[55] The addition of polar hydrogens and partial charg-
es as well as format conversion to PDBQT of ligand mole-
cules is carried out using Open Babel, version 2.3.1.[56] In
Vina, the default protocol is used with the docking box
center set to the predicted pocket center reported by
eFindSite.

2.8 Compound Libraries for Virtual Screening

eFindSite virtual screening can be used with the following
screening libraries (number of compounds is given in pa-
rentheses): BindingDB[57] (338,662), DrugBank[58] (6,126),
KEGG Compound[35] (11,265), KEGG Drug[35] (5,992), RCSB
PDB[59] (12,879), NCI-Open[60] (239,870), ChEMBL[61] (248,344)
and ZINC12[36] (244,659). Due to the large number of com-
pounds in ChEMBL and ZINC12, we compiled their non-re-
dundant subsets using the SUBSET program[62] and a pair-
wise Tanimoto coefficient threshold of 0.8.

2.9 Genome-Scale Ligand-Based Virtual Screening

For genome-scale virtual screening using eFindSite, we se-
lected Escherichia coli K12 strain,[63] which is widely used in
molecular biology and bioengineering. Structure models of
4,552 E. coli gene products 50–600 residues in length have
been constructed using eThread as described previously.[31]

Briefly, 3D models were assembled using Modeller;[44] how-
ever, when an estimated TM-score was <0.5 indicating dif-
ficult modeling, TASSER-Lite[64] was used to construct addi-
tional models. In these cases, the final model of a target
protein was selected based on a higher TM-score estimated

by eRank. Using structure models, ligand binding sites were
predicted in gene products in E. coli proteome by eFindSite.
In the present study, each putative binding pocket is fur-
ther subject to ligand virtual screening against ZINC12 and
KEGG Compound libraries in order to identify potential
binding molecules.

3 Results and Discussion

3.1 Virtual Screening Against PDB-Bench Dataset

Initial virtual screening benchmarking calculations are car-
ried out for PDB-bench proteins with an objective to identi-
fy native ligands within a non-redundant background li-
brary of 244,659 compounds from ZINC12.[36] In these
benchmarks, we use three sets of target structures: crystal
structures as well as high- and moderate-quality protein
models. The characteristics of non-native, modeled struc-
tures are presented in Figure 2. Figure 2A (2B) shows that
the average global Ca-RMSD from native (TM-score) for
high- and moderate-quality models is 4.8 � (0.81) and
11.7 � (0.55), respectively. These values are also well corre-
lated with the local structure quality of ligand binding sites,
whose Ca (all-atom) RMSD is 2.5 � (3.3 �) and 6.1 � (7.0 �),
respectively; see Figures 2C and 2D. Certainly, these devia-
tions from experimental conformations pose a significant
challenge for using protein models as targets in virtual
screening.

In Table 1, the ranking accuracy of eFindSite is assessed
by the median rank of native ligands normalized by the
total number of compounds in the screening library. First,
we evaluate 6 individual scoring functions based on 2
types of molecular fingerprints, Daylight and MACCS, and 3
versions of Tanimoto coefficient: TC, aveTC and conTC. In
addition to the entire benchmarking dataset, we assess the
results separately for the subset of targets for which bind-
ing sites are accurately predicted, i.e. Matthew’s correlation
coefficient (MCC) for binding residues is �0.5. Independ-
ently on the target structure quality, aveTC is the most ef-

Figure 2. Structure quality of two datasets of protein models used in addition to crystal structures as targets for ligand virtual screening.
Global (A) Ca-RMSD and (B) TM-score, (C) Ca-RMSD and (D) all-atom (non-hydrogen) RMSD of ligand binding sites.
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fective individual scoring function; using Daylight and
MACCS fingerprints, a native ligand is typically ranked
within the top 1.46 % and 2.97 % of the screening library
for all predicted pockets, respectively. Not surprisingly,
when only accurately predicted pockets are considered, the
ranking accuracy increases to 0.10 % and 0.14 %, respective-
ly. Moreover, Daylight fingerprints are more accurate than
MACCS in these benchmarking calculations. Further im-
provement is observed when data fusion is applied to com-
bine compound ranks obtained by individual scoring func-
tions. Depending on the quality of target structures, the
native ligand is now ranked within the top 1.1–1.2 % and
0.03–0.04 % of the library for all and the subset of accurate-
ly predicted pockets, respectively. These results are in line
with previous studies reporting the enhanced performance
of binary similarity searching by data fusion techniques.[65,66]

Importantly, this analysis also demonstrates that eFindSite
to large extent tolerates distortions in target protein struc-
tures, thus it is applicable not only to crystal structures, but
also to high- as well as moderate-quality models.

3.2 Effects of Protein Homology on Virtual Screening

Many novel protein targets may be evolutionarily only
weakly related to structures currently available in the PDB.
In that regard, we evaluate the impact of low protein ho-
mology on ligand binding site prediction and virtual
screening using eFindSite. In Figure 3, in addition to the de-
fault sequence identity threshold of 40 % used in this study,
we predict binding sites and conduct virtual screening for
the PDB-bench dataset using only those templates whose
sequence identity is �30 % and �20 %. The accuracy of
binding site prediction at 40 % and 30 % sequence identity
thresholds is comparably high; for instance the percentage
of proteins for which at least one pocket is detected is
98 % and 95 %, respectively. Moreover, binding sites are
predicted within 8 � (4 �) from the geometric center of
a native ligand for 71 % (57 %) and 67 % (53 %) of the tar-
gets, respectively. The performance of eFindSite starts dete-
riorating at very low sequence identity thresholds; exclud-

ing templates with >20 % sequence identity to the target
results in at least one binding site predicted and these pre-
dicted within 8 � and 4 � for 81 %, 45 % and 33 % of the
target proteins, respectively. We note that at the threshold
of 10 %, binding sites are detected for less than 1 % of the
targets, thus these results are not included in Figure 3.

Next, we calculate the fraction of targets, for which the
native ligand is ranked within the top 1 % and 10 % of the
ZINC12 screening library. Moreover, we consider only these
targets, for which the binding site is predicted within a dis-
tance of 8 � and 4 � from the experimental pocket center;
this is because virtual screening is unreliable for incorrectly
predicted pockets as shown in Table 1. Under these condi-
tions, the accuracy of virtual screening using eFindSite is
fairly independent on protein homology. Figure 3 shows
that at the sequence identity thresholds of 20–40 %, for
~70 % (~60 %) and ~65 % (~55 %) of the targets, the native
ligand is ranked within the top 10 % (1 %) when using
pockets predicted within 4 � and 8 �, respectively. Thus,
very remote protein homology (less than 20 % sequence
identity) affects the accuracy of pocket prediction; however,
virtual screening is still successful when correct pockets are
detected.

3.3 Virtual Screening Against DUD-E Dataset

In addition to the PDB-bench dataset, we evaluate the per-
formance of eFindSite against the DUD-E dataset,[37] the en-
hanced version of the Directory of Useful Decoys[42] that is
widely used in virtual screening benchmarking as a gold
standard dataset. A key feature of these compound sets is
that decoy molecules are carefully selected to match physi-
cochemical properties of active compounds; however, they
have different topologies and, consequently, bioactivity
profiles. Similar to the PDB-bench, we compare virtual
screening results using individual scoring functions as well
as data fusion techniques. The diversity of target proteins
and compound sets also allows for the construction and
cross-validation of a non-linear, machine learning-based
scoring function. We assess the performance by several

Table 1. Median rank of the native ligand from the PDB-bench dataset expressed as the percentage of the screening library.

Dataset Daylight fingerprints[a] MACCS fingerprints[a] Data fusion

TCD aveTCD conTCD TCM aveTCM conTCM SUM MAX MIN

Crystal structures 4.02 % 1.46 % 3.10 % 7.51 % 2.97 % 5.06 % 3.88 % 1.11 % 7.27 %
Crystal structures
MCC �0.5[b]

0.12 % 0.10 % 0.20 % 0.32 % 0.14 % 0.23 % 0.21 % 0.04 % 0.33 %

High-quality models 4.04 % 1.47 % 3.12 % 8.27 % 3.10 % 5.24 % 4.33 % 1.21 % 7.86 %
High-quality models
MCC �0.5[b]

0.12 % 0.10 % 0.21 % 0.32 % 0.15 % 0.23 % 0.22 % 0.04 % 0.34 %

Moderate-quality models 4.08 % 1.44 % 3.02 % 7.47 % 3.03 % 5.18 % 3.99 % 1.20 % 6.68 %
Moderate-quality models
MCC �0.5[b]

0.09 % 0.09 % 0.16 % 0.26 % 0.14 % 0.19 % 0.19 % 0.03 % 0.32 %

[a] TC, aveTC and conTC is the traditional, average and continuous Tanimoto coefficient, respectively. [b] Only correctly predicted pockets
for which MCC calculated over the binding residues is �0.5 are used.
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metrics widely used in cheminformatics : enrichment factor
(EF) for the top 1 % and 10 % of the ranked library, Boltz-
mann-enhanced discrimination of receiver operating char-
acteristics (BEDROC), area under the accumulation curve
(AUAC) and ACT-50 %. EF measures the enrichment of the
top fraction of the ranked library with active compounds
compared to that obtained purely by a random chance;
larger EF indicates better ranking capabilities. BEDROC ad-
dresses the so-called “early recognition problem”; it was de-
signed to assess the overall performance of an algorithm
by assigning privileged weights to active compounds en-
riched in the top fraction of the ranked library.[67] We use
BEDROC20 in our analysis, which means that 80 % of final
BEDROC scores are based on the first 8 % of the ranked da-
taset. AUAC measures the distribution of active compounds
over the whole screening library and ACT-50 % corresponds
to the top fraction of the ranked library that contains half
of the active molecules.

First, we identify these DUD-E proteins, for which eFind-
Site predicted binding sites within a distance of �8 � with
MCC calculated for binding residues of �0.4. Figure 4
shows the distribution of distances between predicted and

experimental pockets. Consistent with our previous re-
sults,[31] the performance of pocket prediction drops off
with the decreasing quality of target structures from crystal
structures to high- and moderate-quality protein models.
Based on the accuracy of predicted binding sites, we select-
ed from the DUD-E dataset 81 crystal structures, 68 high-
and 57 moderate-quality models for virtual screening
benchmarks.

Table 2 evaluates different scoring functions implement-
ed in eFindSite on the DUD-E dataset. Depending on the
quality of target structures, using Daylight and MACCS bit
strings yields BEDROC20 values of 0.23–0.27 and 0.28–0.29,
respectively, thus MACCS fingerprints are slightly more ac-
curate here than Daylight fingerprints. Individual scoring
functions are outperformed by combined ranking methods;
for instance, machine learning using SVC gives BEDROC20
of 0.30–0.31. Data fusion, particularly using the SUM rule, is
the most accurate with BEDROC20 values up to 0.33. As as-
sessed by AUAC, data fusion yields scores of 0.72–0.76,
which are higher than those calculated using individual Ta-
nimoto-based scoring functions falling in the range of
0.69–0.75. Here, SVC machine learning is notably less accu-

Figure 3. Accuracy of binding pocket prediction and virtual screening by eFindSite at different sequence identity thresholds for the crystal
structures of PDB-bench proteins. Pocket prediction is assessed by the fraction of targets for which eFindSite detects at least one binding
site, as well as these for which the best pocket is predicted within 8 � and 4 � from the geometric center of a bound ligand in the experi-
mental structure. The accuracy of virtual screening is accessed by the fraction of pockets for which the native ligand is ranked within the
top 1 % and 10 % of the ZINC12 screening library.
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rate with AUAC of 0.61–0.62. A similar trend is observed
using ACT-50 % as the evaluation metric ; smaller ACT-50 %
values in Table 2 indicate more sensitive scoring functions.
Interestingly, SVC yields the highest EF1%, which corre-

sponds to the percentage of active compounds detected
within the top 1 % of the ranked library; this shows that
machine learning most effectively recognizes a small subset
of bioactive molecules. Nevertheless, the overall per-

Figure 4. Distance between the center of the best binding pocket predicted by eFindSite and the geometric center of a native ligand for
DUD-E proteins. Crystal structures, high- and moderate-quality models are sorted on the x-axis.

Table 2. Evaluation of different scoring functions for fingerprint-based virtual screening by eFindSite using crystal structures as well as dif-
ferent quality protein models constructed for the DUD-E dataset. Ranking accuracy is assessed by several evaluation metrics: EF,
BEDROC20, AUAC and ACT-50 %; reported values are averages over the dataset. Tested functions include 6 single fingerprint-based scores
using 1024-bit Daylight and 166-bit MACCS bit strings, 3 data fusion techniques (SUM, MAX and MIN), and a machine learning-based ap-
proach (SVC).

Dataset Metric Daylight fingerprints[a] MACCS fingerprints[a] Data fusion SVC[b]

TCD aveTCD conTCD TCM aveTCM conTCM SUM MAX MIN

Crystal structures EF1% 9.29 9.44 9.53 11.62 11.62 11.63 9.36 8.47 9.16 12.95
EF10% 3.41 3.75 3.69 3.85 3.85 3.92 4.03 4.04 3.72 3.32
BEDROC20 0.24 0.26 0.26 0.28 0.28 0.28 0.32 0.32 0.30 0.31
AUAC 0.70 0.71 0.71 0.73 0.73 0.74 0.75 0.74 0.72 0.61
ACT-50 % 0.26 0.24 0.24 0.22 0.22 0.21 0.21 0.21 0.23 0.34

High-quality models EF1% 9.37 9.33 9.56 11.77 11.77 11.73 9.96 8.80 9.73 13.41
EF10% 3.44 3.81 3.75 4.00 4.00 4.07 4.20 4.22 3.82 3.22
BEDROC20 0.24 0.27 0.26 0.29 0.29 0.29 0.33 0.33 0.31 0.30
AUAC 0.70 0.72 0.71 0.74 0.74 0.75 0.76 0.75 0.73 0.61
ACT-50 % 0.25 0.23 0.24 0.21 0.21 0.20 0.20 0.20 0.22 0.33

Moderate-quality models EF1% 8.77 9.12 9.16 11.97 11.97 11.69 9.98 9.08 9.80 13.99
EF10% 3.29 3.65 3.64 4.04 4.04 4.07 4.11 4.25 3.77 3.32
BEDROC20 0.23 0.25 0.25 0.29 0.29 0.29 0.32 0.33 0.30 0.30
AUAC 0.69 0.71 0.71 0.74 0.74 0.75 0.76 0.75 0.73 0.62
ACT-50 % 0.26 0.23 0.24 0.20 0.20 0.19 0.20 0.19 0.22 0.31

[a] TC, aveTC and conTC is the traditional, average and continuous Tanimoto coefficient, respectively. [b] Support Vector Machines for clas-
sification.
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formance of data fusion techniques, particularly using the
SUM rule, is superior compared to other methods. This is
consistent with previous studies on multiple search meth-
ods showing a systematic improvement of compound rank-
ing by applying data fusion techniques.[68,69] Comparing re-
sults obtained for crystal structures to those for different
quality protein models demonstrates a fairly high insensitiv-
ity of eFindSite to the structure deformations of target re-
ceptors. This is an important feature of our approach that
addresses the detrimental impact of non-native receptor
structures on virtual screening outcome.[17,70] On the whole,
eFindSite implements sensitive scoring functions and exhib-
its a high tolerance to structural imperfections of target
proteins, thus holds a significant promise for large-scale vir-
tual screening applications.

3.4 Confidence Index System

A reliable confidence index for virtual screening is a useful
feature that can help to identify these targets, for which
ligand ranking is likely accurate. Here, we use a Z-score cal-
culated for the top-ranked compound that measures its re-
moteness in standard deviation units from the average
score obtained across the entire screening library. Using
data collected for the DUD-E dataset, we show in Figure 5
that the Z-score is correlated with the accuracy of ligand
ranking as measured by BEDROC20. For crystal target struc-

tures as well as high- and moderate-quality protein models,
the median BEDROC20 is ~0.15 at a low Z-score of <2.0. Z-
score values of 2.0–2.2 and >2.2 indicate more confident
predictions, for which the median BEDROC20 scores are
~0.26 and ~0.32, respectively.

We also developed a machine learning-based approach
for estimating the confidence of virtual screening using
eFindSite. It employs Z-score values obtained for six individ-
ual fingerprint-based scoring functions to assign ligand
ranking with either a “low” or “high” confidence. This classi-
fier is cross-validated on the PDB-bench dataset ; its accura-
cy in detecting these predictions, in which the native
ligand is ranked within the top 1 % and 10 % of the screen-
ing library, is 0.56 and 0.75, respectively. Although not per-
fect, these confidence estimation systems may provide val-
uable information on the reliability of virtual screening in
practical applications.

3.5 Potential for Identifying Novel Compounds

A weak point of ligand-based virtual screening is its rela-
tively lower potential for discovering novel compounds
compared to e.g. structure-based virtual screening by mo-
lecular docking. In a traditional ligand-based approach, li-
brary compounds are ranked based on their chemical simi-
larity to already known binders. In eFindSite, small organic
molecules extracted from evolutionarily related protein-

Figure 5. Confidence of virtual screening assessed by a Z-score of the top-ranked compound for the DUD-E dataset. For each set of target
structures (crystal, high- and moderate-quality models), proteins are assigned to three groups based on the Z-score: <2.0, 2.0–2.2 and
>2.2. The distribution of BEDROC20 scores within each group is shown as box-and-whisker graphs. Boxes end at the quartiles Q1 and Q3;
a horizontal line in a box is the median. Whiskers point at the farthest points that are within 3/2 times the interquartile range.
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ligand complexes are used instead of known binders. Mod-
eling techniques such as fingerprint profiling and clustering
are designed to improve the sensitivity of detecting more
diverse molecules that are not simply variants of already
known compounds. The potential for identifying novel mol-
ecules emerges from the ability to rank them early in an or-
dered list using molecular fingerprints constructed from
those compounds that are at most chemically weakly relat-
ed. We analyze the potential of eFindSite for identifying
“novel” compounds using a simulated DUD-E dataset. In
this experiment, we benchmark the scoring engine of
eFindSite using active molecules associated with a given
target protein instead of the template-bound ligands. This
strategy allows us to precisely control the amount of chem-
ical information used to perform virtual screening. Specifi-
cally, for each active molecule, we exclude those com-
pounds that have chemical similarity above some threshold
and construct fingerprints from the remaining ligands; this
procedure is repeated for all active molecules. Thus, query
compounds are ranked within a screening library using
these molecules that are to some extent chemically dissimi-
lar.

Figure 6 shows the results obtained for the simulated
DUD-E dataset using eFindSite and data fusion with the
SUM rule. Using a chemical similarity threshold represented
by the Tanimoto coefficient progressively decreasing from
0.8 to 0.2, ranking accuracy is assessed by EF1%, BEDROC20
and AUAC (Figures 6A, 6B and 6C, respectively). Allowing
chemically similar compounds at a high Tanimoto coeffi-
cient threshold of 0.8 to be included as ligand templates
yields the median EF1%, BEDROC20 and AUAC of 37.0, 0.61
and 0.88, respectively. In general, eFindSite maintains its
high ranking capability even when the Tanimoto coefficient
drops to 0.4; here, the median EF1%, BEDROC20 and AUAC
are 15.1, 0.36 and 0.83, respectively. We note that this accu-
racy is slightly above that reported in Table 2, where ligand
templates extracted from evolutionarily remotely related
proteins are used. Altogether, these results suggest that
the performance of eFindSite in virtual screening is fairly
high even when template ligands are chemically weakly re-
lated, thus it holds a significant promise for identifying
novel compounds.

3.6 Comparison with AutoDock Vina

For any new methodology it is obligatory to analyze its
performance with respect to widely used state-of-the-art al-
gorithms. In that regard, we compare eFindSite to Auto-
Dock Vina[5] in representative virtual screening benchmarks
against the DUD-E dataset.[37] Table 3 reports the results as-
sessed by EF, BEDROC20, AUAC and ACT-50 %. Depending
on the evaluation criteria, eFindSite using data fusion out-
performs Vina for crystal structures; for example the aver-
age EF1%/BEDROC20/AUAC is 9.36/0.32/0.75 and 6.17/0.28/
0.68, respectively. The performance difference is clearly
more dramatic for weakly homologous protein models ;

here, EF1%, EF10% and BEDROC20 show a significant, two-
fold drop-off in ranking accuracy by Vina, whereas the per-
formance of eFindSite remains at a constant level. The per-
formance of eFindSite for both high- and moderate-quality
models seems to be slightly better than that for crystal
structures; a similar observation also applies to Vina, for
which moderate-quality models give better performance
than high-quality models. This can be explained using
Figure 4, which shows that in benchmarking calculations
against the DUD-E dataset, we use 81, 68 and 57 crystal
structures, high- and moderate-quality protein models, re-
spectively. Pocket prediction accuracy for these additional
crystal structures and high-quality models is on average
lower, which in turn decreases the performance of ligand
ranking as we demonstrate in Table 1. Therefore virtual
screening against moderate-quality models using both
eFindSite and Vina starts with fewer lower quality binding
pockets, yielding a slightly better performance.

Figure 6. Performance of virtual screening using data fusion on
the simulated DUD-E dataset. The results are assessed by (A) en-
richment factor for the top 1 % of the ranked library, (B)
BEDROC20, and (C) AUAC, excluding those compounds whose Ta-
nimoto coefficient to the query compound is above the threshold
shown on the x-axis. Boxes end at the quartiles Q1 and Q3; a hori-
zontal line in a box is the median. Whiskers point at the farthest
points that are within 3/2 times the interquartile range. For each
metric, a horizontal dashed line represents the accuracy of random
ligand ranking.
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The same results are analyzed further by breaking down
the dataset into individual proteins in Figure 7 with the cor-
responding numerical data included as Supplementary
Tables 1–3. Light green areas in Figure 7 highlight targets,
for which eFindSite outperforms Vina. It is apparent that
eFindSite is more accurate for the majority of cases regard-
less of evaluation metric. Furthermore, in those cases for
which Vina performs better than eFindSite, the ranking is
primarily based on the crystal structures of target proteins
(red circles). Significantly fewer high- (blue squares) and
moderate-quality (yellow triangles) are located within
green areas. For instance, considering BEDROC20 (AUAC)
scores (Figures 7C and 7D), eFindSite yields better ranking
than Vina for 49 % (63 %), 82 % (88 %) and 80 % (80 %) of
the target receptors when crystal structures, high- and
moderate-quality models are used, respectively. Table 3 and
Figure 7 clearly demonstrate that particularly for modeled
protein structures, the improvement of eFindSite over Vina
is not only quantitative with better average scores, but also
qualitative, i.e. reliable ligand ranking is obtained for nota-
bly more targets.

Figure 7. Performance comparison between eFindSite and AutoDock Vina in virtual screening against the DUD-E dataset. Compound rank-
ing accuracy is assessed by: (A) EF1%, (B) EF10%, (C) BEDROC20, (D) AUAC, and (E) ACT-50 % for target crystal structures (red circles) as well as
high- (blue squares) and moderate-quality (yellow triangles) protein models. Light green areas highlight the improved performance of
eFindSite over Vina.

Table 3. Performance comparison between eFindSite and Auto-
Dock Vina using crystal structures as well as different quality pro-
tein models constructed for the DUD-E dataset. Ranking accuracy
is assessed by several evaluation metrics: EF, BEDROC20, AUAC and
ACT-50 % for confidently predicted pockets only (MCC �0.5). Re-
ported values are averages over the dataset. For eFindSite, data
fusion with the SUM rule is used.

Dataset Metric eFindSite AutoDock Vina

Crystal structures EF1% 9.36 6.17
EF10% 4.03 3.11
BEDROC20 0.318 0.283
AUAC 0.747 0.681
ACT-50 % 0.212 0.261

High-quality models EF1% 9.96 2.45
EF10% 4.20 1.82
BEDROC20 0.333 0.128
AUAC 0.758 0.593
ACT-50 % 0.200 0.377

Moderate-quality models EF1% 9.98 2.86
EF10% 4.11 1.95
BEDROC20 0.322 0.135
AUAC 0.756 0.595
ACT-50 % 0.196 0.380
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3.7 Proteome-Wide Virtual Screening for E. coli

Encouraging results obtained in comprehensive bench-
marks motivated us to apply eFindSite in across-genome
virtual screening. Specifically, we conduct large-scale virtual
screening for the entire proteome of Escherichia coli. First,
using eThread,[34] we constructed protein models for 4,552
gene products; 85 % of these models have an estimated
TM-score of �0.4, thus provide reliable targets for further
ligand binding annotation.[31] Next, we predicted ligand-
binding pockets using eFindSite.[31] At least one ligand
binding pocket is predicted for 2,828 gene products, which
comprise 62 % of E. coli proteome. Figure 8 shows that ap-
proximately 63 % of the top-ranked binding pockets are as-
signed a confidence of >50 %; we note that confidence es-
timates provided by eFindSite correlate well with the actual
prediction accuracy.[31] Finally, each putative binding pocket
is subject to virtual screening against KEGG Compound and
ZINC12 libraries using enhanced eFindSite and data fusion
with the SUM rule, which provides the most reliable com-
pound ranking for modeled protein structures. The former
library contains 11,265 small organic molecules known to
bind to proteins,[35] whereas the latter comprises 244,659
mostly synthetic compounds for drug development and
design.[36]

The reliability of virtual screening can be evaluated by
a Z-score of the top-ranked compound since Z-score values
correlate with ligand ranking accuracy; higher scores typi-
cally indicate a higher accuracy of virtual screening using

eFindSite (see Figure 5). Figure 8 shows that the top-ranked
compound selected by eFindSite from KEGG Compound
and ZINC12 libraries has a Z-score of �2.2 for 7.9 % and
41.7 % of binding sites in E. coli, respectively. The top-
ranked compound is within the Z-score range of 2.0–2.2 for
additional 40.6 % and 57.5 % of binding sites, respectively.
Furthermore, we also estimate the ranking accuracy using
a machine learning classifier calibrated on the PDB-bench
dataset. We expect that virtual screening against the KEGG
Compound and ZINC12 libraries ranks the native com-
pound in the top 1 % for 2,446 and 2,810 binding sites, ac-
counting for 86 % and 99 % of all putative pockets identi-
fied in E. coli proteome, respectively. Thus for the majority
of gene products in E. coli, not only binding site locations,
but also binding ligands can be confidently predicted.

3.8 A Case Study for Proteome-Wide Virtual Screening

To conclude this study, we discuss a representative example
that demonstrates the potential of enhanced eFindSite for
proteome-wide ligand virtual screening. We selected
a 241aa E. coli protein, LptB (Ensembl ID:
EBESCP00000218125), whose experimental structure is not
available. Moreover, it represents a non-trivial case, since
the highest sequence identity to a protein in PDB
(branched chain amino acid ABC transporter from Thermo-
toga maritime, PDB-ID: 1ji0) is only 33 %. However, explor-
ing remote homology using eThread, a confident structure
model for this target is constructed with an estimated TM-

Figure 8. Confidence of binding pocket prediction (left ordinate) and ligand virtual screening (right ordinate) for E. coli proteome. Ligand
ranking confidence is expressed as a Z-score for the top-ranked compound selected from two screening libraries: ZINC12 and KEGG Com-
pound. Horizontal dotted lines delineate 50 % confidence for pocket prediction, and a virtual screening Z-score of 2.0 and 2.2.
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score of 0.82; see gray cartoon model in Figure 9. eFindSite
identified 6 putative ligand binding sites in the modeled
structure; the top-ranked pocket highlighted in Figure 9, in-
volving residues V18, P37, N38, G39, A40, G41, K42, T43

and T44, is assigned a high, 87.9 % confidence. Most tem-
plates that share this consensus binding site belong to the
ABC-ATPase family of ATP-binding cassette transporters.
These proteins are responsible for the translocation of vari-
ous molecules across membranes, where the ATPase com-
ponent provides energy for the cross-membrane move-
ment.[71,72] If this hypothesis holds true, the target protein is
expected to bind ATP-like nucleotides. Indeed, top five
compounds picked up by virtual screening using eFindSite
against the KEGG Compound library are 3’-keto-3’-deoxy-
ATP, 3’-keto-3’-deoxy-AMP, deoxyadenosine 5’-triphosphate,
2’-deoxyadenosine 5’-diphosphate and 2’-deoxyadenosine
5’-phosphate (KEGG ID: C07024, C07025, C00131, C00206
and C00360, respectively). Strikingly similar, the top-ranked
compounds in the ZINC library, ZINC06585262,
ZINC01235954, ZINC01579998, ZINC05004678 and
ZINC16939847 are adenosine 1-oxide, N-benzoyladenosine,
2-amino-8-[(2S,3S,4S,5S)-3,4-dihydroxy-5-methylol-tetrahy-
drofuran-2-yl]imidazo[1,2-a][1,3,5]triazin-4-yl, 2-(2-amino-

6,8-dichloro-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-
3,4-diol and 9-[(2S,3R,4R,5S)-3,4-dihydroxy-5-(hydroxyme-
thyl)tetrahydrofuran-2-yl]purine-6-carboxamide, respective-
ly. All these top-ranked compounds are ATP/ADP/AMP-relat-
ed nucleotides suggesting that the predicted binding site
in LptB indeed binds ATP-like molecules. These results sup-
port our earlier prediction that the target protein belongs
to the family of ABC-ATPase.

Available experimental data provides evidence that the
E. coli essential gene LptB is directly involved in lipopoly-
saccharide transport across the periplasm.[73] It was suggest-
ed that LptB, described therein as a soluble protein pos-
sessing the ATP binding fold but not transmembrane
domain, could provide the energy from ATP hydrolysis to
extract lipopolysaccharides from the periplasmic surface of
the inner membrane and deliver it to the LptD/LptE com-
plex in the outer membrane.[74] Our modeling results not
only support these experimental findings, but also shed
light on molecular structure of LptB and its putative inter-
actions with small molecules. Most importantly, eFindSite
screening can identify promising lead compounds provid-
ing a good starting point for the structure-based develop-
ment of pharmaceuticals and, in the case of LptB, possibly
new antibiotic agents.

3.9 Computational Efficiency

Virtual screening calculations typically involve processing
large datasets of query compounds, thus computational ef-
ficiency is essential. Most algorithms implement molecular
fingerprints as sequential containers that encapsulate
either fixed or dynamic size arrays. For instance, widely
used OpenBabel employs vectors of unsigned integers to
store fingerprint data.[56] In contrast, eFindSite implements
a bitset container of fixed-size sequences of bits. Bitsets
can be manipulated by standard logic operators (XOR,
AND, OR), which significantly improves computational effi-
ciency. This is shown in Figure 10, which compares the per-
formance of an implementation using vectors of unsigned
integers to that of fixed-size bitsets in virtual screening of
1 � 106 library compounds. The performance of both algo-
rithms decreases with the increasing number of template
ligand clusters due to the larger number of individual Tani-
moto coefficient calculations; see Equation 4. For instance,
the throughput of vectors of unsigned integers and bitsets
at 10 template ligand clusters is ~12 k and 23 k query com-
pounds per second, respectively. Consequently, the higher
performance of bitset implementation significantly shortens
the total simulation time, which is shown as an inset plot
in Figure 10. In addition, bitsets are much more memory ef-
ficient. For example, storing a screening library of 1 � 106

compounds as both Daylight and MACCS fingerprints re-
quires 2.38 GB of RAM using vectors of unsigned integers
vs. 0.15 GB for bitsets, thus using bitsets requires 16 � less
bits than integers to store the fingerprint data.

Figure 9. Structure model (gray cartoon) constructed for LptB
gene from E. coli. Binding pocket residues predicted by eFindSite
are shown as golden sticks and a transparent surface. A putative
binding ligand identified by virtual screening, adenosine-5’-diphos-
phate (sticks colored by atom type) as well as two magnesium ions
(pink balls) are transferred from a template protein, SufC from
Thermus thermophilus (PDB-ID: 2d2f) upon its global superposition
on LptB.
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4 Conclusions

High-throughput screening is widely used in drug discov-
ery; however, it frequently can be lengthy and expensive.
In contrast, virtual screening utilizes computing techniques
to process a large dataset of chemical compounds in a rela-
tively short time and at low costs. Thus, it typically pre-
cedes experimental screens limiting compound libraries to
those compounds that have the highest chance to exhibit
a desired activity. As such, it has become a standard prac-
tice in pharmaceutical industry for lead compound identifi-
cation. Nevertheless, for structure-based approaches to vir-
tual screening, the quality of target protein structures is
still a salient issue. Experimentally solved structures are un-
available for many important drug targets, which necessi-
tates using protein models. Because of major develop-
ments in genome sequencing technologies, the latter can
be routinely generated for the majority of gene products in
numerous organisms. This presents appealing opportunities
for conducting across-proteome virtual screening, which
can be used in the lead development for polypharmacolo-
gy or in systems level applications such as drug reposition-
ing. Despite the continuous progress in improving the pre-
diction reliability and compound ranking accuracy to meet
the challenges of modern pharmacology, limitations exist,
thus the development of new and more effective virtual
screening methods is required.

In this spirit, we extended eFindSite, a recently devel-
oped evolution/structure-based ligand binding site predic-
tor, to perform ligand virtual screening as well. eFindSite
implements accurate scoring functions, machine learning
and data fusion techniques to predict binding ligands with
a high accuracy and offers a reliable system for the confi-
dence estimation. Compared to widely used AutoDock Vina
in comprehensive benchmarks, eFindSite provides im-
proved compound ranking, as assessed by a variety of eval-
uation metrics. Importantly, this high performance is ach-
ieved not only for target crystal structures, but also for
weakly homologous protein models whose structure quali-
ty can vary. We also show that it is effective when using
only weakly related protein templates selected from the
“twilight zone” of sequence similarity, as well as holds
a promise for identifying “novel” compounds. Finally, we
demonstrate the potential of eFindSite for proteome-wide
applications and identify putative binding molecules for
the majority of gene products in E. coli proteome. Because
of its high tolerance to structural distortions in receptor
proteins, eFindSite should provide a useful approach to vir-
tual screening when only target protein sequences are
available.

The enhanced version of eFindSite is freely available to
academic community as a user-friendly web-server and
a well-documented standalone software distribution at
http://www.brylinski.org/efindsite ; this website also pro-

Figure 10. Performance of fingerprint-based virtual screening by eFindSite using different C + + data structures. Computational through-
put is assessed by the number of compounds per second as a function of the number of template ligand clusters. Inset: throughput is re-
placed by the total time required to virtually screen a library of 1 � 106 compounds.
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vides all benchmarking results reported in this paper. Fur-
thermore, the results of large-scale virtual screening for E.
coli proteome are freely available at http://www.brylinski.
org/content/databases.
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