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� A novel modeling stratagem to improve fold recognition is introduced.

� We developed a new method for the optimization of amino acid sequences.
� Artificial sequences have significant capabilities to recognize correct structures.
� Fold recognition systematically improves the detection of structural analogs.
� More sensitive threading methods to target midnight zone templates are suggested.
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Template-based protein structure prediction plays an important role in Functional Genomics by
providing structural models of gene products, which can be utilized by structure-based approaches to
function inference. From a systems level perspective, the high structural coverage of gene products in a
given organism is critical. Despite continuous efforts towards the development of more sensitive
threading approaches, confident structural models cannot be constructed for a considerable fraction of
proteins due to difficulties in recognizing low-sequence identity templates with a similar fold to the
target. Here we introduce a new modeling stratagem, which employs a library of synthetic sequences to
improve template ranking in fold recognition by sequence profile-based methods. We developed a new
method for the optimization of generic protein-like amino acid sequences to stabilize the respective
structures using a combined empirical scoring function, which is compatible with these commonly used
in protein threading and fold recognition. We show that the artificially evolved sequences, whose average
sequence identity to the wild-type sequences is as low as 13.8%, have significant capabilities to recognize
the correct structures. Importantly, the quality of the corresponding threading alignments is comparable
to these constructed using conventional wild-type approaches (the average TM-score is 0.48 and 0.54,
respectively). Fold recognition that uses data fusion to combine ranks calculated for both wild-type and
synthetic template libraries systematically improves the detection of structural analogs. Depending on
the threading algorithm used, it yields on average 4–16% higher recognition rates than using the wild-
type template library alone. Synthetic sequences artificially evolved for the template structures provide
an orthogonal source of signal that could be exploited to detect these templates unrecognized by
standard modeling techniques. It opens up new directions in the development of more sensitive
threading methods with the enhanced capabilities of targeting difficult, midnight zone templates.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Systems biology has emerged to help understand how the
components of complex living systems interact and how their
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malfunction causes disease (Kitano, 2002). To perform a systems-
level analysis of molecular interactions, one requires a complete
list of functionally annotated genes and proteins specified by these
genes (or briefly gene products) within an organism. Numerous
genome sequencing projects have already provided the commu-
nity with a vast amount of sequence information; however, due to
the lack of functionally annotated close homologs, the molecular
functions of many of these gene products remain unknown (Mi
et al., 2003). To carry out functional inference in the low sequence
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identity regime, a number of structure-based methods have been
developed (Brylinski et al., 2007; Elcock, 2001; Hetenyi and van
der Spoel, 2006; Huang and Schroeder, 2006). Early methods for
function inference from protein structure were extremely sensitive
to the quality of the target structures and typically required these
solved experimentally by X-ray crystallography or NMR. More
recent approaches, many of which employ global structure align-
ments (Wass et al., 2010), evolutionary restraints (Brylinski and
Skolnick, 2008) or a low-resolution description of protein struc-
tures (Liu and Vakser, 2011), are devoid of these limitations and
show a considerable promise for proteome-scale functional anno-
tation (Skolnick and Brylinski, 2009). On that account, protein
structure modeling plays an important role in Functional Geno-
mics by providing structural information on gene products that is
subsequently utilized by powerful structure-based approaches to
protein function inference (Drew et al., 2011; McGuffin et al.,
2006; Shah et al., 2003).

From a point of view of a system-wide modeling, the high
coverage of protein sequences in a given organism with structural
information is critical. Experimental structure determination
methods provide high-resolution structure information only for a
small subset of proteins, whilst the computational structure
prediction supplies valuable information for a large number of
sequences, whose structures will not be determined experimen-
tally. The most successful algorithms for protein structure model-
ing build on homology to proteins with known structures. These
approaches first identify template proteins, whose structures are
presumably similar to that adopted by the target sequence. Next,
the alignment of the target sequence to the template structure is
generated and a three-dimensional model of the target is con-
structed. A successful modeling requires structurally related tem-
plates in the available databases, such as the Protein Data Bank
(PDB) (Berman et al., 2000). A systematic analysis has demon-
strated that the PDB is likely complete at the level of compact,
single domain protein structures, i.e. for almost every target, a
significantly similar structure is present in the PDB (Zhang et al.,
2006); however, finding them still renders significant challenges
for a subset of targets.

Protein threading, also known as fold recognition, has been
developed to search for high- as well as low-sequence identity
templates that can be used to construct the structural model of a
target protein (Jones et al., 1992). Currently, state-of-the-art
threading techniques can identify templates with a structurally
significant alignment for about 70% of the targets. In proteome-
scale structure and function prediction projects, these target
proteins for which threading fails to identify structural templates
are typically excluded from the modeling process (Brylinski and
Skolnick, 2011), which reduces the structural and functional
coverage of gene products.

Currently, considerable efforts are directed toward increasing the
sensitivity of protein threading and fold recognition. Many recently
developed approaches employ suboptimal alignments (Chen and
Kihara, 2011), low-ranked templates (Pandit and Skolnick, 2010),
multiple sequence/template alignments (Peng and Xu, 2011), the
ensembles of “fragment alignments” (Kuziemko et al., 2011) or new
scoring functions for low-homology template detection (Peng and
Xu, 2010). In this study, instead of improving scoring functions or
alignment construction algorithms, we investigate whether the
imperfections of existing approaches can be turned into their
advantages by applying an effective modeling stratagem. The moti-
vation for this project has its origin in an interesting observation
made during the development of sequence profile hidden Markov
models (HMMs) for protein homology detection (Soding, 2005). One
of the important components of a scoring function is the secondary
structure match between the target and the template. Here, the
secondary structure predicted for a target sequence can be scored
either against known secondary structure assigned based on the
experimental structure of a template (Frishman and Argos, 1995) or
against that predicted from the template sequence (Jones, 1999). It
turned out that, paradoxically, the overall sensitivity of HMMs
increases when predicted instead of known secondary structure is
used. One possible explanation is that the scoring of the predicted vs.
predicted secondary structure is better optimized for remote homo-
logies, which have diverged more during the course of evolution.
Also, this type of scoring may account for systematic errors in
secondary structure prediction. In other words, for two sequence
fragments that adopt a similar secondary structure, a prediction
algorithm can make a systematic mistake, which would still result in
a good matching score, despite the incorrect predictions. Of course, a
mispredicted fragment of the target would be scored poorly against
the known secondary structure assigned based on the experimental
structure of the template. Here, we introduce a similar strategy, but
in a more general context, viz. we explore the possibility of using
synthetic sequences artificially evolved for the template structures
rather than (or in addition to) wild-type sequences in threading and
fold recognition. These artificial sequences, also referred to as evolved
or synthetic sequences, are optimized to stabilize the respective
structures by a variety of potentials, which are compatible with those
already commonly used in protein threading. We demonstrate that
such synthetic sequences may provide an orthogonal source of signal
that could be advantageously exploited in protein structure
modeling.
2. Methods

2.1. Dataset

The development and optimization of the scoring function and
simulation protocols as well as benchmarking calculations are
carried out for a non-redundant at the 35% sequence identity level
set of 10,558 proteins 50–600 residues in length selected from the
Protein Structure Classification (CATH) database (Orengo et al.,
1997). The pairwise sequence identity threshold automatically
excludes close homologs from benchmarks. Pairwise structure
alignments for the dataset proteins are constructed by fr-TM-
align (Pandit and Skolnick, 2008) and evaluated by a TM-score,
which is a length-independent measure that ranges from 0 to 1.
A value of 0.4 indicates a statistically significant similarity with a
p-value of 3.4�10−5 (Zhang and Skolnick, 2004). We note that a
TM-score of 0.4 is an appropriate fold similarity assignment
threshold; template structures above a TM-score of 0.4 contain
sufficient information to enable the full-length reconstruction of
the target structure (Skolnick et al., 2012).
2.2. Components of the scoring function

The scoring function consists of a linear combination of the
following pseudo-energy terms:
2.2.1. Burial potential
The burial potential considers a 7-state alphabet, BURIAL-Cβ-

14-7, based on the count of Cβ (Cα for glycine) atoms within a 14 Å
radius sphere centered on the Cβ of a residue of interest. The count
ranges for states A–G are o27, 27–33, 34–39, 40–46, 47–54, 55–65
and 466, correspondingly. This classification arranges protein
residues according to their exposure to solvent and neighboring
atoms and was previously found to be highly effective in fold
recognition (Karchin et al., 2004). First, we calculated the compo-
sition of the amino acid of type A within a state B in the
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non-redundant CATH dataset as follows:

Cbur
A;B ¼Nbur

A;B = ∑
20

i ¼ 1
Nbur

i;B ð1Þ

where Nbur
i;B is the number of amino acids of type i within the

state B.
The burial score for a given amino acid A is defined as its

composition in the particular state B (calculated from the struc-
ture) normalized by its frequency of occurrence, fA, in the dataset:

SburA;B ¼ Cbur
A;B

f A
ð2Þ

For a given amino acid sequence of length n mounted in a
structure, the burial contribution to the pseudo-energy, Ebur, is
calculated as the burial score averaged over all residues:

Ebur ¼ 1
n

∑
n

i ¼ 1
Sburi;B ð3Þ
2.2.2. Secondary structure preferences
These preferences are calculated according to a 7-state classi-

fication by STRIDE (Frishman and Argos, 1995): H—α-helix, G—3–
10 helix, I—π-helix, E—extended conformation, B—isolated bridge,
T—turn, and C—coil. Similarly to the burial potential, we calculated
the composition of the amino acid of type A within a secondary
structure D in the non-redundant CATH dataset, Csec

A;D. Secondary
structure pseudo-energy, Esec, is calculated as the normalized
secondary structure composition, SsecA;D, averaged over all residues:

Esec ¼ 1
n

∑
n

i ¼ 1
Sseci;D ð4Þ

Note that despite the similar notation (each state is assigned a
capital letter), the 7-state secondary structure classification is
neither equivalent nor compatible with the 7-state burial alphabet
described in the previous section.

2.2.3. Sequence profile score
For each target structure, we derive sequence profiles from

structure alignments constructed by fr-TM-align (Pandit and
Skolnick, 2008) against the CATH database. Only these structures
that have a TM-score to the target of ≥0.4 are used. Moreover,
since we operate in a low (o35%) sequence identity regime,
we use the following 7-state amino acid classification (Guharoy
and Chakrabarti, 2005): (1)—A, V, L, I, M, C; (2)—G, S, T; (3)—D,
E; (4)—N, Q; (5)—R, K; (6)—P, F, Y, W; and (7)—H. For each
residue position in a target structure, a 7-class profile is derived
Fig. 1. Normalized dFire pseudo-energy scores. Scores are calculated for CATH proteins u
protein length.
including pseudo-counts:

Pseq
j ¼ cj þ Fj

ffiffiffiffiffi
m

p

mþ ffiffiffiffiffi
m

p ð5Þ

where Pseq
j is the probability of a residue class j to be found in this

position, cj is the number of templates that have a class j residue in
the equivalent position, m is the total number of similar structures,
and Fj is the frequency of occurrence of residue class j in the CATH
database. Residue equivalences are calculated from structure
alignments generated by fr-TM-align (Pandit and Skolnick, 2008).

For a given sequence, the sequence profile score, Eseq, is
calculated as the Pseq probabilities averaged over all residues:

Eseq ¼ 1
n

∑
n

i ¼ 1
Pseq
i ð6Þ
2.2.4. Statistical potential
As a distant-dependent statistical potential, we use the protein

conformation free energy score by dFire (Zhang et al., 2004),
separately for Cα atoms (dFire-Cα) and the side chain centers of
mass (dFire-SC). The scores dFire-Cα and dFire-SC are subject to the
following transformation to calculate the final pseudo-energies,
EdF�Cα and EdF�SC, respectively, which are independent of protein
length:

EdF�Cα ¼ dFire� Cα
1:8031� n−18:669

ð7Þ

EdF�SC ¼ dFire� SC
1:5766� n−44:863

ð8Þ

where n is the protein length. The regression parameters were
derived from the CATH database; Fig. 1 shows the EdF�Cα and EdF�SC

pseudo-energies plotted as a function of protein length for wild-
type proteins from CATH.
2.2.5. Anti-bunching restraints
Grouping artifacts are suppressed by Helmut Schmidt's test of

force-like runs, also known as the Pot statistics, which measures
the bunching relative to the spacing of a single state, e.g. a
particular residue type, within a series of other states (Schmidt,
2000). First, we calculated a standard score of the Pot statistics for
each amino acid types using wild-type sequences from the CATH
database. For an arbitrary sequence, the mean value, Potj , and the
corresponding standard deviation, sj, is then used to calculate Cpot

j ,
sing (A) Cα atoms and (B) side chain centers of mass and plotted as a function of
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a single Gaussian restraint for an amino acid type j:

Cpot
j ¼ 0:5

Potj−Potj
sj

 !2

−ln
1

sj
ffiffiffiffiffiffi
2π

p ð9Þ

where Potj is a standard score of the Pot statistics for amino acid j.
These restraints are finally averaged over 20 residue types to

give anti-bunching pseudo-energy score, Epot:

Epot ¼ 1
n

∑
20

i ¼ 1
Cpot
i ð10Þ

Epot penalizes artificial short-range bunching of particular amino
acid types. Without this term, α-helices would likely be populated
by e.g. bunched alanine residues and β-structures by isoleucine
and valine residues.
2.3. Scoring function optimization

The total pseudo-energy score E for an arbitrary sequence
mounted in a given structure is calculated using a linear combina-
tion of individual terms

E¼w1E
bur þw2E

sec þw3E
seq þw4E

dF−Cα þw5E
dF−SC

þw6E
pot ð11Þ

The weight factors were optimized on the CATH dataset. First, for
each structure, we generated a large number of sequences, by
iteratively shuffling the native one. Then, we selected 20 native-
like sequences, whose identity to the wild type sequence was
450% (on average every second residue is identical) as well as 30
decoy sequences with the identity of o10% (evidently dissimilar
sequences). Native-like sequences should exhibit similar behavior
in profile-based modeling while decoy sequences will have very
different properties. This procedure resulted in the total number of
527,900 sequences. We employed an algorithm that belongs to
Evolution Strategies, which imitate the principles of natural
evolution as a method to solve parameter optimization problems
(Back and Schwefel, 1993; Back et al., 1992), to select a set weight
factors that maximize the Z-score (the dimensionless ratio of the
first and second moments of the pseudo-energy distribution
within the native-like pool and the decoy pool)

Z−score¼ Enat−Edec
s

ð12Þ

Furthermore, to ensure that the optimal set of weight factors does
not depend on the selection of training proteins, the CATH dataset
was randomly divided into two equal subsets, for which weight
factors were optimized independently. In both cases, the optimal
values for weights w1–w6 were consistently estimated as 0.10,
0.49, 1.00, 0.10, 0.16 and 0.66, correspondingly.
2.4. Sequence evolution engine

The optimization of an amino acid sequence to stabilize a given
structure is carried out by Simulated Annealing (SA). Here
we use the C++ implementation from GNU Scientific Library
(http://www.gnu.org/software/gsl), with the following SA para-
meters: N_TRIES¼200, ITERS_FIXED_T¼2000, K¼1.0, T_INITIAL¼
5000, MU_T¼1.002 and T_MIN¼0.005. A single Monte Carlo step
swaps a pair of randomly selected residues in the evolving
sequence. The starting sequences are always random with a
generic protein-like composition according to amino acid frequen-
cies provided by UniProtKB/Swiss-Prot (Boutet et al., 2007).
2.5. Threading and fold recognition

For template selection and the construction of target-to-
template alignments, we use two popular algorithms: HHpred
(Soding, 2005) and CSI-BLAST (Biegert and Soding, 2009). HHpred
detects distant homologous relationships between proteins based
on the pairwise alignments of profile hidden Markov models and
was shown to outperform other profile-profile comparison meth-
ods. CSI-BLAST is a modified version of PSI-BLAST (Altschul et al.,
1997) that derives context-specific amino acid similarities from
short windows centered on each query sequence residue, which
results in a significant increase of sensitivity as well as alignment
quality, particularly for difficult cases. For each program, we
constructed three template libraries using wild-type sequences
from CATH, these artificially evolved from random to stabilize
CATH structures as well as random protein-like sequences.

2.6. Data fusion

Template rankings obtained by threading a wild-type target
sequence against wild-type and evolved template libraries were
merged using data fusion and a SUM rule. For a given template t, a
combined score CS is defined as

CSt ¼ rWT
t þ rEVt ð13Þ

where rWT
t and rEVt are the template rank in the wild-type and

evolved library, respectively.

2.7. Assessment measures

The ability to select structurally similar templates from the
library is assessed by the area under the accumulation curve
(AUAC), where positives are defined as these structures that have
a TM-score to the target of ≥0.4. The remaining templates are
considered negatives. Furthermore, we calculate the number of
“good” templates (TM-score ≥0.4) found among the top 10
identified templates. Alignment accuracy is evaluated by
Matthew's correlation coefficient (MCC) against reference struc-
ture alignments constructed by fr-TM-align (Pandit and Skolnick,
2008):

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ð14Þ

where TP, FP and FN are the number of aligned residue positions
correctly predicted, overpredicted and missed, respectively. TN is
the number of residue pairs correctly predicted not to align to
each other.

In addition to MCC, we also assess the quality of the target-to-
template alignments by a TM-score (Zhang and Skolnick, 2004)
calculated over the aligned residue positions reported by threading.
3. Results

All benchmarking calculations reported here are carried out
using a non-redundant and representative CATH library (Orengo
et al., 1997). First, we developed a combined scoring function that
artificially evolves a protein-like amino acid sequence to stabilize a
given structure. Next, such evolved synthetic sequences were
generated for the entire CATH library. Using two popular thread-
ing/fold recognition algorithms, HHpred (Soding, 2005) and CSI-
BLAST (Biegert and Soding, 2009), we demonstrate that the
artificial sequences have similar capabilities to recognize correct
structures as the wild-type sequences. Finally, we explore the
possibility of using the evolved sequences in addition to the
standard template library to improve the performance of

(http:/www.gnu.org/software/gsl/)
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threading in template selection, maintaining the high quality of
constructed target-to-template alignments.

3.1. Scoring function discriminates between wild-type and random
sequences

A critical element is the scoring function used to optimize
amino acid sequences mounted in the respective structures. It
needs to be effective, consistent with these used in threading and
fold recognition and devoid of potential modeling artifacts, such
as the bunching of a particular type of residues. The scoring
function developed in this study includes several energy terms: a
burial potential, secondary structure preferences, a distant-
dependent contact potential, sequence profiles and anti-
bunching restraints. First, for each structure present in the CATH
dataset, we generated a random sequence with the protein-like
amino acid composition and assessed the values returned by
individual scoring terms. Fig. 2 shows the distribution of scores
for four pseudo-energy terms that are the most effective in
discriminating between wild-type and random sequences. For
Esec (secondary structure preferences), Ebur (burial potential),
EdF-SC (dFire for side chain centers of mass) and Eseq (sequence
profiles), the wild type sequence was scored higher than the
random one in 98.7%, 98.0%, 99.9% and 99.2% of the cases,
respectively. Next, using a large dataset of 527,900 generated
sequences, we derived the optimal set of weights that maximize
the gap between native-like and random decoy sequences; see
Section 2.3 for details.

3.2. Evolved sequences share low sequence identity with the
wild-type ones

For each structure in the CATH dataset, we evolved a synthetic
sequence using the optimized scoring function and a Simulated
Fig. 2. Most effective scoring terms in discriminating between wild-type and random seque
random protein-like sequences across the CATH dataset: (A) secondary structure score,
Annealing protocol. We note that these artificial sequences were
evolved from entirely random sequences with a protein-like
composition and are designed only to stabilize the respective
structures in our force field. No information on the wild-type
sequence or native amino acid composition is used in these
simulations. Interestingly, as shown in Fig. 3A, the sequence
identity to wild-type for the evolved sequences is significantly
higher than for the random sequences; the median value is 13.8%
and 5.8%, respectively. However, this similarity is still way below
commonly accepted thresholds for a safe zone of sequence align-
ments and the evolved sequences clearly fall into the midnight
zone (Rost, 1999).

Despite the low sequence identity between wild-type and
evolved sequences, the latter carry sufficient amount of informa-
tion to build non-degenerate sequence profiles using PSI-BLAST
(Altschul et al., 1997). Here, sequence profile degeneracy is defined
as the distribution of probabilities of amino acids at numerous
positions close to the background frequencies of occurrence of
amino acids in proteins. It is measured by Pearson's chi-squared
test (χ2) using amino acid frequencies provided by UniProtKB/
Swiss-Prot (Boutet et al., 2007). Fig. 3B shows the distribution of
χ2-statistic values calculated for wild-type, evolved and random
sequences; note that higher χ2-statistic values indicate lower
levels of degeneracy. Sequence profiles constructed for artificially
evolved sequences are more degenerate than these obtained from
wild-type sequences; the median χ2-statistic (mean7standard
deviation) is 4.1 (6.778.5) and 4.8 (7.779.8), respectively. Never-
theless, this level of profile degeneracy is lower than that calcu-
lated for random protein sequences, which give the median
χ2-statistic (mean 7standard deviation) of 3.4 (4.975.6). These
results suggest that information carried by synthetic sequences
can be utilized by sequence profile-based threading and fold
recognition methods; this is explored further in the following
sections.
nces. Distribution of selected pseudo-energy scores assigned to wild-type as well as
(B) burial score, (C) dFire-SC score and (D) sequence profile score.



Fig. 3. Characteristics of evolved sequences. (A) Sequence identity to wild-type calculated for evolved and random sequences. (B) Degeneracy of sequence profiles constructed
for wild-type, evolved and random sequences measured by Pearson's chi-squared test (χ2-statistic). Boxes end at the quartiles Q1 and Q3; a horizontal line in a box is the
median. Whiskers point at the farthest points that are within 3/2 times the interquartile range.
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3.3. Evolved sequences recognize the native-like fold

Initial benchmarks consider threading of the artificially evolved
sequences against a template library to ascertain whether they
carry a sufficient amount of information to recover the native-like
fold. Here, we use two fold recognition algorithms: HHpred
(Soding, 2005) and CSI-BLAST (Biegert and Soding, 2009). For both
programs, we constructed three different template libraries using
protein structures from the CATH database. First library contains
wild-type sequences, second was built from the artificially evolved
sequences and the third one contains protein structures with
mounted random protein-like sequences.

Fig. 4A shows that when the evolved target sequence is
threaded against the wild-type library using HHpred and CSI-
BLAST, for 85% (18%) and 79% (11%) of proteins the area under the
accumulation curve (AUAC) is 40.5 (40.6), respectively. This
performance is significantly better than when a random library
is used; here only 50% (0.8%) proteins have the AUAC of 40.5
(40.6). More interestingly, the artificially evolved target
sequences give the accuracy not only better than random, but
also fairly close to the performance of wild-type target sequences.
Standard benchmarks of HHpred and CSI-BLAST on the CATH
dataset considering threading wild-type sequences against the
wild-type library result in 86% (22%) and 82% (11%) of target
proteins having the AUAC of 40.5 (40.6), respectively (see
Fig. 5A). This is a surprising result since the evolved sequences,
which share on average only 13.8% sequence identity with their
wild-type counterparts, reside in the midnight zone of sequence
similarity (Rost, 1999). We note that all benchmarks reported here
are carried out below a 35% pairwise sequence identity level. The
accuracy further increases when the synthetic sequences are
threaded against the synthetic library; here the AUAC of 40.5
(40.6) for HHpred and CSI-BLAST is found for 94% (26%) and 86%
(30%) of the targets, respectively. This can be easily explained. In a
traditional scenario, threading frequently fails detecting templates
in the midnight zone, which is populated by protein structure
pairs that may have become similar by convergent or divergent
evolution (Doolittle, 1994; Rost, 1997). In our computer experi-
ment, there is no convergent evolution, thus protein sequences
artificially evolved to stabilize a pair of similar structures will have
on average high capabilities to recognize each other.
In addition to the AUAC analysis, we also assess the results in
terms of the number of “good” (structurally similar) templates
detected within the top 10 ranked templates. This seems more
practical from a point of view of structure modeling, where
typically only a few top ranked templates are used to build a
model for the target sequence (Ginalski, 2006; Marti-Renom et al.,
2000; Zhang, 2009). Fig. 4B demonstrates that for evolved
sequences threaded against the wild-type and artificial library,
HHpred (CSI-BLAST) recovers at least 5 good templates within the
top 10 ranks in 52% (39%) and 71% (52%) of the cases, respectively.
Again, it confirms that the ability of artificially evolved sequences
to recognize each other is comparable to that of wild-type
sequences (Fig. 5B); here the corresponding fraction of targets
with at least 5 “good” templates for HHpred (CSI-BLAST) is
72% (53%).

3.4. Artificially evolved template sequences can be used in threading

In the previous section, we demonstrated that the evolved
sequences have fairly high capabilities to recognize native-like
folds. However, an important question is whether a wild-type
target sequence can recognize these templates, whose amino acid
sequences were artificially optimized to stabilize a fold, which is
similar to that adopted by the target. That could have an immedi-
ate practical value in selecting templates from the midnight zone
of sequence similarity, where traditional threading often fail due
to the absence of detectable signal (Doolittle, 1994; Rost, 1997). By
replacing wild-type template sequences, many of which are
unrelated or related only remotely to the target sequence, by
these artificially evolved, we provide an orthogonal source of
signal that could be exploited in threading and fold recognition.

Fig. 5 shows the AUAC as well as the number of good templates
identified by HHpred and CSI-BLAST using wild-type target
sequences and wild-type, evolved and random CATH libraries.
Here, the performance of HHpred using the evolved template
library is only slightly worse than for the wild-type library
(Fig. 5A); 82% (16%) proteins have the AUAC of 40.5 (40.6).
Interestingly, for CSI-BLAST, which is less sensitive than HHpred,
the fraction of targets that have the AUAC of 40.5 (40.6)
significantly increased to 81% (21%) when the evolved library
was used instead of the wild-type one. However, for the



Fig. 4. Ability of evolved sequences to recognize the native-like fold. Accuracy of template selection by HHpred and CSI-BLAST from the wild-type, evolved as well as random
CATH libraries using evolved target sequences: (A) area under the accumulation curve (AUAC), (B) number of structurally similar proteins within the top 10 identified
templates.

Fig. 5. Performance of artificially evolved templates in fold recognition. Accuracy of template selection by HHpred and CSI-BLAST from the wild-type, evolved as well as random
CATH libraries using wild-type target sequences: (A) area under the accumulation curve (AUAC), (B) number of structurally similar proteins within the top 10 identified
templates. Data fusion ranking is obtained by merging ranks assigned using wild-type and evolved libraries.
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Fig. 6. Accuracy of target-to-template threading alignments. Alignments are constructed for wild-type target sequences by (A) HHpred and (B) CSI-BLAST using wild-type,
evolved as well as random CATH libraries and assessed by Matthew's correlation coefficient (MCC) against structure alignments. Inset plots show the average TM-score
calculated for threading alignments compared to the corresponding structure alignments for (W) wild-type, (E) evolved and (R) random CATH libraries.
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wild-type library, both threading algorithms still recover ∼15%
more good templates on average at the top 10 ranks (Fig. 5B).

3.5. Target-to-template threading alignments are accurate

Effective template selection is important, but not sufficient for
practical applications, such as protein structure modeling. In
addition, target-to-template alignments should also be accurate
to build a correct model. In Fig. 6, using reference structure
alignments constructed by fr-TM-align, we evaluate the quality
of threading alignments generated by HHpred and CSI-BLAST for
wild-type target sequences. The accuracy is assessed by Matthew's
correlation coefficient (MCC). For HHpred (Fig. 6A), the overall
quality of alignments constructed using evolved template library
is fairly high and almost comparable to the standard, wild-type
library; the fraction of alignments with an MCC of 40.5 is 68.7%
and 79.6%, respectively. Alignments by CSI-BLAST contain
more errors; here the fraction is 48.1% and 70.7% for the evolved
and wild-type library, respectively. However, in both cases the
errors are often caused by only small shifts by 1–2 residues. This
is shown as the inset plots in Fig. 6, which report the average
TM-score calculated directly from the constructed alignments;
TM-score is a geometrical measure (Zhang and Skolnick, 2004),
less sensitive to small local errors in the aligned positions.
For HHpred, the average TM-score for structure/threading align-
ments generated using wild-type and evolved template library
is 0.67/0.54 and 0.66/0.48, respectively. For CSI-BLAST, the
average TM-scores are comparable: 0.69/0.51 and 0.65/0.46,
respectively. These results indicate that target-to-template align-
ments constructed using the artificially evolved library would
be as useful in protein structure modeling as these constructed
using the wild-type template sequences. This is again quite a
surprising result, since both libraries share on average only 13.8%
sequence identity. The high quality of threading alignments arises
from the optimized scoring function used to design synthetic
sequences.

3.6. Template ranking by data fusion improves recognition rates

Next, we explore the possibility of combining threading results
obtained for wild-type and artificially evolved libraries to improve
the overall performance in template recognition. For this purpose,
we apply data fusion (Hall and Llinas, 1997) to merge template
ranks calculated using the wild-type and evolved libraries. Here,
we use the SUM rule that is expected to be less sensitive to a
rugged input than MAX and MIN rules (Ginn et al., 2000) and is
generally preferred when fusion is by rank (Hert et al., 2004). As
shown in Fig. 5A, data fusion improves the overall performance in
template ranking; using HHpred and CSI-BLAST, for 87% (26%) and
89% (27%) of the target proteins the AUAC is 40.5 (40.6),
respectively. These results suggest that particularly these tem-
plates, for which the signal at the wild-type sequence level cannot
be detected, are systematically assigned better ranks when artifi-
cially optimized sequences are used. Nevertheless, the signal is
still not strong enough to enrich the very top fraction of the
ranked library with good templates (Fig. 5B). It may suggest that
more sophisticated protocols are needed to fully exploit the
additional information provided by the artificial template
sequences.

Data fusion results and the correlation plots shown in Fig. 7
indicate that, in principle, such an improvement should be
possible. The Pearson correlation coefficient for the AUAC values
calculated for template ranking using the wild-type and artificially
evolved libraries is 0.89 and 0.59 for HHpred and CSI-BLAST,
respectively. Particularly for CSI-BLAST, a significant improvement
in template ranking could be achieved by taking advantage of the
evolved sequences (dots above the diagonal in Fig. 7B).

3.7. Confidence estimates are accurate

Each individual threading/fold recognition algorithm assesses
structures present in the template library using some scoring
system, e.g. CSI-BLAST employs a scoring system based on analy-
tically estimated E-values and HHpred uses calibrated probabilities
for true relationships between proteins. Despite the fact that these
confidence scores were optimized for wild-type sequence libraries,
we find that they are applicable to artificially evolved template
sequences as well. Fig. 8 shows the distribution of AUAC for
template selection for targets assigned different confidence. Here,
the confidence corresponds to the mean value of scores returned
by each algorithm for the top 10 ranked templates. The confidence
estimates are not only well correlated with the overall perfor-
mance, but they also are independent on the library used (either
wild-type or evolved).

3.8. Case studies

To illustrate the improved performance of threading and fold
recognition by using evolved template sequences, we selected
several representative examples. In the first case study, we focus
on the improved fold recognition rate. Using a wild-type sequence
of the calcium-binding C-terminal domain of BM-40 osteonectin
(CATH domain code: 1sraA00) and the wild-type template library,
the following templates are assigned ranks lower than 10 by



Fig. 8. Confidence estimates for template selection. Distribution of the area under the accumulation curve (AUAC) for template selection from wild-type and evolved libraries
using wild-type target sequences. Targets are grouped into 5 confidence bins based on the (A) probability values estimated by HHpred and (B) E-values by CSI-BLAST.

Fig. 7. Template ranking using wild-type and artificially evolved libraries. Area under the accumulation curve for template selection fromwild-type and evolved libraries using
wild-type target sequences. (A) HHpred and (B) CSI-BLAST. Each dot represents one CATH target, the regression line and the diagonal is solid and dashed, respectively.
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HHpred: 2hpkA00 (rank 22), 1qv0A00 (rank 41), 2zfdA00 (rank 12)
and 1yr5A00 (rank 24). Despite their low sequence identity to the
target (25.2%, 17.6%, 20.8% and 22.3%, respectively), all these
protein domains are structurally related with a TM-score of 0.49,
0.48, 0.43 and 0.43, respectively (see Fig. 9B and D). By using
HHpred and the evolved template library, these templates are
found within the top 10 ranks; 2hpkA00, 1qv0A00, 2zfdA00 and
1yr5A00 are now ranked 2, 3, 4 and 8, respectively. Note that the
similarity of evolved sequences to the target sequence remains at a
comparable level: 22.9%, 18.8%, 23.6% and 17.8%, respectively.
Another interesting example is Gram-negative porin from Rhodo-
bacter capsulatus (CATH domain code: 2porA00) and its four
weakly homologous templates: 3dwnA00, 2gskA02, 2iahA03 and
1kmoA02. Their TM-score/wild-type/evolved sequence identity to
the target is 0.50/23.8%/18.9%, 0.57/23.6%/22.1%, 0.58/23.2%/22.3%
and 0.59/24.5%/19.8%, respectively. Structural alignments of these
templates to the target are shown in Fig. 9E–H. By using evolved
template sequences rather than the wild-type ones, the ranking of
these templates systematically improves from 13 to 1, from 22 to 3,
from 4100 to 3, and from 4100 to 6, respectively.

Our second case study shows that even when threading of
wild-type target sequences using both wild-type and evolved
template libraries correctly identifies structurally similar proteins,
the latter can still provide more accurate target-to-template
alignments. Here, our first example is a cupin domain from oxalate
decarboxylase (CATH domain code: 1j58A02) and its weakly
homologous (22.1% sequence identity) template protein 1gqgC02,
correctly identified by CSI-BLAST. Fig. 10A shows the template-to-
target structure alignment and the corresponding Cα–RMSD per
residue (orange circles). The structure alignment covers 89% of the
target sequence with most of the template residues well aligned to
the target within a distance of 3 Å. CSI-BLAST using the wild type
template sequence only partially recovers the structure alignment
(residues 50–90, blue squares in Fig. 10A). However, when the
evolved template sequence, whose similarity to the target
sequence is 20.2%, is used, the threading alignment significantly
improves, particularly over residues 1–50 and 90–120 (green
triangles in Fig. 10A). Another example is the subunit C of urease
domain of hydantoinase (CATH domain code: 1gkpA02) and its
low sequence identity (29.9%) template protein 1rk6A01, see
Fig. 10B. Here, the target-to-template alignment constructed by
HHpred is significantly improved when the evolved template
sequence (27.3% identity to the target) is used instead of the
wild-type one and closely follows the optimal structure alignment
(most green triangles in the right panel of Fig. 10B are only slightly
higher than orange circles).



Fig. 9. Examples of improved template recognition using evolved template library. Top panel: template-to-target structural alignments of 1sraA00 (target) and (A) 2hpkA00,
(B) 1qv0A00, (C) 2zfdA00, and (D) 1yr5A00 (templates). Bottom panel: template-to-target structural alignments of 2porA00 (target) and (E) 3dwnA00, (F) 2gskA02,
(G) 2iahA03, and (H) 1kmoA02 (templates). Target and template structures are colored in green and yellow, respectively; the aligned region is solid. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

Many existing approaches to protein threading and fold recog-
nition exhibit extremely high false negative rates due to the fact
that the vast majority of pairs of proteins with similar structures
populate the midnight zone of sequence identity (Rost, 1999).
Most of the scoring schemes use as a basis a strong sequence
profile component, which is designed to detect evolutionary
relationships at the sequence level rather than structure simila-
rities (Biegert and Soding, 2009; Eddy, 1998; Hughey and Krogh,
1996; Sadreyev and Grishin, 2003; Soding, 2005). Since most
proteins with similar structures in the midnight zone are likely
the products of convergent or divergent evolution (Doolittle, 1994;
Rost, 1997), they remain undetectable even for very sensitive
homology-based methods. It has been demonstrated that for an
arbitrary protein, structural analogs are likely present in the PDB
(Zhang and Skolnick, 2005; Zhang et al., 2006), yet a considerable
fraction of protein sequences fall into the “hard target” category
(Peng and Xu, 2010). One possible solution to this problem would
be to develop a new class of purely structure-based algorithms;
however, extensive efforts in this direction brought about rather
limited success (Kryshtafovych et al., 2005; Moult et al., 2011,
2009). In this study we explore the possibility of using synthetic
amino acid sequences instead of the wild-type ones to enhance
the detection of structural analogs.

We developed a method for the optimization of generic
protein-like amino acid sequences to stabilize the respective
structures using several statistical potentials, which are compati-
ble with these used in protein threading and fold recognition. In
extensive benchmarks, we show that the artificially evolved
sequences, despite their low sequence identity to the wild-type
counterparts, have significant capabilities to recognize the correct
structures. Furthermore, when state-of-the-art threading is
applied to both wild-type and artificially evolved template
libraries, even as simple technique as data fusion systematically
improves template ranking. Also, we demonstrate that the quality
of the corresponding alignments generated for synthetic sequences,
which would have an impact on the accuracy of subsequent protein
structure modeling, is fairly high and comparable to these con-
structed using a standard threading approach.

Notwithstanding these encouraging results, the proposed
method still has important limitations and further developments
are needed. Before it will have a practical value, more sophisti-
cated algorithms are required to provide better enrichment of the
very top fraction of the threading library with structurally similar
templates. This could be achieved by e.g. developing a custom
threading approach with the parameters specifically tailored to
the synthetic library, designing a better and more sensitive scoring
function for the sequence optimization or developing a meta-
threading pipeline (Kurowski and Bujnicki, 2003; Lundstrom et al.,
2001; Wu and Zhang, 2007) with an advanced machine learning-
based system for template selection. Moreover, the subsequent
structure modeling may require a template pre-clustering
approach, which on average improves the accuracy of the final
models constructed from multiple low-ranked templates (Pandit
and Skolnick, 2010). One can also imagine enriching the library of
experimental structures with these constructed in silico (Dai and
Zhou, 2011; Skolnick et al., 2009; Taylor et al., 2009). These new
directions will be investigated in future research.

Finally, the presented work opens up additional areas for
further exploration, which mostly relate to protein evolution,
engineering and design as well as to current studies on the
completeness of protein structure space and the origin of folds
and protein universe. The effective procedure for the design of a
quasi-stable sequence for an arbitrary structure provides a desired
linkage between protein structure and function in computer
experiments, thus can facilitate au courant studies on the origin
of biochemical function.



Fig. 10. Examples of more accurate target-to-template alignments constructed using evolved template sequences. (A) Alignments constructed by CSI-BLAST for 1j58A02 (target)
and 1gqgC02 (template); (B) alignments constructed by HHpred for 1gkpA01 (target) and 1rk6A01 (template). Left panel shows template-to-target structural alignment by
fr-TM-align. Target and template structures are colored in red and orange, respectively; the aligned region is solid. Plots on the right show Cα-RMSD per residue calculated
over residue positions aligned by fr-TM-align; reference structural alignments are compared to threading alignments obtained using wild-type and evolved template
sequences. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5. Conclusions

We introduce a novel modeling stratagem, which employs a
library of synthetic sequences to improve template ranking in fold
recognition by sequence profile-based methods. Regardless of its
current limitations, it represents a new direction in the develop-
ment of more sensitive threading approaches with the enhanced
capabilities of targeting difficult, midnight zone templates.
Availability

Datasets and modeling results are available free of charge at
〈http://www.brylinski.org/evolver〉.
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