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Protein threading is widely used in the prediction of protein structure and the subsequent
functional annotation. Most threading approaches employ similar criteria for the template
identification for use in both protein structure and function modeling. Using structure
similarity alone might result in a high false positive rate in protein function inference,
which suggests that selecting functional templates should be subject to a different set
of constraints. In this study, we extend the functionality of eThread, a recently developed
approach to meta-threading, focusing on the optimal selection of functional templates.
We optimized the selection of template proteins to cover a broad spectrum of protein
molecular function: ligand, metal, inorganic cluster, protein, and nucleic acid binding. In
large-scale benchmarks, we demonstrate that the recognition rates in identifying templates
that bind molecular partners in similar locations are very high, typically 70–80%, at the
expense of a relatively low false positive rate. eThread also provides useful insights
into the chemical properties of binding molecules and the structural features of binding.
For instance, the sensitivity in recognizing similar protein-binding interfaces is 58% at
only 18% false positive rate. Furthermore, in comparative analysis, we demonstrate that
meta-threading supported by machine learning outperforms single-threading approaches
in functional template selection. We show that meta-threading effectively detects many
facets of protein molecular function, even in a low-sequence identity regime. The
enhanced version of eThread is freely available as a webserver and stand-alone software
at www.brylinski.org/ethread.

Keywords: protein function inference, template-based modeling, protein meta-threading, ligand-binding, metal-
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INTRODUCTION
Currently, the most accurate and consequently the most widely
used methods for protein structure and function prediction build
on homology, i.e., they use information educed from related
proteins. As demonstrated in the recent Critical Assessment of
Protein Structure Prediction (CASP) experiment, the top perform-
ing groups in tertiary structure and function prediction categories
use various template-based methods (Moult et al., 2009). Typi-
cally, the first step in comparative protein structure modeling or
function inference is the identification of suitable templates in
available databases, such as the Protein Data Bank (PDB; Berman
et al., 2000). Here, the simplest approaches detect template pro-
teins using sequence comparisons; however, these methods are
generally limited to the high levels of sequence identity (Rost,
2002).

To address this issue, a number of methods have been devel-
oped to search for low-sequence identity templates that can
be used to construct the structural model of a target protein
or to infer its molecular function. Nevertheless, because of
the complex and equivocal relations between protein sequence,
structure, and function, template-based modeling in the “twi-
light zone” of sequence similarity (Rost, 1999) may result in
a high false positive rate. This problem can be addressed by

introducing various scoring functions and filters. For example,
a sequence profile score, pairwise interaction potential, envi-
ronmental fitness, secondary structure compatibility and their
linear combinations are popular scoring functions widely used
in threading and fold recognition. To provide templates for pro-
tein structure prediction, many methods, such as SP3 (Zhou
and Zhou, 2005) and SPARKS2 (Zhou and Zhou, 2005), first
apply a combined scoring function to assign the score to each
structure in the template library and then use a Z-score fil-
ter to identify these templates that are likely structurally similar
to the target. Similar criteria are commonly used for the tem-
plate identification in protein function prediction. For example,
to collect functional templates, FINDSITE (Brylinski and Skol-
nick, 2008) and FINDSITE-metal (Brylinski and Skolnick, 2011)
use a threading Z-score of ≥4, a threshold that is also used
in the detection of structural templates in TASSER (Zhang and
Skolnick, 2004b). A similar method, @TOME-2, employs meta-
threading to detect template proteins, which are subsequently
used in both structure modeling and function inference (Pons
and Labesse, 2009). Other approaches such as 3DLigandSite
(Wass et al., 2010) or I-TASSER (Roy et al., 2010) use struc-
tural alignments to detect ligand-bound templates for function
prediction.

www.frontiersin.org June 2013 | Volume 4 | Article 118 | 1

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/10.3389/fgene.2013.00118/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MichalBrylinski&UID=29325
http://www.frontiersin.org/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


“fgene-04-00118” — 2013/6/19 — 13:32 — page 2 — #2

Brylinski Evolution/structure-based function inference of proteins

It has been demonstrated that using structure similarity alone
may result in a high false positive rate in protein function inference
(Brylinski and Skolnick, 2010). Historically, template identifi-
cation algorithms, such as threading or fold recognition, were
designed to detect structurally similar templates for protein struc-
ture prediction. Therefore, template selection by structure-driven
threading or structure alignment may provide false information
on protein function. Recently, we developed eThread, an accurate
meta-threading procedure for the identification of structurally
related templates for the template-based modeling of proteins
(Brylinski and Feinstein, 2012; Brylinski and Lingam, 2012). Here,
we extend its functionality to also include the optimal selection
of functional templates, which cover a broad range of protein
function: ligand, metal, inorganic cluster, protein, and nucleic
acid binding. We show that state-of-the-art threading algorithms
effectively detect many aspects of protein molecular function using
low-homology templates, thus should provide practical assistance
to evolution/structure-based function inference of proteins.

METHODS
DATASETS
Five datasets were compiled in this study, which comprise ligand-,
metal-, and iron/sulfur-binding proteins as well as protein–protein
and protein–DNA macromolecular complexes. Metal- and Fe/S-
binding proteins were directly identified in the PDB (Berman
et al., 2000). Following metals were included in the dataset: Ca,
Co, Cu, Fe, Mg, Mn, and Zn. Iron–sulfur clusters are made up
of at least two iron and two sulfur atoms. The set of protein–
ligand complexes was obtained from the Protein-Small Molecule
Database (Wallach and Lilien, 2009), which provides a convenient
resource for studies focusing on protein–small molecule interac-
tions. Small organic compounds non-covalently bound to proteins
and composed of 7–60 heavy atoms were included in the dataset.
Protein–protein and protein–DNA complexes were downloaded
from the PISA database of macromolecular assemblies (Krissinel
and Henrick, 2007). For protein–protein complexes, the minimum
number of interfacial residues was set to 20, for protein–DNA
assemblies, only DNA strands with at least 10 nucleotides are con-
sidered. In each dataset, the redundancy was removed at 40%
pairwise sequence identity using PISCES (Wang and Dunbrack,
2003). Furthermore, we included only proteins 50–600 residues
in length. This procedure resulted in 6,895, 6,610, 209, 8,155, and
440 ligand-, metal-, Fe/S-, protein-, and DNA-binding proteins,
respectively. The lists of benchmarking proteins are provided as
Supplementary Materials.

FUNCTIONAL TEMPLATES
For each protein target in a given dataset, functional templates
are defined as these proteins that structurally align onto the tar-
get with a statistically significant TM (template modeling)-score
of ≥0.4 (Zhang and Skolnick, 2004a) and bind their partners in
a similar location. Here, we use distance thresholds of 4, 2, 3,
6, and 6 Å for ligands, metal, iron–sulfur clusters, protein, and
DNA interfaces, respectively. The distances are measured upon
the global template-to-target superposition generated by fr-TM-
align, a structure alignment program (Pandit and Skolnick, 2008).
The ratio of the number of positives and negatives across ligand-,

metal-, Fe/S-, protein-, and DNA-binding proteins is 0.24, 0.10,
0.87, 0.10, and 0.31, respectively. In addition, we also assess the
chemical and geometrical conservation of bound molecules, i.e.,
the template- and target-bound metals are of the same type, the
pairwise Tanimoto coefficient (Tanimoto, 1958), TC, calculated
for Daylight 1024-bit SMILES strings between the template- and
target-bound ligands is ≥0.5, or the nucleotide composition of the
template- and target-bound DNA is similar (AT- or GC-rich). For
protein–protein complexes, we assess the local structural similar-
ity of binding interfaces using iAlign with a significant interfacial
score, IS (interface similarity)-score, of ≥0.191 (Gao and Skolnick,
2010). According to these criteria, the positives/negatives ratio for
ligand-, metal-, Fe/S-, protein-, and DNA-binding proteins is 0.21,
0.70, 1.17, 0.21, and 1.16, respectively.

META-THREADING BY eThread
To identify functional templates, we use eThread (Brylinski
and Lingam, 2012), which integrates ten state-of-the-art protein
threading/fold recognition algorithms: CSI-BLAST (Biegert and
Soding, 2009), COMPASS (Sadreyev and Grishin, 2003), HHpred
(Soding, 2005), HMMER (Eddy, 1998), pfTools (Bucher et al.,
1996), pGenThreader (Lobley et al., 2009), SAM-T2K (Hughey
and Krogh, 1996), SP3 (Zhou and Zhou, 2005), SPARKS2 (Zhou
and Zhou, 2005), and Threader (Jones et al., 1992). eThread was
originally design to detect structural templates using machine
learning and a set of feature vectors composed of individual
threading scores. Here, we extend this functionality to include
ligand-, metal-, Fe/S-, protein-, and DNA-binding probability
estimates. Specifically, for each aspect of molecular function, we
constructed two machine learning models with different levels of
optimization to assess whether a particular template (1) binds
its partners in a similar location, and (2) binds chemically sim-
ilar molecules and/or the binding mode is similar. We refer to
these models as Location and Features, respectively. We use a
Naïve Bayes classifier (NBC) to combine individual threading scor-
ing functions into a single probabilistic score. In this classifier,
the real-value attributes are modeled by a Gaussian distribution,
i.e., the classifier first estimates a normal distribution for each
threading component by computing the mean and standard devi-
ation of the training data in that class, which is then used to
estimate the posterior probabilities during classification. Both
classifiers, Location and Features, are independently trained on
threading scores. The accuracy of template selection is assessed
using twofold cross validation; Pearson’s chi-squared test applied
to each individual scoring function confirmed that both subsets are
characterized by the same central tendency and dispersion mea-
sures as the whole dataset. Thus, considering a maximum sequence
identity of 40% between any two dataset proteins, this protocol
provides a sufficient cross validation. Furthermore, the imposed
pairwise sequence identity threshold automatically excludes close
homologs from benchmarks.

EXAMPLE PROTEINS
We selected the following representative examples: recombinant
A. aegerita lectin complexed with lactose (PDB-ID: 2zgm), amino
acid acyl-carrier protein ligase 1 from B. japonicum bound to
zinc (PDB-ID: 3mey), NADH-quinone oxidoreductase from T.
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thermophiles complexed with Fe4S4 (PDB-ID: 2fug), transcrip-
tion factor PU.1 from mouse bound to DNA (PDB-ID: 1pue),
and a homodimer of hypothetical transposase from S. tokodaii
(PDB-ID: 2ec2). In parentheses are the PDB IDs of weakly homol-
ogous (<40% sequence identity) templates identified by eThread
for 2zgm (1c1l, 1d2s, 1g86, 1gzw, 1hdk, 1is3, 1kel, 1kjl, 1kjr, 1lhu,
1lhw, 1ngx, 1qfm, 1qkq, 1slt, 1t2q, 1w6o, 1w6p, 2bkl, 2d03, 2d6m,
2eak, 2eal, 2nmo, 2ny1, 2r0h, 2vno, 2wkk, 2wt0, 2wt1, 2xg3, 2z3z,
2zaa, 2zab, 2zac, 2zhk, 2zhl, 2zhm, 3a71, 3a72, 3ap6, 3ap7, 3gal,
3h3l, 3htl, 3nv3, 3nv4, 3o4h, 4gal); 3mey (1b8a, 1e1t, 1e22, 1e24,
1eqr, 1evk, 1evl, 1fyf, 1kog, 1nyq, 1qf6, 1x54, 1x55, 2cim, 2cja,
2i4o, 2j3m, 2q7e, 2q7g, 2rhq, 2rhs, 2xgt, 2xti, 2zcd, 2zce, 2zin,
3a31, 3a74, 3bju, 3e9h, 3e9i, 3nem, 3qtc); 2fug (1cc1, 1e3d, 1fp4,
1frf, 1frv, 1g20, 1g21, 1h1l, 1h2a, 1h2r, 1l5h, 1l9g, 1m1n, 1m1y,
1m34, 1mio, 1n2c, 1qgu, 1qh1, 1qh8, 1ui0, 1ui1, 1vk2, 1yqw, 1yrq,
2a5h, 2afh, 2afi, 2afk, 2d3y, 2ddg, 2dp6, 2frv, 2min, 2wpn, 2xdq,
3aek, 3aet, 3k1a, 3min, 3myr, 3pdi); 1pue (1if1, 1j59, 1k79, 1lb2,
1o3s, 1run, 1t2k, 1xsd, 1yo5, 2cgp, 3e54, 3jtg); and 2ec2 (1a9n,
1hr6, 1y13, 2a6m, 2a6o, 2ar9, 2vic, 2vih, 2vju, 3a4i, 3a74, 3bju,
3lmb).

RESULTS AND DISCUSSION
We evaluate the performance of eThread in template selection
using five datasets that comprise ligand-, metal-, and iron/sulfur-
binding proteins as well as protein–protein and protein–DNA
complexes. For each target protein, we identify in the PDB library
structurally similar proteins that produce statistically significant
structure alignment with a TM-score of ≥0.4. These templates
that bind molecular partners in similar locations are consid-
ered positives with the remaining categorized as negatives. In
the subsequent analysis, we examine another requirement for
being a positive, which is either a significant chemical similarity
of bound molecules for small ligands and metal ions, a sim-
ilar nucleotide composition for protein–DNA complexes, or a
similar interfacial geometry for protein–protein assemblies. The
extended version of eThread employs highly tuned machine learn-
ing models to provide a set of probability estimates for various
aspects of protein molecular function. These are primarily used

to assess whether a particular template binds its partners in a
similar location; moreover, another set of probabilities estimate
whether the template-bound compounds are chemically similar
and/or the binding mode between macromolecules is the same. It
is important to note that we explore remote evolutionary relation-
ships between protein, excluding those templates that share >40%
sequence identity with the target.

Figure 1 shows the accuracy of template identification by
eThread for all considered aspects of molecular function. First, we
assess the recognition of these templates that bind their partners
in similar locations [green ROC (receiver operating characteristic)
curves]. The recognition rates are very high, typically 70–80%, at
the expense of a relatively low false positive rate with tight 95%
confidence bounds (Kestler, 2001). For instance, the true and
false positive rate for the selection of weakly homologous Fe/S-
binding templates is 0.72 and 0.30, respectively. Many existing
approaches to evolution/structure-based binding site prediction
cluster the centers of mass of molecules bound to the identified
templates upon the global template-to-target superposition (Pons
and Labesse, 2009; Roy et al., 2010; Wass et al., 2010). The posterior
probabilities estimated by eThread can be used as weight factors in
clustering and the subsequent site ranking. This would allow for
more precise binding site identification as well as for the improved
ranking of predicted binding sites.

Despite the fact that only remote evolutionary relationships
between proteins are being explored in the presented bench-
marks, meta-threading was found to provide useful insights into
the chemical properties of bound molecules and the interfacial
geometry; this is shown in Figure 1 as blue ROC curves. This
feature can be used to improve the prediction of the chemical
properties of binding ligands and iron–sulfur clusters or the type
of binding metal. Here, the most accurate is the recognition of
similar protein-binding interfaces with a sensitivity of 58% at only
18% false positive rate. This can be beneficially exploited fur-
ther to extend the target coverage and to improve the accuracy of
approaches to protein docking by interfacial similarity (Sinha et al.,
2010). The only aspect of molecular function that cannot be pre-
dicted by meta-threading is the nucleotide composition of bound

FIGURE 1 | ROC plots for template identification by meta-threading

and machine learning. The following aspects of molecular function are
considered: (A) ligand-, (B) metal-, (C) Fe/S-, (D) protein-, and (E)

DNA-binding. Two different NBC models are trained to detect functionally
related proteins that bind their partners in similar locations (Location, green)

and bind chemically similar molecules or the binding mode is similar (Feature,
blue). Triangles depict optimal cut-off points; solid lines and transparent bands
are the ROC curve and its non-parametric two-sided confidence bounds,
respectively. Gray area corresponds to prediction accuracy no better than
random. TPR, true positive rate; FPR, false positive rate.
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DNA (note that the locations of DNA-binding sites are predicted
with a high accuracy). This is due to the fact that many DNA-
binding proteins associate with non-specific DNA sequences and
slide along to search for the specific DNA target sequence (Halford
and Marko, 2004).

The area under ROC is a commonly used method to assess
the overall performance of ranking approaches. In Table 1, we
report the area under the ROC curve for individual threading
methods compared to that of eThread. In the majority of cases,
the performance of eThread is notably better than that of single-
threading algorithms, particularly in the prediction of the chemical
properties of binding molecules. The exceptions are HHpred and
pfTools in predicting metal-binding sites and binding metals [area

under the curve (AUC) of 0.783 and 0.619, respectively], SP3
and SPARKS in detecting DNA-binding aspects (AUC of 0.795
and 0.538, respectively), and COMPASS in recognizing protein–
protein interfacial geometry (AUC of 0.732). Table 2 extends this
analysis further by accounting for the so-called “early recognition
problem.” By analogy to virtual screening, where one requires
active compounds to be ranked as high as possible, template iden-
tification approaches also should rank good templates early in an
ordered list. BEDROC (Boltzmann-enhanced discrimination of
ROC) is a generalization of ROC developed specifically to ana-
lyze methods that need to segregate positives toward the front of a
rank-ordered list (Truchon and Bayly, 2007). As shown in Table 2,
except for HHpred in predicting metal-binding sites (BEDROC

Table 1 | Area under the ROC curve for individual threading methods compared to that of eThread.

Method Ligand-binding Metal-binding Fe/S-binding DNA-binding Protein-binding

Location Features Location Features Location Features Location Features Location Features

COMPASS 0.663 0.586 0.695 0.568 0.625 0.597 0.751 0.490 0.814 0.732

CSI-BLAST 0.649 0.604 0.732 0.593 0.599 0.566 0.674 0.527 0.757 0.659

HHpred 0.690 0.635 0.783 0.617 0.714 0.666 0.774 0.529 0.805 0.698

HMMER 0.656 0.602 0.731 0.595 0.606 0.572 0.734 0.522 0.778 0.718

pfTools 0.652 0.605 0.763 0.619 0.583 0.567 0.727 0.519 0.749 0.692

pGenThreader 0.618 0.528 0.671 0.553 0.597 0.564 0.732 0.535 0.771 0.671

SAM-T2K 0.663 0.605 0.758 0.603 0.646 0.595 0.750 0.512 0.786 0.691

SP3 0.674 0.597 0.745 0.596 0.627 0.590 0.795 0.532 0.806 0.701

SPARKS2 0.667 0.587 0.738 0.591 0.617 0.576 0.776 0.538 0.808 0.704

Threader 0.626 0.540 0.631 0.548 0.610 0.513 0.695 0.511 0.761 0.679

eThread 0.694 0.639 0.778 0.618 0.772 0.704 0.781 0.527 0.819 0.720

Location and Features as defined in Section “Methods.” Best performing algorithms are highlighted in bold.

Table 2 | BEDROC scores calculated for individual threading methods compared to that of eThread.

Method Ligand-binding Metal-binding Fe/S-binding DNA-binding Protein-binding

Location Features Location Features Location Features Location Features Location Features

COMPASS 0.619 0.535 0.642 0.561 0.587 0.588 0.712 0.505 0.784 0.712

CSI-BLAST 0.608 0.551 0.678 0.585 0.565 0.554 0.633 0.525 0.728 0.640

HHpred 0.641 0.575 0.723 0.604 0.691 0.664 0.721 0.535 0.774 0.678

HMMER 0.613 0.547 0.676 0.587 0.566 0.556 0.704 0.529 0.745 0.691

pfTools 0.608 0.547 0.702 0.605 0.552 0.555 0.695 0.530 0.713 0.666

pGenThreader 0.580 0.481 0.620 0.547 0.578 0.552 0.698 0.542 0.742 0.653

SAM-T2K 0.619 0.551 0.701 0.593 0.613 0.581 0.715 0.520 0.756 0.672

SP3 0.625 0.542 0.685 0.586 0.588 0.577 0.741 0.539 0.774 0.685

SPARKS2 0.620 0.543 0.680 0.581 0.587 0.566 0.742 0.545 0.777 0.688

Threader 0.578 0.486 0.569 0.537 0.599 0.519 0.651 0.520 0.720 0.649

eThread 0.646 0.579 0.716 0.608 0.758 0.714 0.744 0.537 0.787 0.700

Location and Features as defined in Section “Methods.” Best performing algorithms are highlighted in bold.
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of 0.723) and DNA feature prediction, which is close to random
for all methods, eThread most efficiently tackles the problem of
the early recognition of functionally related templates across all
binding datasets. These results are finally supported by Z-statistics
calculated by the Wilcoxon rank-sum (aka Mann–Whitney U) test.
Table 3 shows that only SP3 in the identification of DNA-binding
sites (Z-score of 23.18) gives better Z-statistics than eThread.

Tables 1, 2, and 3 also clearly indicate performance differences
between individual methods. For instance, COMPASS, HHpred,
and SP3 are the most effective single-threading algorithms in the
prediction of protein-, metal-, and DNA-binding sites, respec-
tively. In view of the fact that meta-threading puts much higher
demands for high-performance computing resources (Brylinski
and Feinstein, 2012), these results provide useful guidelines for
selecting a single-threading method with respect to a particular
functional aspect when computational speed is critical. Never-
theless, this comparative analysis perspicuously demonstrates that
eThread, which uses meta-threading and machine learning mod-
els constructed separately for different facets of protein molecular
function, systematically outperforms single-threading methods
providing higher overall accuracy.

To illustrate how weakly homologous templates identified by
eThread pick out binding sites, we selected five representative
examples, one for each aspect of molecular function: recombi-
nant lectin (rAAL) complexed with lactose, amino acid acyl-carrier
protein ligase 1 (aa:CP) bound to zinc, NADH-quinone oxidore-
ductase (NDH-1) complexed with Fe4S4, transcription factor PU.1
bound to DNA, and a homodimer of hypothetical transposase
(tnpA). In Figure 2, upon the global template-to-target superpo-
sition, these templates that are predicted to have a binding site in
a similar location are shown in green. Red spots indicate template
binding sites, which are below the optimal probability threshold,
i.e., are predicted to bind molecules in different locations. In all
cases, there are very few false positives and false negatives; the
consensus amongst templates predicted to bind their molecular

partners in a similar location precisely identifies the correct bind-
ing site. Note that for aa:CP and NDH-1, a simple majority
voting would result in the incorrect prediction of the binding site
location.

CONCLUSION
We extended the functionality of eThread, a recently developed
meta-threading approach (Brylinski and Lingam, 2012), to address
the problem of identifying weakly homologous templates for
function annotation in the “twilight zone” of sequence similar-
ity. This method successfully covers many facets of molecular
function including the interactions between proteins and small
molecules, metal ions, inorganic clusters, nucleic acids as well as
other proteins. It provides not only the location on a protein sur-
face where the interactions take place, but also useful insights into
the chemical properties of binding molecules and the geometrical
aspects of binding. Such information can be straightforwardly
incorporated into any existing evolution/structure-based algo-
rithm for binding site prediction and functional annotation.
Moreover, binding pocket prediction can be extended further to
include additional downstream analyses, e.g., binding site com-
parison and mining. For example, Pocket-Surfer (Chikhi et al.,
2010) and Patch-Surfer (Sael and Kihara, 2010, 2012) identify
ligand molecules that bind to predicted pockets by compar-
ing their geometrical and physicochemical characteristics with
a database of known binding pockets. These algorithms are
likely to benefit from the improved accuracy of upstream pocket
detection.

eThread is freely available to the community at www.brylinski.
org/ethread as a webserver and a stand-alone software distri-
bution. The latter can be installed in a local environment for
high-throughput computations and the integration with exist-
ing structure-based protein function inference pipelines. The
documentation includes detailed installation instructions and
illustrative examples.

Table 3 | Z -statistics calculated by the Wilcoxon rank-sum test for individual threading methods compared to that of eThread.

Method Ligand-binding Metal-binding Fe/S-binding DNA-binding Protein-binding

Location Features Location Features Location Features Location Features Location Features

COMPASS 11.54 6.94 13.48 6.42 4.36 4.27 17.00 -2.50 20.46 17.52

CSI-BLAST 8.12 1.63 7.59 4.60 2.38 1.36 6.63 -1.42 15.87 15.03

HHpred 13.06 8.55 15.06 7.31 13.43 11.20 18.19 0.16 21.40 17.09

HMMER 8.87 1.37 9.35 5.71 1.17 1.04 17.35 0.88 17.03 14.80

pfTools 12.04 8.75 19.36 9.21 6.05 4.94 17.46 0.65 20.33 16.97

pGenThreader 12.38 6.48 13.92 7.04 8.32 3.07 17.04 2.91 21.54 14.45

SAM-T2K 12.76 9.29 18.26 8.42 9.99 6.32 18.70 0.64 22.86 16.75

SP3 14.41 8.87 18.11 8.54 9.69 6.79 23.18 1.98 24.23 17.48

SPARKS2 13.79 8.26 17.68 7.62 8.89 5.70 21.61 2.48 24.12 17.96

Threader 10.99 4.86 8.03 5.64 8.46 1.26 15.03 0.59 22.15 14.96

eThread 15.37 11.63 20.39 9.85 21.17 15.62 21.97 1.41 25.39 19.92

Location and Features as defined in Section “Methods.” For each column, the best separation of positives and negatives is highlighted in bold.
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FIGURE 2 | Examples of binding sites in weakly homologous templates.

Functional templates are identified by eThread for (A) aa:CP, (B) NDH-1,
(C) PU.1, (D) tnpA, and (E) rAAL. Target structures and bound molecular

partners are shown in gray and yellow, respectively. Template structures (not
shown) are superimposed onto the target; binding sites predicted to be in
similar and different locations are colored in green and red, respectively.
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