
eFindSite: Improved prediction of ligand binding sites in protein
models using meta-threading, machine learning and auxiliary
ligands

Michal Brylinski • Wei P. Feinstein

Received: 6 April 2013 / Accepted: 1 July 2013 / Published online: 10 July 2013

� Springer Science+Business Media Dordrecht 2013

Abstract Molecular structures and functions of the

majority of proteins across different species are yet to be

identified. Much needed functional annotation of these

gene products often benefits from the knowledge of pro-

tein–ligand interactions. Towards this goal, we developed

eFindSite, an improved version of FINDSITE, designed to

more efficiently identify ligand binding sites and residues

using only weakly homologous templates. It employs a

collection of effective algorithms, including highly sensi-

tive meta-threading approaches, improved clustering tech-

niques, advanced machine learning methods and reliable

confidence estimation systems. Depending on the quality of

target protein structures, eFindSite outperforms geometric

pocket detection algorithms by 15–40 % in binding site

detection and by 5–35 % in binding residue prediction.

Moreover, compared to FINDSITE, it identifies 14 % more

binding residues in the most difficult cases. When multiple

putative binding pockets are identified, the ranking accu-

racy is 75–78 %, which can be further improved by 3–4 %

by including auxiliary information on binding ligands

extracted from biomedical literature. As a first across-

genome application, we describe structure modeling and

binding site prediction for the entire proteome of Esche-

richia coli. Carefully calibrated confidence estimates

strongly indicate that highly reliable ligand binding pre-

dictions are made for the majority of gene products, thus

eFindSite holds a significant promise for large-scale

genome annotation and drug development projects.

eFindSite is freely available to the academic community at

http://www.brylinski.org/efindsite.
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Introduction

Proteins carry diverse molecular functions mainly through

their ability to bind other molecular species present in a

cell. Interactions between proteins and other molecules are

critical to numerous biological processes, e.g. signal

transduction, protein transport and folding, DNA replica-

tion and repair, and cell division, just to mention a few

examples. To comprehend the immense repertoire of

molecular functions and to describe key domains of

molecular biology, a number of controlled, structured

vocabularies, known as ontologies, have been developed

[1, 2]. One of the most widely used public resources is

Gene Ontology (GO), which provides precisely defined

annotation standards and hierarchical classifications for

describing the roles of genes and gene products in any

organism [3, 4]. As of June 2013, a simple keyword search

at the Gene Ontology website using the word ‘‘binding’’

returns 1,791 GO terms, with 1,655 under the molecular

function category. Furthermore, it reports 220,312 gene

products annotated with the ‘‘binding’’ term, defined by

GO as ‘‘the selective, non-covalent, often stoichiometric,

interaction of a molecule with one or more specific sites on

another molecule’’. This demonstrates how diverse, pre-

valent and important binding interactions are for cellular

processes.
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Proteins bind to a broad spectrum of molecular species

in a cell including small organic molecules, nucleic acids,

inorganic clusters, metal ions, peptides as well as other

proteins. Binding is facilitated by the tertiary structure of a

protein, with the region responsible for interacting with

other molecules known as the binding site, which often

forms a depression on the protein surface. The identifica-

tion of a binding site and the corresponding binding resi-

dues is typically a first step in the comprehensive

functional annotation of a gene product. A wide range of

experimental techniques have been used to characterize

binding events. X-ray crystallography and NMR can pro-

vide the detailed atomic structures of molecular complexes;

however, experimental structure determination typically

requires considerable efforts and time, therefore the

structures of most complexes will not be solved in the near

future. Other experimental techniques, such as site-directed

mutagenesis, provide indirect structural information;

however, these methods are most effective when supported

by high-resolution data from X-ray or spectroscopic studies

[5]. On that account, the identification of binding sites in

proteins is strongly supported by computational approa-

ches. As a matter of fact, due to the advances in genome

sequencing technologies [6, 7], these methods represent the

only practical strategy to keep up with the rapid accumu-

lation of sequence information [8, 9].

Over the past years, a number of algorithms for binding

site prediction have been developed. The simplest

sequence-based methods build on homology, i.e. they

transfer binding sites and residues from already annotated

proteins. For example, methods based on position specific

scoring matrices were successfully applied to find DNA

binding sites in proteins [10, 11]. These methods often

integrate machine learning, which can increase the pre-

dictive power, as demonstrated for the prediction of pro-

tein–protein interactions and interfacial residues [12, 13].

Furthermore, they frequently employ sensitive sequence

search techniques, e.g. based on hidden Markov models

[14] to increase the sensitivity by extracting the functional

information from remotely related proteins [15]. Never-

theless, homology-based transfer is complicated by

ambiguous relationships between protein sequence and

function [16], thus it typically requires rather high

sequence similarity thresholds to reduce the considerable

risk of misannotation [17].

To overcome these limitations, alternative methods

exploit purely structural information and attempt to capture

a causal relation between protein structure and function.

For instance, structure-based methods predict protein–

protein interfaces from structural neighbors [18], identify

ligand binding sites using hydrophobicity profiling [19, 20]

and use short structural motifs as signatures for e.g. metal

binding locations [21]. Many geometric methods take

advantage of the fact that ligand binding events often occur

inside cavities and depressions on the protein surface.

Consequently, the detection of deep pockets has become a

popular technique to predict ligand binding sites [22–24].

Depending on benchmarking datasets, prediction proce-

dures and evaluation criteria, the accuracies of 60–69 % for

LIGSITECS [25], 67–83 % for Fpocket [26] and 75–77 %

for MSPocket [27] have been reported. Furthermore, con-

sensus methods such as MetaPocket gain additional *5 %

over single methods by combining results obtained from

individual predictors [28]. If the best of top three predic-

tions is considered, the accuracy of geometry-based

methods reaches 90–95 %. Many of these techniques,

however, require experimentally solved structures, prefer-

ably in the ‘‘bound’’ conformational state, to achieve a high

accuracy [29].

A new class of evolution/structure-based methods has

emerged recently; these powerful techniques incorporate

both sequence and structure components and cover many

aspects of protein molecular function including interactions

with small organic compounds [30–32], metal ions [33],

nucleic acids [34] and other proteins [35, 36]. For drug

discovery and development, of particular interest are

interactions between proteins and small organic com-

pounds, which are typical candidates for drugs. One of the

earliest approaches to evolution/structure-based ligand

binding prediction, FINDSITE [31], employs protein

threading to detect weakly homologous templates, which

are subsequently superposed onto the target structure using

TM-align [37]. Upon the global superposition, putative

binding sites are identified by the average linkage cluster-

ing of the geometrical centers of template-bound ligands.

3DLigandSite [30] is a similar method, which first identi-

fies significant structural matches to the target protein using

MAMMOTH [38]. Next, template ligands are extracted

and a single linkage clustering is performed to detect ligand

binding sites in the target structure. Residue conservation

mapped onto the target structure serves as a sequence

component to improve the accuracy of 3DLigandSite.

Another algorithm, FunFOLD [32], is similar in concept to

the abovementioned methods; however, it uses a novel

automated method for ligand clustering and the identifi-

cation of binding residues. FunFOLD assigns ligands to

clusters using an agglomerative hierarchical clustering

algorithm that accounts for a continuous mass of contacting

ligands; this is followed by binding residue prediction by

an optimized residue voting system.

At the conceptual level, all these methods capitalize on a

general tendency of certain protein families to bind small

molecules at similar locations [39]. Using structure infor-

mation helps overcome the limitations of purely sequence-

based methods effectively exploiting very remote evolu-

tionary relationships in the ‘‘twilight zone’’ of sequence
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identity. The sequence component relaxes structure simi-

larity criteria without increasing the false positive rate [40]

thus allows for using modeled target structures instead of

those solved experimentally. As a consequence, evolution/

structure-based approaches provide a viable strategy for

proteome-wide functional annotation. Across-proteome

ligand binding site prediction may not only discover new

target sites for pharmacotherapy [41], but also can help

identify off-targets for existing drugs to support rational

drug repositioning [42, 43].

Here, we describe the development and benchmarking

of eFindSite, a new method for ligand binding site and

residue prediction, which includes a series of important

improvements over its predecessor, FINDSITE [31]. It

employs a highly sensitive meta-threading procedure

optimized specifically towards the identification of func-

tionally related ligand-bound template structures. More-

over, it uses an improved clustering algorithm [44] to

exploit both template-target as well as pairwise template

structure similarities and includes a fine-tuned template

weighting scheme. eFindSite extensively uses various

machine learning techniques to efficiently integrate struc-

tural and evolutionary information and provide a reliable

system for confidence estimation. As an additional feature,

we include the possibility to support binding site prediction

by using those ligands known to bind to target proteins. In

large-scale benchmarks against crystal structures as well as

different quality protein models we demonstrate that

eFindSite outperforms FINDSITE and other methods for

ligand binding site and residue prediction.

As a first genome-scale application of eFindSite, we

describe the results obtained for the entire proteome of

Escherichia coli comprising 4,552 gene products, whose

crystal structures are unknown. Using protein models

constructed by eThread, a meta-threading protein structure

modeling pipeline [45, 46], we predict ligand binding

pockets and residues by eFindSite for the majority of

E. coli proteins. The results are encouraging and hold a

significant promise for the application of eFindSite in

large-scale genome annotation and drug development

projects.

Materials and methods

Ligand-bound template library and benchmarking

dataset

The set of protein–ligand complexes used in this study as a

template library was obtained from Protein Small Molecule

Database [47]. The redundancy was removed at the 40 %

pairwise sequence identity by PISCES [48]. However, two

proteins that share more than 40 % sequence identity were

included in the library if they bind ligands in different

locations, i.e. the distance between ligand geometric cen-

ters upon the global structure alignment is [8 Å. Ligands

are small organic compounds that have 6–100 heavy atoms

non-covalently bound to the receptor proteins. The com-

plete eFindSite template library consists of 15,285 proteins

complexed with 20,215 ligands.

From the template library, we selected target proteins

50–600 residues in length, for which at least three weakly

homologous (\40 % sequence identity) ligand-bound tem-

plates can be identified using meta-threading as described

below. Moreover, we require templates to structurally align

onto the target with a statistically significant TM-score of

C0.4 [49]; structure alignments are generated by fr-TM-

align [37]. This resulted in a non-redundant dataset of 5,784

protein–ligand complexes, which were used for the deriva-

tion of eFindSite parameters and machine learning models.

For benchmarking purposes, we identified a subset of 3,659

complexes, in which receptor proteins have a single pocket,

i.e. bind ligands in approximately the same location (within

8 Å radius) according to the Protein Data Bank [50] (PDB).

We note that all benchmarks are carried out using twofold

cross validation, randomly splitting the dataset to avoid

memorization issues. Moreover, those templates that have

[40 % sequence identity to the target are excluded from

benchmarking calculations.

Target protein structures

Target crystal structures were obtained from PDB [50]. In

addition, for each target structure, we generated two pro-

tein models: high- and moderate-quality. Structure models

were constructed by eThread, a recently developed method

for template-based protein structure modeling [45, 46]. For

each target, we generated up to 20 weakly homologous

models: 10 using eThread/Modeller and 10 using eThread/

TASSER-Lite. Two randomly selected models, one with a

TM-score to native of [0.7 and one with a TM-score

within 0.4–0.7 were included in the high- and moderate-

quality set, respectively. When the modeling procedure did

not provide models of appropriate quality, we artificially

distorted the crystal structure to a desired resolution using a

simple Monte Carlo procedure [51].

Selection of functional templates by meta-threading

To identify ligand-bound templates, we use eThread that

integrates ten state-of-the-art protein threading/fold rec-

ognition algorithms: CSI-BLAST [52], COMPASS [53],

HHpred [14], HMMER [54], pfTools [55], pGenThreader

[56], SAM-T2 K [57], SP3 [58], SPARKS2 [58] and

Threader [59]. Originally, eThread was designed to select

structural templates using machine learning and a set of
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feature vectors composed of individual threading scores.

Here, we extend this functionality to include the estimates

of ligand binding probability by constructing two addi-

tional machine learning models for the selection of func-

tional templates. The first model assesses whether a

particular template binds its ligands in similar locations as

the target. Note that a similar ligand binding location for a

given target-template pair means that they bind ligands

within a distance of 8 Å upon the global alignment of their

structures. The second model estimates a probability that

template ligands are chemically similar to the target bound

molecule, where similar ligands are defined by using a

Tanimoto coefficient [60] threshold of [0.5 for 1024-bit

Daylight fingerprints calculated by OpenBabel [61]. Both

classifiers use a naı̈ve Bayes algorithm to combine indi-

vidual threading scoring functions into a single probabi-

listic score. Here, the real-value attributes are modeled

from a Gaussian distribution, i.e. the classifier first esti-

mates a normal distribution for each threading component

by computing the mean and standard deviation of the

training data in that class, which is then used to estimate

the posterior probabilities during classification [62]. Fur-

thermore, since eThread uses two template libraries: chain

and domain, we constructed separate machine learning

models for each library. Both eThread structure libraries

are mapped to the eFindSite ligand-bound template library

using global sequence identity calculated by a Needleman-

Wunsch algorithm [63]. The accuracy of template selection

is assessed using twofold cross validation excluding those

templates, whose sequence identity to target is[40 %; note

that this sequence identity cutoff is also applied in all

subsequent modeling steps.

eFindSite engine

eFindSite builds upon the original FINDSITE algorithm,

which was one of the first of its kind in evolution/structure-

based ligand binding site prediction. eFindSite significantly

extends its functionality and includes a series of major

improvements over the original implementation to provide

higher coverage, significantly lower false positive rate and

better tolerance to structural errors in protein models. It is

specifically tuned to exploit structural as well as functional

information on ligand binding extracted from threading

templates using machine learning. This optimized proce-

dure allows us to use more distantly, yet functionally related

templates at a reduced risk of predicting false positives.

A typical evolution/structure-based algorithm for bind-

ing site prediction superimposes a set of evolutionarily

related templates complexed with ligands onto the target

structure. Then, the centers of mass of bound ligands are

clustered and the resulting clusters are used to identify

putative binding sites in the target protein structure [30, 31,

64]. Here, we developed a slightly different approach. We

use structure alignments constructed by fr-TM-align to

calculate all-against-all binding site distances between

templates. This matrix is subsequently used to identify

clusters of template-bound molecules by Affinity Propa-

gation (AP) [44], a recently developed clustering algo-

rithm. As input, AP takes a matrix of similarities and

exchanges real-valued messages between data points in

order to identify a high-quality set of exemplars and the

corresponding cluster members. It was demonstrated to

uniformly detect clusters with much lower error rates

compared to other methods. Finally, the identified template

clusters are structurally aligned onto the target to mark the

locations of putative binding sites. By design, this proce-

dure is less sensitive to the quality of the target structure

than a traditional clustering in Cartesian space upon the

superposition of templates onto the target. To speed up

calculations, we pre-computed pairwise similarities within

the template library to compose a lookup table. Further-

more, to each template, we assign a weight that corre-

sponds to the probability of having a binding site in similar

location as the target. These probabilities are provided by

machine learning models implemented in eThread. In

doing so, templates predicted to have similar binding sites

give a stronger contribution to the pocket location predic-

tion than those with lower probability.

Binding residue prediction

For each putative binding pocket, binding residues are

predicted using machine learning and a set of the following

features: sequence and secondary structure profiles, a dis-

tance from the predicted pocket center, standard deviation

for distances between the pocket center and the centers of

mass of template-bound ligands, the fraction of templates

that have a residue in structurally aligned position in con-

tact with a ligand and the average molecular weight of

template bound ligands. Sequence-based features as well as

geometric characteristics ensure a proper structural and

chemical environment at the predicted binding sites for

binding ligand molecules. We also impose a requirement of

a minimum number of three confidently predicted binding

residues to designate a site as ligand binding; this further

reduces the false positive rate particularly for function

annotations using low-homology templates. At last, a

2-class (binding/non-binding) Support Vector Classifica-

tion (SVC) model is constructed to assign a given residue

in the target structure a ligand binding probability.

Pocket ranking and confidence estimates

Similar methods commonly use majority voting to rank

predicted binding sites. While it works well for relatively
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easy targets, it may encounter some problems in the case

of medium difficulty targets, for which a couple of

largest clusters often have comparable multiplicities. To

address this issue, we developed a machine learning

protocol to rank the predicted sites and estimate the

corresponding ranking confidence. It employs a vector of

the following features: the fraction of templates that

share a particular site, the number of templates (cluster

multiplicity), the average TM-score of the templates to

the target, the number and the average confidence of

predicted binding residues, and a protein–ligand binding

index [65] calculated over the predicted binding residues.

Similar to binding residue prediction, a 2-class SVC

model is constructed to estimate whether a given site

center is predicted within 8 Å from the geometrical

center of a natively bound ligand. This confidence is then

used to rank all putative binding sites predicted for a

given target.

Auxiliary ligands

In many cases, the chemical identity of binding ligands is

known, for instance, can be found in biomedical literature.

Therefore as an option, we incorporate this data to enrich

binding site information in eFindSite. If such auxiliary

ligand is provided, each predicted binding site is assigned a

probability to bind this compound by an SVC model, which

assesses a physicochemical match to the template-bound

molecules. Here, we calculate a classical (TC), an average

(aveTC) as well as a continuous Tanimoto coefficient

(conTC) between the auxiliary compound and template-

bound ligands identified for a given binding site; see

Appendix. The TC scores are calculated using two popular

chemical fingerprints, 1024-bit Daylight (Daylight Chem-

ical Information Systems Inc.: http://www.daylight.com)

and 166-bit MACCS (Symyx Software: MACCS structural

keys. San Ramon, CA), which give 6 features. The

remaining 5 features comprise the following physico-

chemical properties: molecular weight (MW), octanol/

water partition coefficient (logP), polar surface area (PSA),

and the number of hydrogen bond donors (HBD) and

acceptors (HBA). The calculations of 1024-bit Daylight

fingerprints, MW, logP and PSA are conducted by

OpenBabel [61] and 166-bit MACCS fingerprints, HBD

and HBA by MayaChemTools (http://www.mayache

mtools.org/). For each property, we first calculate the

average value and the corresponding standard deviation for

the set of template-bound ligands that are used to identify a

given binding site in the target structure. Then we use a

single Gaussian restraint R (Eq. 1) to evaluate how well the

auxiliary compound i matches the putative binding site

with respect to a particular molecular property, e.g. MW:

RMW
i ¼ 0:5� MWi � MWh i

r

� �2

�ln
1

r
ffiffiffiffiffiffi
2p
p ð1Þ

where RMW
i is the molecular weight restraint for compound

i, MWh i is the average molecular weight of template-bound

molecules and r is the standard deviation. The restraints

for the remaining properties are calculated in a similar way.

Finally, an SVC classifier was developed to estimate the

posterior probability of an auxiliary compound binding to

each identified site. If such compound is provided, we also

include this probability estimate as an additional feature for

binding site ranking and confidence estimation.

Other methods for binding pocket prediction

Binding site prediction by eFindSite is compared to several

other methods. First, we consider two nearest-neighbor

approaches: sequence- and structure-based. In the

sequence-based variant, binding site location is directly

transferred from a template protein with the highest global

sequence similarity to the target; sequence similarity is

calculated by Needleman-Wunsch dynamic programming

[63]. In the structure-based approach, the closest template

is identified based on the lowest E-value reported by

MAMMOTH [38], which indicates the highest global

structure similarity. We note that MAMMOTH is a fre-

quently used structure alignment algorithm in template-

based ligand binding site prediction [30, 66, 67]. To

maintain the consistency of both nearest-neighbor approa-

ches with other benchmarks reported in this study, closely

homologous templates with[40 % sequence identity to the

target are excluded.

In addition to these nearest-neighbor methods, we com-

pare the performance of eFindSite to FINDSITE [31],

Fpocket [26], ghecom [68], LIGSITECS [25], MSPocket [27]

and MetaPocket [28, 69]. FINDSITE is one of the first

approaches that integrate evolutionary information with

structure-based annotation of ligand binding sites in pro-

teins. Here, simulations were carried out as described in the

original publication, except for the template-target sequence

identity threshold, which was set to 40 % instead of 35 %.

Fpocket, ghecom, LIGSITECS and MSPocket are purely

structure-based binding pocket predictors; for each algo-

rithm we used the default set of parameters. Except for

MetaPocket benchmarked against different datasets as

described below, the performance of all pocket prediction

algorithms is evaluated using the complete dataset of 3,659

protein–ligand complexes, where each target protein exists

in three different conformations: experimental structure,

high- and moderate-quality protein model.

MetaPocket represents a majority-voting meta-method

that effectively combines the results of several individual

algorithms to significantly improve the prediction accuracy.
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The comparison of eFindSite to MetaPocket 1.0 and 2.0 is

conducted using three datasets previously selected for

MetaPocket benchmarking [69]: 48 unbound/bound struc-

tures (MPK-48), 210 bound structures (MPK-210) and a

non-redundant dataset of 198 drug-target complexes (MPK-

198). Note that in these benchmarks, only the crystal

structures of target proteins are used. For eFindSite, we

follow the standard procedure excluding closely related

templates, whose sequence identity to the target is[40 %.

Furthermore, meta-threading failed to identify structurally

related ligand-bound templates, whose TM-score to the

target is C0.4, for 6, 7 and 33 target proteins in the MPK-48,

MPK-210 and MPK-198 dataset, respectively. To keep

eFindSite results consistent with those previously obtained

for MetaPocket [69], in these cases, we use all identified

templates regardless of the structure alignment quality.

Structure modeling of E. coli proteins

For genome-scale protein structure modeling and ligand

binding pocket prediction, we selected E. coli K12 strain

[70], which is routinely used in bioengineering and

molecular biology research. First, we used eThread to

construct structural models for 4,552 gene products 50–600

residues in length. Full-length models were assembled

using either Modeller [71] or TASSER-Lite [72]. Our

benchmarking calculations indicate that Modeller con-

structs higher quality models for easy cases, whereas

TASSER-Lite more effectively handles difficult cases

providing better coverage [45]. Therefore for each gene

product, we built an initial model using eThread/Modeller;

when the estimated TM-score was\0.5, indicating difficult

structure modeling, we constructed another model using

eThread/TASSER-Lite. In these cases, a model with the

higher estimated TM-score is designated as the final

structure. We note that estimated TM-score values corre-

late well with the real ones with Pearson correlation

coefficient of 0.89 and 0.81 for eThread/Modeller and

eThread/TASSER-Lite, respectively [45].

Results and discussion

Structural characteristics of benchmarking proteins

The primary application of eFindSite is high-throughput

ligand binding site prediction using modeled protein

structures. The quality of protein models can vary and

strongly depends on the availability of structurally related

templates detectable by threading. Therefore, in addition to

target crystal structures, we benchmark eFindSite against

two sets of protein models with high- and moderate-quality

structures. Table 1 shows that models constructed either by

eThread/Modeller or eThread/TASSER-Lite were included

in the high- and moderate-quality dataset for 79.8–95.6 %

of the target proteins, respectively. Owing to the fact that

no models with a TM-score to native of [0.7 (0.4–0.7)

have been constructed for 741 (159) targets, both datasets

are enriched with a proportionate number of structures

distorted to a desired resolution. Note that our structure

modeling procedure employed only weakly homologous

templates with a sequence identity to the target of at most

40 %. Overall, as shown in Table 1, the high-quality set

consists of models, whose average TM-score to native is

0.81. The average backbone Ca-RMSD (root-mean-square

deviation) is below 5 Å with ligand binding regions fairly

well preserved to an average all-atom RMSD of 2.3 Å. The

moderate-quality set comprises significantly less accurate

structures. Here, the average TM-score and Ca-RMSD is

0.55 and 11.7 Å, respectively. Furthermore, the binding

sites are severely distorted with an average all-atom RMSD

of 5.7 Å. These models certainly represent a considerable

challenge for pocket detection and binding residue pre-

diction algorithms.

Template selection for binding site prediction

eFindSite employs meta-threading and two machine learn-

ing classifiers to select ligand-bound template proteins,

which are subsequently used in binding site prediction. The

cross-validated accuracy of template selection is shown in

Fig. 1. The first classifier assigns to each threading template

a probability of having a ligand binding site in a similar

location as the target. Here, the performance in selecting

good templates is quite high with the true and false positive

rate of 76–44 %, respectively (Fig. 1a). Interestingly,

despite the fact that closely homologous templates with

[40 % sequence identity to the target are excluded from

the benchmarks, the second classifiers also performs fairly

well in selecting these templates that bind chemically

similar molecules. This is shown in Fig. 1b; here, the true

and false positive rate is 78 and 54 %, respectively. As we

demonstrate below, this information can be advantageously

exploited to detect binding sites with high accuracy.

Binding site clustering by affinity propagation

eFindSite uses Affinity Propagation [44] to identify clusters

of similar binding sites across a set of identified templates.

AP method requires a preference factor, which controls

how many data points are selected as exemplars. In Fig. 2,

we show how the preference factor affects the clustering

outcome for our dataset (here we use target crystal struc-

tures). As expected, low preferences lead to a large number

of small clusters, with the one closest to the natively bound

ligand assigned a high rank, thus using too low preference
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factors would result in poor ranking abilities. High pref-

erences produce a small number of larger clusters, which

are, however, further away from natively bound ligands.

We selected 8 Å as an optimal preference factor, which

assigns reasonably low ranks and results in an average

distance from the native ligand of *2 Å.

Accuracy of binding residue prediction

Instead of a simple majority voting, eFindSite employs

machine learning using SVC for binding residue predic-

tion. The cross-validated accuracy of this model is pre-

sented in Fig. 3 for three sets of target structures with

different quality. Here, we use only those targets, for which

the best binding site is predicted within 8 Å from their

native ligands. A posterior probability threshold of 0.25

maximizes Matthew’s correlation coefficient (MCC) to

0.53, 0.50 and 0.48 for crystal structures, high- and mod-

erate-quality protein models, respectively. Moreover, inset

plots in Fig. 3 show that eFindSite correctly identifies 66,

67 and 66 % of ligand binding residues at the expense of

13, 15 and 15 % false positive rate, respectively. These

sensitivity values correspond to a precision of 65, 58 and

56 %, respectively. Given the average distortion of ligand

binding regions of almost 6 Å across the moderate-quality

set, the overall accuracy of binding residue prediction is

actually not only very high, but also quite insensitive to the

quality of target receptor structures.

Binding site ranking

Particularly using weakly homologous templates, whose

function may have diverged from that of the target, typically

Table 1 Composition and structure quality of two datasets of protein models used in addition to crystal structures as targets for ligand binding

site prediction

Dataset Composition TM-score MaxSub GDT Ca-RMSD

[Å]

Pocket RMSDa

[Å]
Modeller

(%)

TASSER

(%)

Distorted

(%)

High-quality 30.9 48.9 20.2 0.81 ± 0.07 0.64 ± 0.11 0.67 ± 0.10 4.82 ± 2.65 2.29 ± 1.91

Moderate-quality 23.4 72.2 4.3 0.55 ± 0.09 0.35 ± 0.12 0.41 ± 0.11 11.71 ± 4.48 5.73 ± 3.74

a All-atom RMSD

Fig. 1 ROC plots for ligand-bound template selection by eThread.

a Positives are defined as those templates that bind ligands in similar

locations; b Bound ligands that are chemically similar to the target

compound are considered positives. TPR—true positive rate, FPR—

false positive rate, black triangles depict the maximum Matthew’s

correlation coefficient, dotted lines represent 95 % confidence

bounds, and gray area corresponds to accuracy no better than random

Fig. 2 Optimization of the preference factor for Affinity Propagation

clustering. For a given preference factor, changing from 1 to 15 Å

with 1 Å step, the geometric centers of template bound ligands are

clustered and the partitioning results are assessed by the following

metrics: a distance of the closest cluster from the ligand geometric

center, b rank of the closest cluster and c fraction of templates that

belong to the closest cluster. Dashed line depicts a preference factor

of 8 Å selected to balance these three quantities
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results in multiple putative binding sites. Therefore, a pivotal

component of the prediction algorithm is a reliable system for

pocket ranking. This is especially important for medium dif-

ficulty targets, for which a couple of largest clusters often have

a comparable number of binding ligands. To deal with this

problem, we developed a new method for pocket ranking that

uses machine learning. Figure 4 demonstrates that high ranking

capabilities of eFindSite are fairly independent on the quality of

target structures. For crystal structures, high- and moderate-

quality protein models, the best pocket rank is at rank 1 in 78, 76

and 75 % of the cases, respectively. This corresponds to*3 %

improvement over majority voting by cluster fraction. Fur-

thermore, for as many as 92, 91 and 90 % of target proteins, the

best pocket is found at most within the top two ranks.

Binding site prediction compared to nearest-neighbor

approaches

Nearest-neighbor methods are the simplest template-based

techniques that can also characterize the relationships

between target proteins to the background knowledge

present in the template library. For a given target protein,

the prediction is made from a single template that is iden-

tified based on either global sequence or global structure

similarity. Figure 5 shows the improvement of eFindSite

over both nearest-neighbor methods for crystal structures as

well as for different quality protein models. Since our

benchmarks are specifically constructed to exclude closely

homologous templates, the accuracy of sequence-based

approach is quite low; the median distance between

experimental and predicted pocket center is 15.1, 15.0 and

14.6 Å for crystal structures, high- and moderate-quality

protein models, respectively. As expected, the structure-

based nearest-neighbor method is generally more accurate;

here, the median distance is 4.6, 5.0 and 5.9 Å, respectively.

Note that in benchmarks against protein models, the mod-

eled structure is used to identify the closest structural match

in the template library, thus sequence neighbors are always

the same across the three datasets, whereas structure

neighbors may be different. The performance of eFindSite

using the top-ranked predicted pockets is clearly better than

both nearest-neighbor approaches with a median distance of

3.8, 3.8 and 4.3 Å for crystal structures, high- and moder-

ate-quality models, respectively. Importantly, it is also less

sensitive to distortions in the modeled structures. When

moving from crystal structures to moderate-quality models,

the accuracy of eFindSite drops off only by 0.5 Å compared

to 1.3 Å for the structure-based approach. These results also

concur with previous studies showing that a combined

evolution/structure-based approach provides higher accu-

racy than function inference derived on the basis of global

structure similarity alone even in the low-sequence identity

regime [40]. It should be pointed out that simple nearest-

neighbor techniques are computationally much less

expensive; however, this analysis perspicuously demon-

strates the superior performance of eFindSite and justifies

its higher demands for computing resources.

Binding site prediction compared to other methods

In Fig. 6, the accuracy of eFindSite in ligand binding site

prediction is compared to that of several other commonly

Fig. 3 Assessment of binding

residue prediction using

machine learning. MCC for

predicted versus experimental

binding residues is plotted as a

function of probability estimates

calculated by SVC for crystal,

high- and moderate-quality

target structures. Insets: (left)

ROC plot and (right)

sensitivity-precision plot;

TPR—true positive rate, FPR—

false positive rate, PPV—

precision. Black triangles show

the best performance in binding

residue prediction, whereas gray

areas delineate predictions no

better than random

558 J Comput Aided Mol Des (2013) 27:551–567

123



used methods. Here, we consider only the top-ranked

binding sites predicted for all three sets of target structures.

The accuracy is assessed by Matthew’s correlation coeffi-

cient calculated for predicted binding residues as well as a

distance between native ligand geometric center and the

predicted pocket center. Focusing on crystal structures

(Fig. 6a), eFindSite outperforms geometrical pocket

detection algorithms by 5–10 % at MCC of 0.5 for binding

residues and by 15–20 % at a distance threshold of 5 Å.

More importantly, it is much less sensitive to the structural

distortions in protein models, see Fig. 6b, c. Here, using

high- (moderate-) quality models, the accuracy measured

by the fraction of proteins with MCC of C0.5 and the

pocket center predicted within 5 Å decreases only by

4.2 % (9.9 %) and 0.9 % (4.7 %), respectively. The falloff

in performance is clearly more dramatic for all purely

geometrical algorithms, for example, at MCC of 0.5 (a

distance threshold of 5 Å), the performance of MSPocket

decreases from 47.4 % (36.4 %) to 18.3 % (20.5 %) and

8.0 % (12.5 %) for high- and moderate-quality protein

models, respectively.

In binding residue prediction, eFindSite is also more

accurate than its predecessor, FINDSITE. For target crystal

structures, both algorithms predict binding residues with

MCC of C0.5 for 55 % of the targets (Fig. 6a). However,

using high- (moderate-) quality protein models, this frac-

tion is 51 % (46 %) and 47 % (32 %) for eFindSite and

FINDSITE, respectively. This improved performance of

eFindSite over FINDSITE is a result of several factors: a

highly optimized template selection and weighting, new

clustering scheme and the extensive use of various machine

learning techniques instead of majority voting. We also

note that the accuracies of both programs are considerably

higher than that of all geometrical methods.

To wind up comparative benchmarks, we assess the

performance of eFindSite with respect to MetaPocket, a

consensus approach currently combining eight individual

pocket detection algorithms to improve prediction accu-

racy. Here, we use three datasets previously compiled to

benchmark MetaPocket: MPK-48, MPK-210 and MPK-

198; the results for MetaPocket versions 1.0 and 2.0 are

taken from the original publication [69]. Table 2 presents

hit rates defined as a percentage of target proteins for which

the pocket center is predicted within a distance of 4 Å from

the closest ligand heavy atom. The performance of

eFindSite on MPK-48/bound, MPK-48/unbound, MPK-210

Fig. 4 Pocket ranking accuracy for different quality target structures:

a crystal, b high- and c moderate-quality. Ranking accuracy is

assessed by the fraction of targets, for which the best pocket is found

at a particular rank shown on the x-axis. Three ranking protocols are

evaluated: by cluster fraction (Fraction), machine learning (SVM) and

machine learning that also considers chemical properties of native

ligand (SVM ? ligand)

Fig. 5 Comparison of eFindSite to sequence- and structure-based

nearest-neighbor approaches using different quality target structures.

For each method, the distribution of distances between predicted

pocket centers and the corresponding native ligand geometric centers

across the benchmarking complexes is shown on the y-axis. Boxes end

at the quartiles Q1 and Q3; a horizontal line in a box is the median.

Whiskers point at the farthest points that are within 3/2 times the

interquartile range. Dashed line depicts a distance of 4 Å between

predicted and experimental pocket centers. For eFindSite, only top-

ranked pockets are considered
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and MKP-198 is 2, 10, 7 and 5 % higher than MetaPocket

1.0, respectively. Compared to MetaPocket 2.0, eFindSite

achieves higher hit rates for MPK-48/unbound and MPK-

210 proteins. Note that eFindSite predictions using weakly

homologous, yet structurally related templates were

obtained for 42, 203 and 165 targets, which is 88, 97 and

83 % of proteins in the MPK-48, MPK-210 and MPK-198

dataset, respectively. Considering only these subsets of

targets, the hit rate of eFindSite improves by 8 % (7 %) for

MPK-48 (MPK-198). Furthermore, most unbound proteins

are globally very similar to the corresponding bound forms

with only local structural rearrangements of binding resi-

dues [73]. Consequently, the performance of eFindSite that

employs global structure alignments should not depend on

the functional form of MPK-48 proteins. Table 2 shows

that this is indeed the case; the hit rate for both MPK-48

datasets is 85 % (93 % for the subset of 42 targets). Note

that the accuracy of MetaPocket 2.0 (MetaPocket 1.0)

decreases by 5 % (8 %).

Improved performance by using auxiliary ligands

The results described so far were obtained using target

proteins alone. Many public databases, such as BindingDB

[74], PubChem [75] or DrugBank [76] provide information

on binding ligands extracted from biomedical literature.

For many of these compounds, the molecular target is

known; however, the mode of interaction as well as specific

binding sites and binding residues are undetermined.

Moreover, the experimental structure of the target may not

be available, which would necessitate using a protein

model. A new feature of eFindSite is its capability of

including additional information on ligands experimentally

known to bind to target proteins in the prediction proce-

dure. Here, we developed a machine learning-based model

to assess how well an auxiliary ligand matches the physi-

cochemical properties of predicted binding sites. Figure 7

shows the accuracy in recognizing correct binding sites

using native ligands. At a probability threshold of 0.5,

Matthew’s correlation coefficient is 0.54, 0.52 and 0.52 for

crystal structures, high- and moderate-quality models,

respectively. This corresponds to the true/false positive rate

Fig. 6 Comparative assessment

of ligand binding pocket

prediction by eFindSite,

FINDSITE, LIGSITECS,

Fpocket, MSPocket and ghecom

using different quality target

structures: a crystal, b high- and

c moderate-quality. The

accuracy is assessed by (left

pane) MCC calculated for

predicted binding residues and

(right pane) distance between

native ligand geometric center

and the predicted pocket center.

Only top-ranked binding sites

are considered

Table 2 Comparison of eFindSite with two versions of MetaPocket

Dataset MetaPocket

1.0 (%)

MetaPocket

2.0 (%)

eFindSitea

MPK-48 (bound) 83 85 85 % (93 %)

MPK-48 (unbound) 75 80 85 % (93 %)

MPK-210 (bound) 76 81 83 % (82 %)

MPK-198 (bound) 55 61 60 % (67 %)

The performance is assessed by hit rates for three different datasets

previously used in MetaPocket benchmarking
a Numbers in parentheses correspond to hit rates obtained for a subset

of 42, 203 and 165 proteins from MPK-48, MPK-210 and MPK-198,

respectively
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of 0.63/0.08, 0.63/0.09 and 0.62/0.09, respectively (Fig. 7,

inset). This high accuracy demonstrates that ligand fitness

can be considered as a reliable confidence score. Moreover,

Fig. 4 shows that when this information is subsequently

included in the ranking procedure, it further improves the

overall ranking. Now, in 82 % (95 %), 80 % (92 %) and

78 % (91 %) of the cases the best pocket is ranked 1 (at

most 2) using crystal structures, high- and moderate-quality

models, respectively.

As shown in Fig. 8, improved ranking leads to higher

MCC values calculated for predicted binding residues. For

a number of proteins highlighted by green areas, MCC for

the top-ranked pocket rises above a significant threshold of

0.5. Red areas show that for notably fewer targets, addi-

tional information on ligands makes MCC scores for

binding residues worse. This is caused by a very weak

signal from promiscuous sites that bind to chemically

diverse compounds across sets of evolutionarily weakly

homologous proteins, which in turn, deteriorates ranking

accuracy. Importantly, the improvement is seen not only

for crystal structures, but also for both sets of protein

models of high- and moderate quality.

Confidence index system for binding site prediction

Since accurate binding site predictions cannot be made for

all proteins, it is critical to have a reliable confidence index

system. eFindSite offers this functionality through posterior

probabilities estimated by the SVC model for binding site

ranking. In Fig. 9, we show that the confidence index

correlates very well with the accuracy of binding site pre-

diction assessed by MCC calculated for binding residues

within the top-ranked pocket. Typically, accurate predic-

tions require quite high confidence estimates of [0.8,

whereas for proteins assigned a confidence of \0.2, the

median MCC is close to random. Based on these results, we

can categorize target proteins as ‘‘easy’’ ([0.8), ‘‘medium’’

(0.2–0.8) and ‘‘hard’’ (\0.2). We note that ‘‘easy’’ does not

mean trivial; the classification simply helps estimate a level

of difficulty in making an accurate prediction. Of course the

overall performance of eFindSite is high because most of

the targets in the dataset fall into the ‘‘easy’’ category: 74 %

for target crystal structures and 69–73 % for protein mod-

els, see Table 3.

Genome-scale pocket prediction

To demonstrate the practical application of eFindSite in

across-genome function annotation, we use it to identify

putative ligand binding sites in the entire proteome of

E. coli. First, using eThread, we constructed structural

models for all gene products in E. coli proteome. Figure 10

shows the distribution of the estimated quality of individual

models generated by eThread/Modeller, eThread/TAS-

SER-Lite. Since eThread/TASSER-Lite was applied only

to the most difficult cases, the corresponding distribution is

shifted towards lower estimated TM-score values. Col-

lecting the most confident models from both sets results in

a final dataset of 4,552 structures that comprise 3,185

(70 %) and 1,367 (30 %) models constructed by eThread/

Fig. 7 Accuracy of machine

learning in recognizing binding

pockets using the

physicochemical properties of

native ligands. Matthew’s

correlation coefficient is plotted

as a function of probability

estimates calculated by SVC for

different quality target

structures (crystal, high- and

moderate-quality). Insets: (left)

ROC plot and (right)

sensitivity-precision plot;

TPR—true positive rate, FPR—

false positive rate, PPV—

precision. Gray areas

correspond to predictions no

better than random
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Modeller and eThread/TASSER-Lite, respectively. On the

whole, the majority of structures are confidently predicted

with an estimated TM-score of [0.7 for 1,771 (39 %) and

0.4-0.7 for 2,094 (46 %) models. Thus, *85 % of E. coli

proteome can be reliably moved to the structural level

making these gene products promising targets for structure-

based ligand binding site identification.

Using eFindSite, at least one ligand binding pocket is

predicted for 2,828 gene products, which constitute 62 %

of E. coli proteome. Among these, 1,300 (46 %) and 776

(27 %) are classified as ‘‘easy’’ and ‘‘medium’’ predictions,

respectively, see Fig. 11. From calibration plots shown in

Fig. 9, we may expect that the accuracy of identified

binding residues in terms of MCC is *0.6 and *0.3 for

‘‘easy’’ and ‘‘medium’’ targets, respectively, indicating a

fairly high precision of proteome-wide binding site pre-

diction by eFindSite.

Case studies

To conclude proteome-wide binding pocket prediction for

E. coli, we discuss a couple of representative examples that

Fig. 8 Improvement of eFindSite ? ligand over eFindSite for dif-

ferent quality target structures: a crystal, b high- and c moderate-

quality. MCC is calculated for predicted versus experimental binding

residues for the top-ranked binding pockets. Green areas highlight

predictions significantly improved by including information on

binding ligands, whereas red areas point out these cases, for which

the performance of eFindSite ? ligand is worse than eFindSite

Fig. 9 Confidence estimation

system implemented in

eFindSite. Using top-ranked

binding sites, the correlation

between estimated confidence

and the actual accuracy of

binding residue prediction is

shown for a crystal structures,

b high- and c moderate-quality

protein models. The accuracy is

measured by MCC calculated

for predicted versus

experimental binding residues

Table 3 Percentage of easy, medium and hard targets for ligand binding site prediction across three sets of different quality protein structures

Category Confidence index Crystal structures High-quality models Moderate-quality models

SVM (%) SVM ? liganda

(%)

SVM (%) SVM ? liganda

(%)

SVM (%) SVM ? liganda

(%)

Easy [0.8 73.9 71.1 73.4 70.8 69.0 67.4

Medium 0.2–0.8 16.6 14.5 16.8 15.1 20.1 17.1

Hard \0.2 9.5 14.4 9.8 14.1 10.9 15.5

a Including auxiliary ligands
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demonstrate the utility of eFindSite in such large-scale

projects. We selected two gene products, whose Ensembl

IDs are EBESCP00000001015 and EBESCP00000003057.

The first one is 394 amino acid long elongation factor Tu

(EF-Tu; gene name: tuf) that functions as GTPase pro-

moting the GTP-dependent binding of aminoacyl-tRNA to

the A-site of ribosomes during protein biosynthesis. The

estimated TM-score is 0.76 for the top-ranked model

constructed by eThread/Modeller from EF-Tu sequence

(Fig. 12a), indicating a high accuracy of structure model-

ing. Next, we use eFindSite to predict ligand binding sites

in the protein model. The top-ranked identified pocket

shown in Fig. 12a has a high confidence of 0.91 and is

formed by the following 13 putative binding residues: H20,

V21, D22, H23, G24, K25, T26, T27, N136, K137, S174,

A175, and L176. From literature, we collected experi-

mental mutation data to validate eFindSite binding site

prediction for EF-Tu. A single point mutation of V21 to

glycine strongly reduces the GTPase activity [77]. More-

over, N136 was found essential for the correct formation of

the nucleotide binding site [78]. Finally, predicted binding

residues H20-K25 largely overlap with a consensus

Fig. 10 Expected quality of

structure models constructed for

E. coli proteins by eThread.

Protein models are built using

either eThread/Modeller

(dashed line) or eThread/

TASSER-Lite (solid line).

Estimated TM-score is used as a

quality assessment measure.

The combined dataset including

only the most confident models

is shown in gray

Fig. 11 Confidence of ligand

binding pocket prediction across

E. coli proteome. Confidence

estimates are calculated by

machine learning models

calibrated on benchmarking

datasets. ‘‘Easy’’, ‘‘medium’’

and ‘‘hard’’ categories are

shown in different shades of

gray
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sequence of residues G19-K25, which have been demon-

strated to be important for interactions with GTP/GDP

[79].

Our second example is 311 amino acid long aspartate

carbamoyltransferase (ATCase; gene name: pyrB). Using

the sequence of this protein, a highly confident model was

built by eThread/Modeller with an estimated TM-score of

0.73 (Fig. 12b). In this ATCase model, eFindSite identified

a set of 10 residues that form the top-ranked predicted

binding pocket, whose confidence is 0.90. These include

A52, S53, R55, T56, G129, H135, T169, P267, L268 and

P269. Available experimental data show that R55 as well

as T56 are important for catalysis [80, 81]. Furthermore,

replacing P269 with alanine dramatically decreases sub-

strate affinity and, consequently, reduces the enzymatic

activity [82]. These case studies demonstrate that predic-

tions by eFindSite correlate well with site directed muta-

genesis experiments.

Profiling of computational resources

Particularly for genome-scale applications that require

processing a large number of jobs on high-performance

computing systems, it is essential to estimate the resources

needed for individual calculations. In that regard, we carry

out resource profiling of eFindSite with respect to the CPU

Fig. 12 Structure models

constructed for a elongation

factor Tu and b aspartate

carbamoyltransferase from

E. coli proteome. In each model,

transparent gray surface shows

the top-ranked binding pocket

predicted by eFindSite with

binding residues presented as

sticks. Residues confirmed

experimentally to bind a ligand

are labeled and colored in

orange

Fig. 13 Utilization of

computing resources by

eFindSite. Average ± standard

deviation wall clock (left

ordinate) and memory (right

ordinate) is plotted as a function

of a target protein length and

b the number of identified

template structures
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time and memory utilization. Figure 13 shows the average

wall clock and memory usage (both ± standard deviation)

for eFindSite. We identify two factors responsible for the

resource consumption: target sequence length (Fig. 13a)

and the number of template structures identified by eTh-

read (Fig. 13b). On average, eFindSite completes within

*30 min of CPU time and requires up to 200 MB of

memory. However, larger protein targets and more tem-

plate structures increase the demand for both wall clock

and memory due to more intense structure alignment cal-

culations. In a larger perspective, this comprehensive

resource profiling can be used in efficient job scheduling on

modern high-performance systems to maximize the utili-

zation of computing resources and consequently, to reduce

the time-to-completion of large-scale function annotation

projects using eFindSite.

Conclusions

The knowledge of protein function needs to be continu-

ously expanded to meet the challenges of systems biol-

ogy, which is rapidly taking a center stage in biological

research [83]. With the rapid accumulation of genome

sequences, automated functional annotation of gene

products is becoming critical. In addition to traditional

experimental approaches, across-genome function infer-

ence is largely accomplished using computational tech-

niques. Many proteins routinely interact with small

molecules to regulate cellular activities and biological

processes; therefore, the identification of binding sites is

essential for protein function annotation. To address the

limitations of purely sequence- and structure-based

methods, we developed eFindSite, a combined evolution/

structure-based approach to ligand binding prediction. A

remarkable feature of eFindSite is its high tolerance to

deformations in modeled target structures. Equally

important, eFindSite is designed to effectively explore the

‘‘twilight zone’’ of sequence similarity, so that functional

aspects of a target protein can be efficiently inferred from

remote evolutionary relationships.

eFindSite employs highly sensitive meta-threading by

eThread [45] and the Affinity Propagation clustering

algorithm [44] to optimize the selection of ligand-bound

templates. This procedure is pivotal since binding site

detection is essentially built upon the template selection.

Furthermore, eFindSite extensively uses various machine

learning techniques for template selection, binding residue

prediction, binding site ranking and confidence estimation.

Large-scale comparative benchmarks demonstrate a supe-

rior performance of eFindSite compared to its predecessor,

FINDSITE [31], several geometrical pocket detection

methods as well as binding pocket meta-predictors. A high

tolerance of eFindSite to distortions in modeled protein

structures stems from highly optimized template selection

and weighting schemes, target-template as well as tem-

plate–template global structure alignments, a new cluster-

ing procedure, and carefully tuned machine learning

models. Interestingly, for non-native protein structures, we

observe some differences in the performance of individual

pocket detection algorithms depending not only on the

quality of target structures, but also on the procedure used

to construct these models. This will be investigated further

in subsequent studies.

eFindSite is freely available to academic community as

a user-friendly web-server as well as a well documented

stand-alone software distribution at http://www.brylinski.

org/efindsite; this website also provides all benchmarking

datasets and results reported in this paper. Furthermore, the

results of large-scale protein structure modeling and ligand

binding prediction for E. coli proteome are freely available

at http://www.brylinski.org/content/databases.
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Appendix

Molecular fingerprints are bit strings that represent the

structural and chemical features of organic compounds (see

Daylight manual for details: http://www.daylight.com/day

html/doc/theory/index.pdf). Tanimoto coefficient is the

most popular measure to quantify the similarity of two sets

of bits (e.g. molecular fingerprints). Classical Tanimoto

coefficient (TC) [60] is defined as:

TC ¼ c

aþ bþ c
ð2Þ

where a is the count of bits on in the 1st string but not in

the 2nd string, b is the count of bits on in the 2nd string but

not in the 1st string, and c is the count of the bits on in both

strings.

In addition to the classical Tanimoto coefficient, the

overlap between two molecular fingerprints can be mea-

sured by the average Tanimoto coefficient (aveTC) [84]:

aveTC ¼ TC þ TC
0

2
ð3Þ

where TC0 is the Tanimoto coefficient calculated for bit

positions set off rather than set on.

Furthermore, a version of the Tanimoto coefficient for

continuous variables (conTC) [85] was developed:
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conTC ¼
P

xpixciP
x2

piþ
P

x2
ci �

P
xpixci

ð4Þ

where xpi is the i-th descriptor of a fingerprint profile and

xci is the i-th descriptor of a query compound. The fin-

gerprint profile is constructed from individual fingerprints

for a set of compounds, e.g. template-bound ligands that

were used to identify a putative binding site in the target

structure.
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