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Abstract

Template-based modeling that employs various meta-threading techniques is currently the most accurate, and
consequently the most commonly used, approach for protein structure prediction. Despite the evident progress in this
field, accurate structure models cannot be constructed for a significant fraction of gene products, thus the development of
new algorithms is required. Here, we describe the development, optimization and large-scale benchmarking of eThread,
a highly accurate meta-threading procedure for the identification of structural templates and the construction of
corresponding target-to-template alignments. eThread integrates ten state-of-the-art threading/fold recognition algorithms
in a local environment and extensively uses various machine learning techniques to carry out fully automated template-
based protein structure modeling. Tertiary structure prediction employs two protocols based on widely used modeling
algorithms: Modeller and TASSER-Lite. As a part of eThread, we also developed eContact, which is a Bayesian classifier for
the prediction of inter-residue contacts and eRank, which effectively ranks generated multiple protein models and provides
reliable confidence estimates as structure quality assessment. Excluding closely related templates from the modeling
process, eThread generates models, which are correct at the fold level, for .80% of the targets; 40–50% of the constructed
models are of a very high quality, which would be considered accurate at the family level. Furthermore, in large-scale
benchmarking, we compare the performance of eThread to several alternative methods commonly used in protein structure
prediction. Finally, we estimate the upper bound for this type of approach and discuss the directions towards further
improvements.
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Introduction

With the continuing advances in genome sequencing [1], there

has been a rapid accumulation of protein sequences, whose

structures are yet to be annotated. As of October 2012, there are

.1.76107 unique protein sequences from 17,994 organisms in the

Reference Sequence database [2]. However, due to low-sequence

identity to already annotated proteins, the molecular functions of

many of these gene products remain unknown. Using standard

homology-based tools poses a significant risk associated with the

‘‘overprediction’’ of molecular function and, as an inevitable

consequence, typically results in high levels of misannotation [3].

On that account, more accurate and confident function annota-

tion tools are needed; here structure-based approaches show

a considerable promise [4]. Early methods for function inference

from protein structure were very sensitive to the quality of the

target structures and typically required these solved experimentally

by X-ray crystallography or NMR. More recent approaches are

generally devoid of these limitations and can routinely annotate

low-to-moderate quality protein models [5,6,7,8]. Consequently,

protein structure modeling plays an important role in Functional

Genomics by providing structural information on gene products

that is subsequently utilized by powerful structure-based ap-

proaches to protein function inference [9,10].

Currently, the most accurate and the most widely used methods

for protein structure prediction build on homology, i.e. they use

information educed from related proteins. As demonstrated in the

recent community-wide Critical Assessment of Protein Structure

Prediction (CASP) experiment, the top performing groups in

tertiary structure prediction category used various template-based

methods [11]. One of the best algorithms in the field, I-TASSER,

builds three-dimensional models from multiple-threading align-

ments constructed by LOMETS [12] using iterative assembly/

refinement simulations [5]; this is followed by function prediction

by matching the models to proteins with known functions [5].

Another development from this prolific group is QUARK,

a method for protein structure assembly using continuous template

fragments [13]. QUARK first identifies small structural fragments
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by gapless threading against the Protein Data Bank (PDB) [14]

and then ranks them using a composite scoring function, which

consists of sequence and structure profiles, predicted secondary

structure and backbone torsion angles. For each position in the

target, the top-scored fragments are used to assemble a 3D model

by Replica Exchange Monte Carlo simulations. Recent improve-

ments of template selection methods include the development of

HHblits, a new iterative HMM-HMM sequence search algorithm

[15]. HHblits was demonstrated to have 50–100% higher

sensitivity than PSI-BLAST [16] and to produce multiple

alignments of much higher quality. Furthermore, advances in

the quality assessment protocol result in a significant gain in the

overall performance of IntFOLD-TS, which first generates a large

number of alternate models using in-house versions of several

different alignment methods and then ranks them in terms of the

estimated global quality [17]. Importantly, highly accurate

predictions of local errors, provided in the resulting models, make

this method useful for guiding future experimental work.

Improved prediction of secondary structure, backbone torsion

angles and solvent accessible surface area significantly increases

the accuracy of SPARKS-X, which is one of the best single-

method fold recognition techniques [18]. Finally, RaptorX uses

a novel statistical learning model and a multiple-template

threading component to provide better measure of the compat-

ibility between the target sequence and the template structures

[19]. Indeed, the constructed alignments are much more accurate

than those built by its predecessor, RAPTOR. These and many

other successful examples show that there is an encouraging

progress in this field, which certainly will have impact on many

areas of modern molecular and cell biology.

Notwithstanding the success of single-threading approaches,

meta-threading techniques are the ones that make headway in

protein structure prediction. These methods identify template

structures and construct target-to-template alignments by consid-

ering outputs from a variety of individual threading algorithms.

Typically, the combined predictions have a higher chance to be

accurate than those produced by a single method. Recent CASP

experiments demonstrated that models generated from predictions

by meta-threading servers are more accurate than the best

individual server alone [11,20]. Moreover, an important addition-

al advantage of meta-predictors is the improved estimation of the

reliability of predictions. An example of such a successful meta-

server is LOMETS, which currently uses ten threading algorithms

to generate initial structural models and constraints for the

prediction of protein tertiary structures [12]. Models in LOMETS

are selected from individual programs purely based on consensus,

i.e. the structure similarity of the considered model with other

threading alignments. The consensus predictions provided by

LOMETS were shown to be more accurate than those generated

by individual component methods. Another example is Pcons,

a neural-network–based consensus predictor that improves fold

recognition by selecting the best model out of those produced by

six prediction servers [21]. Pcons translates the confidence scores

reported by each server into uniformly scaled values correspond-

ing to the expected accuracy of each model. The translated scores

as well as the similarity between models produced by different

servers are used in the final selection. According to benchmarks

carried out for two unrelated sets of newly solved proteins, Pcons

outperforms any single server.

In this communication, we describe eThread, a highly

accurate meta-threading procedure to identify templates for

the template-based modeling of protein structures. This new

method uses ten state-of-the-art threading algorithms and

machine learning designed specifically for the optimal selection

of structure templates. In large-scale benchmarks, we demon-

strate that the performance of eThread in the identification of

structurally related templates is notably higher than any of the

individual single-threading algorithms. Template-based protein

structure modeling requires not only a set of structure templates

but also the corresponding target-to-template alignments and/or

predicted inter-residue contacts. Therefore, as a part of eThread

software, we developed a new machine learning procedure to

combine alignments reported by individual meta-threading

algorithms into a set of consensus alignments. We also

developed eContact, a Bayesian classifier with an optimized

Gaussian kernel for the prediction of inter-residue contacts.

Optimized sets of templates and the corresponding alignments

as well as predicted long-range contacts are integrated into

structure assembly protocols for the construction of full-length

models of the target proteins. Two separate procedures have

been devised based on widely used modeling algorithms:

Modeller [22] and TASSER-Lite [23]. In addition, we designed

eRank, which effectively ranks generated multiple protein

models and provides reliable confidence estimates for structure

quality assessment. To demonstrate the utility of this approach,

modeling protocols were optimized and carefully benchmarked

on a large and representative dataset of protein structures and

compared to the performance of several alternative methods

commonly used in protein structure prediction. Finally, we

estimate the upper bound for this type of approach and discuss

the directions towards further improvements. eThread webserver

as well as benchmarking datasets and results are freely available

to the academic community at http://www.brylinski.org/

ethread.

Materials and Methods

Method Overview
A flowchart for the eThread algorithm is shown in Figure 1.

For a given amino acid sequence, the method starts by applying

meta-threading to search for structurally similar templates in

two libraries, which consist of full protein chains as well as

individual domains. The inclusion of individual domains is

a commonly used practice in threading to improve the

recognition of those templates that may only partially cover

a multiple-domain target [24]. In addition, if a full chain

template is found, it also provides the information on the

mutual orientation of domains. The identified templates are

subsequently filtered by eThread and the corresponding target-

to-template alignments are constructed. Next, two structure

modeling protocols are used to build the three-dimensional

models of the target: Modeller [22], which employs template

pre-clustering by MaxCluster, and TASSER-Lite [23], which

additionally incorporates inter-residue contacts predicted by

eContact. In both cases, the resulting models are ranked by

eRank, assigned confidence estimates, and refined using

molecular mechanics. Below is a detailed description of the

benchmarking dataset as well as the individual modeling stages.

Dataset
Benchmarking dataset was compiled from all PDB entries as of

Jan 2012. Using PISCES [25] to remove redundancy at the 40%

sequence identity resulted in 11,468 representative protein chains

50–600 residues in length. Furthermore, we excluded 2,596

proteins, for which no structurally related proteins can be detected

using any of the individual threading component methods. The

final dataset consists of 8,872 non-redundant and representative

protein targets.

Protein Structure Modeling Using Meta-Threading
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Threading Libraries
Two threading libraries are used in this study: chain and

domain. Chain library comprises aforementioned 11,468 protein

chains selected from the PDB by PISCES [25]. Domain library

was compiled by PISCES using the Structural Classification of

Proteins (SCOP) database [26]. Similarly to the chain library, the

redundancy was removed at 40% pairwise sequence identity. This

library contains 10,013 representative protein domains 50–600

residues in length, for which the atomic coordinates were obtained

from the ASTRAL database [27].

Threading Component Methods and Template Selection
eThread is a meta-threading procedure, which integrates ten

state-of-the-art protein threading/fold recognition algorithms:

CSI-BLAST [28], COMPASS [29], HHpred [30], HMMER

[31], pfTools [32], pGenThreader [33], SAM-T2K [34], SP3

[24], SPARKS2 [24] and Threader [35]. Each individual

threading/fold recognition algorithm assesses structures present

in the template library using some scoring system, e.g. SP3,

SPARKS2 and Threader assign Z-scores using the entire template

library as a background, COMPASS, CSI-BLAST, HMMER and

SAM-T2K employ scoring systems based on analytically estimated

E-values, and HHpred uses calibrated probabilities for true

relationships between proteins. For the template selection, we

constructed a machine learning model based on feature vectors

composed of individual threading scores. The machine learning

employs Support Vector Machines for classification problems

(SVC) [36] to assess whether a particular template is structurally

related to the target with a TM-score [37] of $0.4. The accuracy

of template selection is assessed using 2-fold cross validation

excluding those templates, whose sequence identity to target is

.40%. We note that this sequence identity cutoff is also applied in

all subsequent modeling steps.

Consensus Target-to-template Alignments
As a part of eThread, we also developed a new machine learning

procedure to combine alignments reported by individual meta-

threading algorithms into a set of consensus alignments. Specif-

ically, we built a Naı̈ve Bayes classifier, which was trained on

meta-threading data against reference structure alignments

constructed by fr-TM-align [38]. First, from individual alignments

produced by the component methods, this model estimates the

posterior probability of each pair of residues to be a part of the

target-to-template structure alignment. Subsequently, the matrix

of Bayesian probabilities is used as a scoring function in

Needleman-Wunsch Dynamic Programming (DP) [39] to con-

struct the consensus global alignments. Similarly to the template

selection, the consensus alignment model is assessed using 2-fold

cross validation.

Inter-residue Contact Prediction
Long-range contacts between residues are defined when a pair

of their heavy atoms is within a distance of 4.5 Å and they are

separated in the sequence by at least 4 other residues. Inter-residue

contacts are predicted from consensus target-to-template align-

ments by eContact, a machine learning approach. For a pair of

residues, we calculate a vector of four features: the fraction of

templates that have residues in equivalent positions in contact with

each other, the average confidence of these templates that have

such contacting residues, and the average confidence of the

corresponding target-to-template alignments; in addition, we also

include a knowledge-based statistical pair potential [40]. Based on

these feature vectors, a SVC [36] model was constructed to

estimate the probability of a given pair of residues to be in contact.

The accuracy was assessed by 2-fold cross validation.

Tertiary Structure Modeling
To construct three-dimensional models of the target proteins,

we employ two commonly used template-based modeling algo-

rithms: Modeller [22] and TASSER-Lite [23]. Both programs use

threading alignments generated by eThread as input. In addition,

TASSER-Lite also uses inter-residue contacts predicted by

eContact. For Modeller, the set of templates identified by eThread

is pre-clustered by MaxCluster (http://www.sbg.bio.ic.ac.uk/

maxcluster/) using a TM-score clustering threshold of 0.4 and

the models are subsequently constructed individually for each

cluster. The side chains in the structures modeled by Modeller and

TASSER-Lite are rebuilt from the Ca trace by Pulchra [41] and

finally, all-atom structures are refined in the CHARMM22 force

field [42] using the Jackal modeling package [43].

Model Ranking and Confidence Estimates
Both Modeller and TASSER typically generate multiple models

for a given target. To rank the resulting models and to assign

Figure 1. Flowchart of meta-threading using eThread. Modeling
stages include template selection, alignment construction, inter-residue
contact prediction, 3D structure modeling, and model ranking. The
details are given in text.
doi:10.1371/journal.pone.0050200.g001
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confidence estimates, we developed eRank that employs SVM-

Rank, a version of Support Vector Machines designed specifically

for ranking problems [44]. eRank also estimates the TM-score to

native using Support Vector Regression (SVR) [36]. Both ranking

and confidence estimate models use the following set of features:

the confidence of alignments constructed by eThread (Alignment),

the average alignment coverage (Coverage), DOPE score [22]

(DOPE), dFire residue-level potential of mean force [45] (dFire),

secondary structure match between the model and the PSIPRED

[46] prediction (PSIPRED), burial score (Burial, see Text S1) and

secondary structure preferences (SecStr, see Text S1). In addition,

eRank/Modeller includes the fraction of templates assigned to

a particular cluster by MaxCluster (Fraction) and the GA341 score

[22] (GA341). eRank/TASSER-Lite also incorporates the average

TM-score of a given model to templates identified by eThread

(TM-score, roughly equivalent to Fraction for Modeller) as well as the

following clustering coefficients reported by SPICKER [47],

which is a part of the TASSER-Lite suite: cluster fraction

(TASSER-Litefract), cluster density (TASSER-Litedens) and cluster

mean energy (TASSER-Liteene). Both ranking ability and the

accuracy of confidence estimates are assessed using 2-fold cross

validation.

Other Approaches to Structure Modeling
We compare the accuracy of eThread models to those

constructed by two alternative protocols. The first one is a naı̈ve,

single-template approach: For a given target sequence, we run 5

iterations of PSI-BLAST [16] to identify weakly homologous

proteins and we select the top-ranked as the structure template. A

three-dimensional model is then constructed by Nest [43] using

the target-to-template alignment provided by PSI-BLAST. The

resulting model is additionally subject to all-atom structure

refinement using the Jackal modeling package [43]. The second

approach represents a single-threading, multiple-template algo-

rithm; here, we use the original implementation of TASSER-Lite

[23]. For both PSI-BLAST/Nest and TASSER-Lite, we exclude

from the modeling procedure all closely related templates with

.40% sequence identity to the target in order to make the results

comparable to those obtained by eThread-based modeling.

Results

Template Identification
The ability of a threading algorithm to select those templates

that are structurally similar to the target is critical for the

subsequent construction of three-dimensional models. Here, we

define a good template as the structure with a statistically

significant TM-score [37] to native of $0.4. We note that a TM-

score of 0.4 is an appropriate fold similarity assignment threshold;

template structures above this value contain sufficient information

to enable the full-length reconstruction of the target structure [48].

TM-score is calculated by fr-TM-align [38] for both threading

libraries used in this study. Trivial templates with more than 40%

sequence identity to target are excluded from this as well as all

subsequent analyses. Figure 2 shows ROC plots for eThread

compared to the individual threading component methods. The

accuracy does not depend on the library used (Figure 2A – chain,

Figure 2B – domain); however, it varies across different

algorithms. HHpred was found the most accurate single method

with a true positive rate (TPR) of 0.49/0.50 at the expense of 0.05

false positive rate (FPR) for the chain/domain library. At the same

FPR, the next accurate algorithms: SP3, COMPASS and

SPARKS2 give a TPR of 0.47/0.43, 0.44/0.41 and 0.44/0.40,

respectively. However, the effective combination of multiple

algorithms considerably extends the coverage of target sequences

by distantly related templates and increases the true positive rate;

the corresponding TPR values for eThread are 0.60/0.57 (at 0.05

FPR). Thus eThread systematically detects more structure

templates than any of the component methods. The probability

values returned by machine learning also contribute to the overall

modeling confidence.

Quality of Threading Alignments
Effective template selection is still not sufficient for practical

applications, such as protein structure modeling. In addition,

target-to-template alignments should also be accurate to build

a correct model. In Figure 3, we assess the quality of threading

alignments constructed by eThread as well as all component

methods by Matthew’s correlation coefficient (MCC) against

structure alignments by fr-TM-align. Again, HHpred, SP3 and

SPARKS2 were found to be the most effective single-threading

algorithms that build alignments with a MCC of $0.5 for the

chain (domain) library for 69% (71%), 65% (68%) and 63% (66%)

of the targets, respectively. The performance of eThread is slightly

lower than that of HHpred for MCC.0.6; however, it still

provides good quality alignments in the MCC range of 0.4–0.6 for

additional 4–8% of the targets, on average.

Accuracy of Inter-residue Contacts
In addition to threading templates and target-to-template

alignments, TASSER-Lite also incorporates predicted inter-

residue contacts as an important component of its force field

[49]. Here, we developed eContact, a machine learning-based

method for the prediction of long-range contacts. eContact uses

threading alignments as well as a generic knowledge-based pair

potential; its cross-validated performance on a representative

dataset is shown in Figure 4. At least 75% of exact native contacts

are recovered for 72% of the target proteins. To select the optimal

cutoff value for contact prediction, we use MCC, which represents

a balanced measure that can be used if the classes are of different

sizes [50]. The contact probability threshold of 0.35 maximizes

MCC to 0.65 against the exact native contacts and yields 0.79 of

true positive rate at the expense of only 0.14 false positives

(Figure 4 inset). The accuracy further increases, when contacts

within 1, 2 and 3 residues are also considered positives. Here, the

fraction of targets with $75% of predicted native contacts is 84%,

88% and 91%, respectively. We note that TASSER-Lite, which

employs low-resolution modeling, can effectively accommodate

inter-residue contacts slightly mispredicted by a couple of residues.

We also compare the performance of eContact to that of

SVMcon, ranked as one of the top residue contact predictors in

CASP7 [51]. SVMcon employs machine learning and a set of

features, which include sequence profiles, secondary structure,

solvent accessibility and contact potentials [52]. At a fixed FPR

rate of 0.047, eContact and SVMcon yield TPR of 0.62 and 0.44,

respectively (Figure 4 inset); thus eContact predicts 18% more

contacts than SVMcon.

Ranking Ability
Both Modeller and TASSER-Lite typically build multiple

models. For Modeller, we first pre-cluster the set of templates

identified by eThread and then construct a structural model for

each cluster. TASSER-Lite generates Monte Carlo trajectories,

which are subsequently clustered by SPICKER and a structure

closest to the cluster centroid is selected for each cluster. To select

the best models, we developed eRank/Modeller and eRank/

TASSER-Lite; both are machine learning approaches that use

a variety of scoring functions. In Figure 5, we assess the ranking

Protein Structure Modeling Using Meta-Threading
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ability of eRank, i.e. in how many cases the best model is found

amongst the top 5 ranks; we also compare the performance of

eRank to the component scoring functions. We note that the ‘‘best

model’’ may not be necessarily highly accurate; it is just better

than the other models constructed. As shown in Figure 5A, eRank/

Modeller correctly identifies the best model in 95% of the cases,

which represents an improvement over the most effective in-

dividual scoring terms: DOPE (87%), dFire (86%), Fraction (81%),

PSIPRED (79%) and Coverage (78%). eRank/TASSER-Lite ranks

the best model as the 1st, 2nd and 3rd one in 41%, 33% and 17% of

the cases, respectively (see Figure 5B). Again, this ranking accuracy

is higher than TASSER-Litedens, TASSER-Litefract and TASSER-Liteene,

which place the best model at rank 1 for 38%, 38% and 37% of

the targets, respectively.

In Figure 5, eRank is also compared to SELECTpro [53]

(dashed black) and APOLLO [54] (dotted/dashed gray), which are

structure-based model selection methods. SELECTpro uses

a sophisticated energy function that comprises physical, statistical

and predicted structural scoring terms and was shown in large-

scale benchmarks to be highly effective. APOLLO evaluates the

absolute single and pair-wise global structure quality in terms of

the GDT-score [55]; here, we use the single-model approach.

eRank outperforms SELECTpro for the models constructed by

Modeller (TASSER-Lite) by ,10%; here, the best model is

assigned rank 1 in 95% (41%) and 85% (32%) of the cases,

respectively. The accuracy of APOLLO is slightly higher than

SELECTpro; however, ,8% worse than eRank: the best eTh-

read/Modeller (eThread/TASSER-Lite) model is assigned rank 1

in 86% (33%) of the cases. We note that eRank was specifically

tailored to structure modeling using eThread, whereas SELECT-

pro and APOLLO represent general quality assessment ap-

proaches, applicable to any set of protein models. The difference

in performance between eRank/Modeller and eRank/TASSER-

Lite comes from the way models are constructed and from the

pairwise similarities between the top-ranked structures. Multiple

TASSER-Lite models are often structurally similar to each other

(as well as to the target), thus the ranking is more difficult. The pre-

clustering procedure used in the model construction by Modeller

Figure 2. ROC plots for the identification of structurally similar templates. Template structures are selected from (A) chain and (B) domain
library.
doi:10.1371/journal.pone.0050200.g002

Figure 3. Accuracy of threading target-to-template alignments. The accuracy is assessed by Matthew’s correlation coefficient against
structure alignments for (A) chain and (B) domain library.
doi:10.1371/journal.pone.0050200.g003

Protein Structure Modeling Using Meta-Threading
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Figure 4. Accuracy of inter-residue contact prediction. The accuracy is evaluated for exact contacts as well as those within 1, 2 and 3 residues
from the exact contact. Inset: ROC plot for the contact prediction; TPR – true positive rate, FPR – false positive rate. Star corresponds to a contact
probability that maximizes MCC for eContact, gray triangle depicts the performance of SVMcon and the dotted line shows the TPR improvement of
eContact over SVMcon for the FPR fixed at 0.047.
doi:10.1371/journal.pone.0050200.g004

Figure 5. Ranking accuracy by eRank. Structure models constructed by (A) Modeller and (B) TASSER-Lite are ranked and the corresponding
accuracy is assessed by the fraction of targets for which the best models was found at a particular rank. Dashed black and dotted/dashed gray line
depicts ranking accuracy by SELECTpro and APOLLO, respectively.
doi:10.1371/journal.pone.0050200.g005

Protein Structure Modeling Using Meta-Threading
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typically results in a set of very different structures with a pairwise

TM-score of ,0.4; consequently, at most one model would be

structurally similar to the target.

Model Accuracy
We use TM-score [37] to native as the main assessment metric

for the accuracy of the top-ranked models. Note that the TM-score

is a protein length independent measure of structural similarity

with a statistical significance at $0.4. In addition, we assess the

structure quality using several other well established measures: Ca-

RMSD [56], Gaussian-weighted RMSD (wRMSD) [57], MaxSub

[58] and GDT-score [55]. Benchmarking results reported here

were obtained for a non-redundant and representative subset of

the PDB; therefore are easily comparable to other studies that use

a similar setup. Moreover, these statistics provide reliable estimates

of the expected accuracy in large-scale applications, e.g. genome-

wide protein structure modeling projects [59].

For both Modeller and TASSER-Lite, we also evaluate the

models constructed using 3 different protocols to ascertain, where

the future improvements are most likely to increase the overall

accuracy of structure modeling. First, we assess the complete

eThread procedure, i.e. template identification, alignment con-

struction and model assembly/refinement. Next, to evaluate the

quality of target-to-template alignments, we include only these

templates that are structurally related to the target with a TM-

score of $0.4. Finally, we estimate the upper bound for the

modeling accuracy using structurally similar templates only and

the corresponding structure alignments constructed by fr-TM-

align. The results for Modeller and TASSER-Lite are shown in

Figure 6 as a fraction of targets whose structures are modeled to

a given accuracy. Focusing on a high modeling accuracy at a TM-

score of $0.7, the upper bound for the modeling protocols using

Modeller and TASSER-Lite is 78% and 75%, respectively. The

accuracy of modeling using eThread alignments instead of these

constructed by fr-TM-align (eThread/good templates in Figure 6)

decreases to 54% (by 24%) and to 55% (by 20%) for Modeller and

TASSER-Lite, respectively. It shows that TASSER-Lite better

accommodates alignment errors than Modeller. When the

complete eThread procedure is used, protein models with a TM-

score of $0.7 are constructed by Modeller and TASSER-Lite for

49% and 39% of the targets, respectively. It demonstrates, that

Modeller builds more highly accurate models; this is also shown in

Table 1, which assesses the structure quality using several other

measures. For example, the average MaxSub (GDT-score) for

eThread/Modeller and eThread/TASSER-Lite is 0.55 (0.59) and

0.46 (0.50), respectively. However, Modeller provides slightly

lower coverage of a dataset by models whose TM-score to native is

$0.4 (still statistically significant) than TASSER-Lite: 85% and

88%, respectively (see Figure 6). Nevertheless, using eThread

identified templates and alignments and model ranking by eRank,

both structure modeling algorithms build correct (and often very

high quality) models for a significant fraction of the benchmark

proteins.

This modeling accuracy is also higher than that obtained using

a simple single-template approach, see Figure 6 and Table 1. For

77% of the target proteins, PSI-BLAST/Nest constructs models

whose TM-score to native is $0.4. This is 8% and 11% less than

using eThread/Modeller and eThread/TASSER-Lite, respective-

ly. When compared to a single-threading, multiple-template

approach, the most notable improvement is for protein models

with a TM-score to native of $0.7. Here, the original TASSER-

Lite generates models with such accuracy for 37% of the targets,

which is 2% less than using eThread/TASSER-Lite; however, for

12% more target proteins high quality models are constructed

using eThread/Modeller. This justifies the computationally more

expensive multiple-template modeling using meta-threading and

eThread.

Stereochemical Quality of Models
In addition to the global accuracy of protein models, we also

assess their local stereochemical quality as reported by PRO-

CHECK [60]. Table 2 shows that the stereochemical quality of

eThread models, particularly those constructed by eThread/

Modeller, is quite high and very close to crystal structures. For

example, only 5% less residues are assigned to the most favored

regions on the Ramachandran map for the top-ranked models.

Top-ranked eThread/TASSER-Lite models are ,15% worse

than these built by eThread/Modeller, suggesting that the former

may require more rigorous local structure refinement. Further-

more, in both cases, the top-ranked models typically have higher

stereochemical quality than those at lower ranks. Finally, both

procedures, eThread/Modeller and eThread/TASSER-Lite, sys-

tematically produce models whose quality is notably higher than

that obtained by a single-template approach, PSI-BLAST/Nest as

well as the standard version of TASSER-Lite, see Table 2.

Model Quality Assessment
A modern structure modeling protocol also requires a reliable

system to estimate the modeling confidence, which is often called

quality assessment. eRank uses machine learning models appro-

priate for regression problems to provide this functionality. For

a given model, the confidence corresponds to the estimated TM-

score to native. Figure 7 shows correlation plots for the top five

models constructed by eThread/Modeller. The Pearson correla-

tion coefficient (CC) is used to measure the strength of a linear

dependence between the predicted and real TM-score values. CC

of 0.89 produced by eRank/Modeller (Figure 7A) is much higher

than the individual scoring functions, e.g. Coverage (0.68), PSIPRED

(0.63), dFire (0.60) or DOPE (0.56). eRank/TASSER-Lite also

provides very reliable confidence estimates with a CC of 0.81

(Figure 8), despite the higher density of good models with a TM-

score of $0.4. Here, the most accurate individual scoring

functions, TASSER-Liteene, TM-score and DOPE are notably less

accurate with the CC of 0.55, 0.49 and 0.49, respectively.

In both cases, the CC between predicted and real TM-score

values for eRank is significantly higher than that obtained by an

alternate model quality assessment method, SELECTpro [53],

which produces the CC of 0.42 (Figure 7B) and 0.06 (Figure 8B)

for eThread/Modeller and eThread/TASSER-Lite models, re-

spectively. A common feature of structure-based methods, such as

SELECTpro, DOPE or GA341 is that these algorithms typically

recognize good models, but also assign high scores to non-native

conformations, which are of acceptable stereochemical quality,

e.g. Figure7B, 7E and 7F. In addition to SELECTpro, we also

compare eRank to APOLLO [54] using a single-structure mode.

Here, we switch to GDT-score, which is the default scoring

function used by this algorithm. We note that the real GDT-scores

calculated for eThread/Modeller and eThread/TASSER-Lite

models correlate very well with the corresponding TM-scores

(CC of 0.93 and 0.90, respectively). APOLLO builds more

accurate estimates of the global structure quality than SELECT-

pro and all individual scoring functions. For models constructed by

eThread/Modeller and eThread/TASSER-Lite, the CC is 0.77

and 0.65, respectively (see Figures 7C and 8C). Nonetheless, eRank

still gives 12–16% higher correlation than APOLLO; thus the

scoring function implemented in eRank clearly provides a robust

system for the a priori estimate of model divergence from the

native conformation.
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eThread Webserver and Datasets
eThread webserver, datasets and modeling results are available

for non-commercial users under the terms of GNU General Public

License at http://www.brylinski.org/ethread. The webserver

allows users to submit amino acid sequences 50–600 residues in

length, select the modeling protocol (either eThread/Modeller or

eThread/TASSER-Lite) and download the results as well as

visualize them directly on the website using OpenAstexViewer

[61]. The webserver was designed to be user-friendly and

accessible using a Java-enabled web browser and any operating

system.

Discussion

Template-based modeling is currently the most accurate, and

consequently the most commonly used, approach for protein

structure prediction. The best methods in this area frequently

employ meta-threading to identify template structures in available

databases, such as PDB [14] and to construct target-to-template

alignments. A popular technique used in the development of meta-

threading approaches is a gateway approach, which queries

several publicly available servers, collects the results and generates

consensus predictions [62,63,64]. For example, a neural-network

approach that combines predictions from six webservers was

demonstrated to increase the accuracy of fold recognition by 8–

10% [21]. Nevertheless, it was pointed out that the gateway

approach may result in unexpected delays and possibly in-

consistent results as a consequence of shutting down remote

machines, frequent updates and modifications of algorithms used

remotely [12]. Thus, a meta-approach set up and maintained in

a local environment appears as the most steady, robust and

desirable solution.

In this work, we describe the development, optimization and

large-scale benchmarking of eThread, a machine learning-based

method, which integrates ten state-of-the-art threading/fold

recognition algorithms in a local environment to carry out fully

automated template-based protein structure modeling. Excluding

closely related templates from the modeling process, we evaluate

the performance of eThread in template identification, the

construction of threading alignments and inter-residue contact

prediction. We demonstrate that eThread generates high-quality

structural data that can be effectively used to build reliable protein

models using available structure assembly algorithms. eThread

extensively uses various machine learning techniques to make

highly accurate predictions. It has been demonstrated that

statistical machine learning effectively utilizes a set of features

extracted using general-purpose alignment tools for template

ranking; here, sequence profile-profile and profile-structural-

profile scores are the most informative [65,66]. A model based

Figure 6. Global quality of protein models assessed by the TM-score to native. Three sets of (A) Modeller and (B) TASSER-Lite models are
constructed using: structure alignments, eThread alignments for structurally related (‘‘good’’) templates only as well as all alignments generated by
eThread. Gray-bricked area points up a room for further improvement using structure refinement. Dashed and dotted line corresponds to the
accuracy of PSI-BLAST/Nest and the original TASSER-Lite, respectively.
doi:10.1371/journal.pone.0050200.g006

Table 1. Global structure quality of protein models.

Models Ca-RMSD [Å] wRMSD TM-score MaxSub-score GDT-score

eThread/Modeller 8.3365.91 0.9160.23 0.6960.16 0.5560.18 0.5960.17

fr-TM-align/Modeller 6.0365.24 0.8360.22 0.7860.15 0.6660.17 0.6860.16

eThread/TASSER-Lite 9.4066.51 1.0060.25 0.6360.18 0.4660.19 0.5060.19

fr-TM-align/TASSER-Lite 5.9465.59 0.8760.24 0.7760.15 0.6460.17 0.6460.16

PSI-BLAST/Nest 10.9966.66 0.9060.22 0.6060.24 0.4860.23 0.5160.23

TASSER-Lite 11.0867.68 1.0160.27 0.6260.18 0.4760.18 0.4960.19

Models are constructed by Modeller and TASSER-Lite using eThread alignments and compared to those built using structure alignments by fr-TM-align. The quality is
assessed by several popular measures and additionally compared to that of a simple single-template approach, PSI-BLAST/Nest and a standard version of TASSER-Lite.
Mean values and the corresponding standard deviations are reported.
doi:10.1371/journal.pone.0050200.t001
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on Support Vector Machines was also successfully applied to

estimate the significance of individual target-to-template align-

ments with a notable improvement over more standard measures

such as Z-score or E-value [67]. In our benchmarks, eThread

detects significantly more templates than any single-threading

algorithm while maintaining a low false-positive rate.

Next to template identification, the construction of correspond-

ing target-to-template alignments is critical to produce high-

quality protein models. Alignments generated by different methods

can confidently cover different regions of a target sequence, thus

the consensus alignment may result in a significant global

improvement. Better-aligned parts recognized in a set of

alignments generated by different methods can be combined into

a unique solution, which is typically more accurate than any of the

individual alignments [68,69]. Here, we developed a machine

learning variant of this approach, which applies a Bayesian

Classifier to meta-threading alignments to construct a probability-

based scoring matrix, which is subsequently used in a traditional

Table 2. Stereochemical quality of protein models.

Regiona Crystal PSI-BLAST/Nest TASSER-Lite eThread/Modeller eThread/TASSER-Lite

Rank 1 Rank 2–10 Rank 1 Rank 2–10

core 88.2% 67.4 64.6% 617.6 63.9% 69.3 83.4% 66.7 73.3% 69.9 68.8% 69.7 66.6% 69.6

allow 10.8% 66.2 20.9% 68.2 22.2% 65.7 11.5% 64.4 17.1% 65.6 20.2% 66.3 21.1% 66.3

gener 0.7% 61.4 9.7% 66.7 6.7% 62.8 2.8% 61.9 5.3% 63.0 5.4% 62.6 5.9% 62.7

disall 0.3% 60.7 4.8% 63.9 7.2% 62.9 2.3% 61.6 4.3% 62.6 5.7% 62.5 6.3% 62.6

Models constructed by eThread/Modeller and eThread/TASSER-Lite are compared to crystal structures as well as models built by a simple single-template approach, PSI-
BLAST/Nest and a standard version of TASSER-Lite. The quality is assessed by the percentage of residues assigned to different regions of the Ramachandran map by
PROCHECK.
aAccording to PROCHECK classification: core – most favored regions, allow – additional allowed regions, gener – generously allowed regions, disall – disallowed regions.
doi:10.1371/journal.pone.0050200.t002

Figure 7. Quality assessment by eRank/Modeller. Three plots on the left show the correlation between the real TM-score of models built by
eThread/Modeller and the TM-score estimated by (A) eRank, (B) SELECTpro and (C) APOLLO. For APOLLO, GDT-score is used instead of TM-score.
Individual scoring components of eRank are shown on the right: (D) Fraction, (E) eThread, (F) DOPE, (G) GA341, (H) dFire, (I) PSIPRED, (J) SecStr, (K)
Burial, (L) Alignment, and (M) Coverage. In A, B and D–M, dotted lines delineate the TM-score statistical significance threshold.
doi:10.1371/journal.pone.0050200.g007
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Needleman-Wunsch DP. The accuracy of this algorithm is

comparable to the best individual alignment method for easy

targets, but outperforms other methods in more difficult cases.

Furthermore, we developed eContact, a new machine learning-

based method for inter-residue contact prediction that takes

advantage of accurately identified templates, good quality target-

to-template alignments and a knowledge-based statistical pair

potential to recover native contacts at a very low false positive rate.

In contact prediction, applying non-linear models, such as support

vector machines, frequently outperforms many of the simple

majority voting methods [52,70]. In addition to protein structure

modeling, the predicted inter-residue contacts are also useful for

the estimation of protein folding rates [71].

To assembly three-dimensional models of the target proteins

using eThread templates and alignments, we tested two popular

structure modeling algorithms: Modeller [22] and TASSER-Lite

[23]. Both programs perform comparably well and generate

models, which are correct at the fold level, for .80% of the

targets. However, significantly less of the constructed models (40–

50%) are of a very high quality, which would be considered

accurate at the family level [72]. Here, the upper bound estimated

using structure alignments is ,75%, which suggest that further

advances in threading methodologies could bring about 25%

improvement in low-homology template-based modeling. Gener-

ating near-experimental quality structural models using ‘‘twilight

zone’’ templates [73] would therefore require different modeling

techniques, such as all-atom refinement [74,75,76]. A gray-bricked

area in Figure 6 points up a substantial room for potential

improvement using structure refinement, which increases with the

requirement of protein models to be closer to experimental

structures. In this study, we employ a very simple procedure for

all-atom refinement using molecular mechanics, which mostly

optimizes side chain geometries and removes atom clashes. Using

more advanced refinement could yield additional improvement in

model quality, particularly in the high TM-score regime.

Many state-of-the-art protein structure prediction algorithms

often generate a set of possible models for a given target. This is

particularly common in low-homology multiple-template model-

ing. Thus, there is a need to select the most native-like

conformation from a pool of constructed models. To address this

issue, we developed eRank, which employs support vector

machines for ranking problems to provide a very robust approach

to model ranking. In addition, eRank also produces reliable

confidence estimates, which correlate well with the actual model

quality. This is particularly important for the use of modeled

structures in structure-based function annotation. For example, in

ligand and macromolecular docking, the selection of modeling

protocol strongly depends on the quality of the target protein

structures. While all-atom docking is applicable to high-quality

receptor structures [77,78], using low-to-moderate quality protein

Figure 8. Quality assessment by eRank/TASSER-Lite. Three plots on the left show the correlation between the real TM-score of models built by
eThread/TASSER-Lite and the TM-score is estimated by (A) eRank, (B) SELECTpro and (C) APOLLO. For APOLLO, GDT-score is used instead of TM-score.
Individual scoring components of eRank are shown on the right: (D) TM-score, (E) eThread, (F) Alignment, (G) Coverage, (H) DOPE, (I) dFire, (J) PSIPRED,
(K) SecStr, (L) Burial, (M) TASSER-Litefract, (N) TASSER-Litedens, and (O) TASSER-Liteene. In A, B and D–O, dotted lines delineate the TM-score statistical
significance threshold.
doi:10.1371/journal.pone.0050200.g008
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models often requires different algorithms, such as low-resolution

modeling [79,80], to provide confident annotations.

Conclusions
We present a suite of programs: eThread, eContact and eRank,

which build on meta-threading and conduct fully automated

template-based protein structure modeling. This meta-approach

extensively uses machine learning techniques to generate good

quality protein models even in the presence of only distantly

homologous template structures and offers a reliable system for

confidence estimates. Comparative benchmarks show that it

outperforms other methods for inter-residue contact prediction,

template-based structure modeling as well as model selection and

quality assessment. eThread is freely available to the academic

community through a user-friendly webserver at http://www.

brylinski.org/ethread.
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