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Introduction
In modern biological sciences, the focus has shi!ed from the study 

of individual molecules to the exhaustive exploration of molecular 
interactions at the systems level. "is new paradigm has given rise to 
the rapidly developing domain of systems biology [1], which lies at the 
intersection of life and computer sciences. Systems biology is facilitated 
by whole genome sequencing [2] that routinely generates large 
datasets of protein sequences; nevertheless, the molecular structures 
and functions of many of these sequences o!en remain unknown. 
Computational methods for protein structure and function prediction 
are expected to bridge the gap between the number of known sequences 
and the number of fully annotated gene products, which are requisite 
for systems biology applications. Amongst many computational 
techniques developed over the past years, the most accurate algorithms 
in this #eld build on homology, i.e. they use information inferred 
from related proteins. Sequence-based methods can provide useful 
structural and functional information for a subset of target proteins; 
however, these algorithms typically require a high sequence identity to 
already annotated proteins to maintain a high accuracy [3]. As might be 
expected, this reduces the coverage of suitable targets, since for many 
proteins no close homologues are available in the public databases, 

e.g. the Protein Data Bank [4]. It has been demonstrated that relaxing 
the safe sequence similarity thresholds in sequence-based function 
annotation may lead to high levels of mis-annotation [5].

To address this issue, a number of techniques have been developed 
to search for low-sequence identity templates that can be used to 
construct the structural model of a target protein and to subsequently 
infer its molecular function. "is is a major goal of contemporary 
structural bioinformatics, which aims at the high-throughput modeling 
of all gene products across the entire proteomes of various organisms 
in the so-called “twilight zone” of sequence similarity [6]. Protein 
threading [7] represents the latest trend in the development of template 
identi#cation and alignment algorithms. "ese techniques have the 
desired capability to e$ectively deal with the complex and equivocal 
relations between protein sequence, structure and function, which 
are the major obstacles for standard bioinformatics approaches. Such 
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Abstract
eThread, a meta-threading and machine learning-based approach, is designed to effectively identify structural 

templates for use in protein structure and function modeling from genomic data. This is an essential methodology 
for high-throughput structural bioinformatics and critical for systems biology, where extensive knowledge of protein 
structures and functions at the systems level is prerequisite. eThread integrates a diverse collection of algorithms, 
WKHUHIRUH� LWV� GHSOR\PHQW� RQ� D� ODUJH� PXOWL�FRUH� V\VWHP� QHFHVVDULO\� UHTXLUHV� FRPSUHKHQVLYH� SUR¿OLQJ� WR� HQVXUH�
WKH�RSWLPDO�XWLOL]DWLRQ�RI�DYDLODEOH� UHVRXUFHV��5HVRXUFH�SUR¿OLQJ�RI�eThread and the single-threading component 
algorithms indicate a wide range of demands with respect to wall clock time and host memory. Depending on the 
WKUHDGLQJ�DOJRULWKP�XVHG��WKH�PRGHOLQJ�RI�D�VLQJOH�SURWHLQ�VHTXHQFH�RI�XS�WR�����UHVLGXHV�LQ�OHQJWK�WDNHV�PLQXWHV�WR�
hours. Full meta-threading of one gene product from E. coli proteome requires ~12h on average on a single state-
of-the-art computing core. Depending on the target sequence length, the subsequent three-dimensional structure 
modeling using eThread/Modeller and eThread/TASSER-Lite takes additional 1-3 days of computing time. Using 
the entire proteome of E. coli, we demonstrate that parallel computing on a multi-core system follows Gustafson-
%DUVLV¶� ODZ� DQG� FDQ� VLJQL¿FDQWO\� UHGXFH� WKH� SURGXFWLRQ� WLPH� RI�eThread. Furthermore, graphics processor units 
can speedup portions of the calculations; however, to fully utilize this technology in protein threading, a substantial 
code development is required. eThread is freely available to the academic and non-commercial community as 
a user-friendly web-service at http://www.brylinski.org/ethread. We also provide source codes and step-by-step 
instructions for the local software installation as well as a case study demonstrating the complete procedure for 
protein structure modeling. We hope that genome-wide high-throughput structural bioinformatics using eThread will 
VLJQL¿FDQWO\�H[SDQG�RXU�NQRZOHGJH�RI�SURWHLQ�VWUXFWXUHV�DQG�WKHLU�PROHFXODU�IXQFWLRQV�DQG�FRQWULEXWH�WR�WKH�WKULYLQJ�
area of systems biology.
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a structure-oriented approach holds a considerable promise to speed 
up genome-wide protein annotation [8], which certainly will have 
impact on many areas of modern molecular, cell and systems biology. 
It has a great potential to overcome the limitations of more traditional 
sequence-based approaches; however, at the cost of a signi#cantly 
increased demand for computational resources.

In particular, meta-threading techniques are widely used in 
structural bioinformatics. "ese methods operate by considering 
outputs from a variety of individual threading algorithms; the combined 
predictions have a higher chance to be accurate than those produced by 
a single method. An example of such an approach is recently developed 
e"read, which integrates ten state-of-the-art single-threading 
algorithms additionally supported by machine learning to provide a 
uni#ed resource for protein structure and function modeling [9]. Here, 
the scienti#c challenge is to e%ciently combine multiple algorithms 
to signi#cantly increase the overall accuracy over the individual 
methods and to push the envelope of systems-level template-based 
protein structure modeling and functional annotation. Meta-threading 
pipelines also render signi#cant challenges at the level of practical 
implementation and the optimal utilization of computing resources. 
"ese can be considered as heterogeneous collections of algorithms 
and computational techniques that may signi#cantly di$er from each 
other in terms of the required wall clock time, memory usage, I/O 
operations and network bandwidth. "ey also may or may not share 
common input #les or the access to external data libraries (eg. template 
libraries), and o!en employ a complicated system of dependencies 
between individual jobs. To the best of our knowledge, the majority 
of currently implemented meta-threading pipelines are available 
as pseudo-gateways, i.e. web interfaces that query several publicly 
available CGI servers over the Internet using simple web tools such as 
wget or curl.

A local installation of the meta-threading pipeline on a high-
performance computing (HPC) platform provides the most reliable 
and robust solution for high-throughput structural bioinformatics 
[10]. However, running a diverse collection of algorithms on a large 
multi-core system necessarily requires comprehensive resource 
pro#ling to ensure the optimal utilization of available resources. In 
this communication, we describe the stand-alone so!ware distribution 
of e"read, which can be deployed on any modern Linux-based HPC 
system. We perform a comprehensive resource pro#ling, analyze 
the computational requirements and discuss the achievable models 
of parallelism. We also touch on the possibility of accelerating the 
computations by graphics processors (GPUs). Finally, we provide a 
case study to demonstrate the practical application of this so!ware 
on production platforms. e"read is freely available for academic and 
non-commercial users at www.brylinski.org/ethread.

Materials and Methods
Overview of e!read pipeline

e"read is a meta-threading procedure that combines predictions 
from ten state-of-the-art single-threading algorithms: COMPASS 
[11], CS/CSI-BLAST [12], HHpred [13], HMMER [14], pfTools 
[15], pGen"reader [16], SAM-T2K [17], SPARKS [18], SP3 [18] 
and "reader [7], see table 1. It also uses NCBI BLAST [19] for the 
construction of sequence pro#les and PSIPRED [20] for the prediction 
of secondary structure. Currently, two structure modeling algorithms 
can be used in e"read to construct the three-dimensional structures of 
target proteins: Modeller [21] and TASSER-Lite [22]. e"read/Modeller 
requires template pre-clustering, which is calculated by MaxCluster. 
In addition to target-to-template alignments generated by e"read, 
e"read/TASSER-Lite needs long-range inter-residue contacts, which 
can be predicted for a given target sequence using eContact (included 
in the e"read so!ware distribution). Moreover, both modeling 
protocols employ several popular tools for protein structure modeling, 
e.g. Jackal [23] and Pulchra [24]. Typically, multiple models are 
generated for a given target sequence. To rank them and assign the 
prediction con#dence, we developed eRank, which uses individual 
scoring functions provided by Modeller [21] and TASSER-Lite [22], 
as well as DFIRE [25], fr-TM-align [26], TM-score [27], DSSP [28] 
and Stride [29]. "e complete list of structure-based tools required by 
e"read is shown in table 2. e"read, eContact and eRank also employ 
several machine learning models to improve prediction accuracy; we 
use two so!ware packages that o$er various Support Vector Machines 
(SVM) algorithms: LIBSVM [30] and SVMrank[31], see table 3.

Physical testing systems
"e primary testing system is HP Proliant DL 180 G6 server which 

has 2 Intel Xeon E5645 6-core processors running at 2.4GHz and it 
is equipped with 48GB of memory. Additionally, the following three 
systems were used for the benchmarking of GPU-BLAST: 1) dual Intel 
Xeon E5620 4-core processor running at 2.4GHz, equipped with 24GB 
RAM and NVIDIA Tesla M2050, 2) dual Intel Xeon E5540 4-core 
processor running at 2.5GHz, equipped with 24GB RAM and NVIDIA 
Tesla M2070, and 3) single Intel Xeon E5540 4-core processor running 
at 2.5GHz, equipped with 36GB RAM and NVIDIA Tesla C2075.

Simulated multi-core systems
We constructed 18 virtual multi-core systems, equipped with 6, 8, 

12, 16, 24 and 32 computing cores, and 1, 2 and 4GB of RAM per core. 
We also designed a simple job scheduling system that assigns jobs to 
the computing cores using the following rules: 1) the total number of 
concurrently running jobs must be less or equal to the number of cores, 
2) the total memory for running jobs cannot exceed the host shared 

Software Purpose Link
COMPASS Protein threading/fold recognition http://prodata.swmed.edu/compass/compass.php
CS/CSI-BLAST Protein threading/fold recognition http://toolkit.tuebingen.mpg.de/cs_blast
HHpred Protein threading/fold recognition http://toolkit.tuebingen.mpg.de/hhpred
HMMER Protein threading/fold recognition http://hmmer.janelia.org
NCBI BLAST Sequence alignment http://blast.ncbi.nlm.nih.gov/Blast.cgi
pfTools Protein threading/fold and motif recognition ftp://lausanne.isb-sib.ch/pub/software/unix/pftools/pft2.3/README
pGenThreader Protein threading/fold recognition http://bioinf.cs.ucl.ac.uk/psipred/?program=mgenthreader
PSIPRED Secondary structure prediction http://bioinf.cs.ucl.ac.uk/psipred
SAM-T2K Protein threading/fold recognition http://compbio.soe.ucsc.edu/papers/sam_doc/sam_doc.html
SPARKS/SP3 Protein threading/fold recognition http://sparks.informatics.iupui.edu/index.php?pageLoc=Services
Threader Protein threading/fold recognition http://bioinf.cs.ucl.ac.uk/software_downloads/threader

Table 1: Sequence-based tools. Components of the eThread pipeline for protein threading and sequence analysis.



Citation: Brylinski M, Feinstein WP (2012) Setting up a Meta-Threading Pipeline for High-Throughput Structural Bioinformatics: eThread Software 
'LVWULEXWLRQ��:DONWKURXJK�DQG�5HVRXUFH�3UR¿OLQJ��-�&RPSXW�6FL�6\VW�%LRO�������������GRL�10.4172/jcsb.1000094

Volume 6(1): 001-000 (2012) - 003 J Comput Sci Syst Biol       
ISSN:0974-7230 JCSB, an open access journal  

memory, and 3) jobs are prioritized, where the priority of a job is the 
product of its memory utilization and computing time. "is allocation 
system can be considered as a simpli#ed version of the widely used 
Portable Batch System (PBS).

Datasets
"e resource pro#ling is carried out on a dataset of 275 proteins 

randomly chosen from the original e"read benchmarking dataset 
[9]. "ese proteins were selected to uniformly populate 11 bins with 
25 structures in each bin. "e bins evenly span the range of the target 
sequence length between 50 and 600 residues.

As a benchmarking dataset for the simulated systems-level 
modeling, we selected the complete proteome of Escherichia coli 
K-12 [32], which comprises 4,646 gene products 50-600 amino acids 
in length. e"read meta-threading pipeline employ ten individual 
threading algorithms, thus the total number of jobs needed to process 
E. coli proteome is 46,460. "e expected memory consumption and 
computing time for each job was calculated based on meta-threading 
pro#ling results obtained on the primary testing system.

Results
Pro"ling of meta-threading components

Individual single-threading components of the e"read pipeline 
signi#cantly di$er from each other with respect to the wall clock time 
and memory consumption. Both resources are typically limited on 
many HPC systems; for example, currently the largest HPC cluster 
in the state of Louisiana, Queen Bee (http://www.loni.org/systems/), 
allows jobs to run for up to 48 hours and features 8 computing cores 
and 8GB of RAM per node.

"e results of meta-threading resource pro#ling on the primary 
testing system are shown in #gures 1 and 2. Figure 1A shows the 
average wall clock time required for each single-threading component 
method. In all cases, except for HHMER, the simulation time scales 
well with the target sequence length; however, the algorithms di$er 
with respect to the total CPU time. "e least expensive algorithms, 
CSI-BLAST, pfTools and HMMER, require at most minutes, whereas 
the most expensive "reader typically needs several hours to complete 
the calculations. e"read uses two template libraries: full-chain 
(11,468 structures) and domain-only (10,013 structures). Figure 1B 
reports the percentage of time spent on threading through a particular 
library; due to the number and length of template structures, the chain 

library requires slightly longer simulation times. Furthermore, several 
algorithms use PSI-BLAST to construct a sequence pro#le for a given 
target, which is o!en the most time consuming step. Blue pie slices 
in #gure 1B show that for HHpred, COMPASS and pGen"reader, 
88%, 62% and 51% CPU cycles are used up by the sequence pro#le 
construction, respectively.

Individual threading algorithms also di$er with respect to the 
memory utilization, see #gure 2A. CSI-BLAST, pfTools, "reader 
and HMMER require the least amount of memory; whereas, HHpred, 
COMPASS and pGen"reader, all of which employ PSI-BLAST for 
the construction of sequence pro#les, need signi#cantly more RAM. 
Figure 2B shows that for HHpred, COMPASS and pGen"reader, 
86%, 78% and 93% of the memory was utilized during the sequence 
pro#le construction, respectively. SAM-T2K has the highest memory 
requirement because it launches BLASTP, which loads a large sequence 
library into memory. "e actual threading calculations use only ~2% of 
the memory; however, throughout 96% of the simulation time (Figure 
1B, SAM-T2K). Furthermore, in most cases, the required memory 
scales well with the target protein length. It is also important to note 
that all these algorithms do not depend on each other therefore can be 
e%ciently processed in parallel.

Simulated multi-core system running meta-threading
We conduct a simple computer experiment to show that meta-

threading pipelines follow Gustafson-Barsis’ law, which states that 
computations involving arbitrarily large data sets can be e%ciently 
parallelized [33]. Figure 3 presents the simulated operation of three 
virtual systems equipped with 8, 16 and 32 cores, and 1GB of RAM 
per core, processing 46,460 individual threading jobs for E. coli 
proteome. "e CPU utilization is almost constantly 100% throughout 
the operation time, with the exception for two larger systems, where 
a few high memory jobs initially saturated the available host memory 
and blocked the remaining cores for a short period of time, see #gures 
3B and 3C. Moreover, because of the job prioritization, high memory 
jobs, e.g. SAM-T2K, pGen"reader and COMPASS, as well as long 
jobs, e.g. "reader, were selected for execution before other threading 
algorithms.

"e total computer time required for completing meta-threading 
against E. coli proteome is shown in #gure 4. For instance, one needs 
6 years, 303 days and 17 hours to complete the calculations on a single 
computing core. Using 100 nodes of the aforementioned Louisiana 

Software Purpose Link
DFIRE Protein conformation free energy score KWWS���VSDUNV�LQIRUPDWLFV�LXSXL�HGX�K]KRX�G¿UH�KWPO
DSSP Secondary structure assignment http://swift.cmbi.ru.nl/gv/dssp
fr-TM-align Protein structural alignment http://cssb.biology.gatech.edu/fr-tm-align
-DFNDO Protein structure modeling KWWS���ZLNL�F�E��FROXPELD�HGX�KRQLJODEBSXEOLF�LQGH[�SKS�6RIWZDUH�-DFNDO
MaxCluster Protein structure comparison and clustering http://www.sbg.bio.ic.ac.uk/~maxcluster/index.html
Modeller Protein structure modeling http://salilab.org/modeller
Pulchra $OO�DWRP�UHFRQVWUXFWLRQ�IURP�WKH�EDFNERQH�&Į�DWRPV http://cssb.biology.gatech.edu/PULCHRA
Stride Secondary structure assignment http://webclu.bio.wzw.tum.de/stride
TASSER-Lite Protein structure modeling http://cssb.biology.gatech.edu/TASSER-Lite
TM-score Protein structure similarity measure http://zhanglab.ccmb.med.umich.edu/TM-score

Table 2: Structure-based tools. Components of the eThread pipeline for protein structure modeling and analysis.

Software Purpose Link
LIBSVM 6XSSRUW�9HFWRU�0DFKLQHV�IRU�FODVVL¿FDWLRQ�DQG�UHJUHVVLRQ http://www.csie.ntu.edu.tw/~cjlin/libsvm
SVMrank Support Vector Machines for ranking http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Table 3: Machine learning tools. Machine learning algorithms used by e7KUHDG�IRU�YDULRXV�FODVVL¿FDWLRQ�DQG�UDQNLQJ�WDVNV�
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Figure 1:�5HVRXUFH�SUR¿OLQJ�IRU�WKUHDGLQJ�FRPSRQHQW�PHWKRGV���A) Average ± standard deviation wall time for individual components of eThread plotted as a function 
of the target protein length; (B) percentage of wall time used by individual components of e7KUHDG� WR� WKUHDG�DJDLQVW�FKDLQ�DQG�GRPDLQ� WHPSODWH� OLEUDULHV��3UR¿OH�
construction using NCBI BLAST is benchmarked independently from threading when possible.

Figure 2:�5HVRXUFH�SUR¿OLQJ�IRU�WKUHDGLQJ�FRPSRQHQW�PHWKRGV���A) Average ± standard deviation memory consumption for individual components of eThread plotted 
as a function of the target protein length; (B) percentage of memory used by individual components of eThread to thread against chain and domain template libraries. 
3UR¿OH�FRQVWUXFWLRQ�XVLQJ�1&%,�%/$67�LV�EHQFKPDUNHG�LQGHSHQGHQWO\�IURP�WKUHDGLQJ�ZKHQ�SRVVLEOH�
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Figure 3: Simulated queuing system dispatching threading jobs for E. coli proteome. Calculations are virtually processed using (A) 8 cores/8GB RAM, (B�����FRUHV���*%�
RAM, and (C�����FRUHV���*%�5$0��)RU�HDFK�FRPSRVLWH�¿JXUH��WKH�WRS�SDQH�VKRZV�WKH�XWLOL]DWLRQ�RI�FRPSXWLQJ�FRUHV�DQG�PHPRU\�DV�D�IXQFWLRQ�RI�WKH�PDFKLQH�RSHUDWLRQ�
time. The bottom pane shows the fraction of cores assigned to individual threading algorithms at a given time; color intensity matches the fraction: black – 0.0 (no cores), 
bright yellow – 1.0 (all cores).

HPC cluster Queen Bee, each equipped with 8 cores and 8GB of 
RAM, the entire E. coli proteome could be processed in 3 days and 3 
hours. However, increasing the size of the host shared memory does 
not shorten the simulation time. "is is because the computations are 
dominated by low memory jobs, eg. "reader. Figure 3A demonstrates 
that the memory was fully utilized only throughout around 50% of the 
total computing time, which leaves a substantial room to maneuver job 
allocation. Figure 4 inset shows that a meta-threading pipeline closely 
follows Gustafson-Barsis’ law, i.e. doubling the number of CPU cores 
shortens the computing time by a factor of 2. We identify three factors 
responsible for this performance: 1) a large set of diverse protein 
threading jobs, 2) a considerable margin for the memory utilization 
on modern HPC systems, and 3) the lack of dependencies between 
individual jobs. Consequently, proteome-wide meta-threading 
applications are perfectly parallelizable at the task level.

Pro"ling of e!read
e"read is a meta-predictor that integrates outputs from individual 

threading components. It operates in two modes: structural and 
functional. "e former identi#es the most con#dent structural 
templates and constructs consensus target-to-template alignments for 
use in protein structure modeling. "e latter additionally evaluates 
selected templates for the utility in function assignment and considers a 
variety of protein molecular functions: ligand, metal, inorganic cluster, 
protein and nucleic acid binding. Figure 5 shows that the memory 

required by e"read is well correlated with the target protein length, 
whereas the average wall clock time is characterized by larger standard 
deviations; this is because the simulation time also depends on the 
number of identi#ed templates. Moreover, including the functional 
component fourfold increases the wall clock time and the memory 

Figure 4: Time required for completing meta-threading against E. coli proteome. 
Completion time is estimated by a simulated job scheduling system for virtual 
PDFKLQHV�HTXLSSHG�ZLWK������������������DQG����FRPSXWLQJ�FRUHV��DQG������DQG���
GB of RAM per core. Inset: speedup over 1 core for multi-core virtual systems.
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consumption. Nevertheless, e"read does not require signi#cant 
computing resources. Running in a structural (functional) mode, in 
most of the cases, it completes within 30 (80) minutes and consumes 
up to 0.6 (2.3) GB of memory.

Pro"ling of protein structure modeling
In e"read, the three-dimensional structural models of target 

proteins can be constructed using two modeling protocols: Modeller 
[21] and TASSER-Lite [22]. Resource pro#ling for e"read/Modeller 
are shown in #gure 6A. Both simulation time and the memory used are 
correlated with the target protein length. "is protocol has relatively 
low hardware requirements; even long target sequences typically need 
less than 0.5GB of RAM and up to 50 hours of CPU time. Compared 
to e"read/Modeller, e"read/TASSER-Lite requires signi#cantly 
more resources, see #gure 6B. "e duration of structure assembly 
and re#nement simulations in TASSER-Lite is limited to 48 hours, 

so the total wall clock time does not keep growing exponentially for 
sequences longer than 300 residues. Both modeling protocols pro#led 
here, e"read/Modeller and e"read/TASSER-Lite, typically generate 
full chain models within 1-3 days on a single computing core.

e"read/Modeller comprises two modeling stages: structure 
assembly by Modeller followed by model ranking using eRank. "ere is 
very little overhead resulting from eRank; it completes within seconds, 
therefore it is not included in the pro#ling results. In contrast, structure 
modeling using e"read/TASSER-Lite consists of four consecutive 
stages: residue contact prediction using eContact, threading by 
Prospector [34], structure assembly/re#nement by TASSER and model 
ranking by eRank. As shown in #gure 6C, structure assembly and 
re#nement is the most computationally intense and consumes 80% of 
the total CPU time. TASSER-Lite also includes additional threading 
using Prospector. "is modeling stage is the most memory intense and 

Figure 5: 5HVRXUFH�SUR¿OLQJ�IRU�e7KUHDG��$YHUDJH���VWDQGDUG�GHYLDWLRQ�ZDOO�WLPH�DQG�PHPRU\�FRQVXPSWLRQ�IRU�WKH�LGHQWL¿FDWLRQ�RI��A) structural and (B) functional 
templates by eThread plotted as a function of the target protein length. Percentage of (C) wall time and (D) memory used by eThread to identify structural and functional 
templates in chain and domain libraries.

Figure 6: 5HVRXUFH�SUR¿OLQJ�IRU�SURWHLQ�VWUXFWXUH�PRGHOLQJ��$YHUDJH���VWDQGDUG�GHYLDWLRQ�ZDOO� WLPH�DQG�PHPRU\�FRQVXPSWLRQ�IRU�WKH�PRGHO�FRQVWUXFWLRQ�XVLQJ��A) 
eThread/Modeller and (B) eThread/TASSER-Lite plotted as a function of the target protein length. Percentage of (C) wall time and (D) memory used bythe individual 
components of the eThread/TASSER-Lite modeling protocol: eContact, Prospector, TASSER-Lite and eRank/TASSER-Lite.
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accounts for 65% of the total memory utilization of up to 1.65GB, see 
#gure 6D. eContact, which predicts long-range inter-residue contacts 
before TASSER simulations get started, and eRank, which ranks the 
constructed models, extend the modeling time by only 5% and have 
relatively small memory requirements compared to the remaining 
modeling stages.

Potential for GPU acceleration
Heterogeneous HPC systems that include massively parallel graphics 

processors (GPUs) are quickly becoming popular, mainly because of 
their remarkably high performance-to-cost ratio. Consequently, GPU-
accelerated supercomputers show an exponential growth in the Top500 
ranking, with 52 systems powered by NVIDIA Tesla GPUs currently 
on the list compared to only 10 systems in 2010. Bioinformatics and 
systems biology are examples of many rapidly developing research areas 
that are moving towards heterogeneous computing architectures [35]; 
GPU implementations of several popular bioinformatics tools have 
been reported recently. Bioinformatics so!ware available for GPUs 
include both sequence, e.g. CUDA-BLASTP [36], GPU-BLAST [37], 
CUDASW++ [38] and GHOSTM [39], as well as structure alignment 
algorithms, e.g. ppsAlign [40] and TM-score-GPU [41]. Most of the 
component methods integrated into the e"read pipeline do not have 
a GPU implementation, with the exception for BLASTP, which is used 
by SAM-T2K. To the best of our knowledge, GPU-BLASTP has not 
been benchmarked against its serial CPU version in a meta-threading 
environment. 

Figure 7 shows wall clock times for serial NCBI BLASTP compared 
to that provided by GPU-BLAST [37] collected on three systems 
equipped with di$erent GPU cards. Interestingly, the speedup depends 
on the target sequence length; this is likely due to the overhead caused 
by transferring the library data to the accelerator. Longer sequences 
require more calculations, thus the parallel processing by multiple 
GPU cores results in signi#cantly shorter simulation times compared 
to the serial version. "e speedup starts at 1.4, 1.5 and 1.7 for sequences 
50-100aa, and reaches 2.1, 2.2 and 2.5 for sequences 550-600aa on 

Tesla M2050, M2070 and C2075 card, respectively. Without the 
laborious porting of the source codes of individual protein threading 
algorithms to CUDA, the construction of sequence pro#les using PSI-
BLAST would be the next logical step to speed up the entire pipeline 
by accelerating HHpred, COMPASS and pGen"reader; however, it 
is not currently available. Nevertheless, the Authors of GPU-BLAST 
noted that PSI-BLAST can be implemented on the GPU similarly to 
BLASTP and similar speedups can be expected [37]. Once available, it 
could give a boost to meta-threading pipelines by moving the sequence 
pro#le construction to GPU accelerators.

So#ware walkthrough and a case study
e"read is freely available to the academic community. Web-based 

e"read provides a user-friendly interface for a fast and easy access 
to the entire so!ware package. Once the target amino acid sequence 
is submitted with selected structure prediction options, the modeling 
results can be downloaded to a local machine or displayed directly on 
the website, see #gure 8 for a snapshot of prediction results. In #gure 
8A, the top-ranked structural model predicted using e"read/Modeller 
is visualized in the Astex Viewer Java applet [42]. "e estimated TM-
score of 0.753 for this model suggests a high modeling con#dence. 
"e Ramachandran plot in #gure 8B shows that 87.8% amino acids 
in the predicted target backbone reside in the most favorable region 
(colored in red); here, a threshold of 90% is commonly accepted to 
de#ne high quality models. "e web server also provides other results 
from the model quality check by PROCHECK [43] with respect to 
main-chain and side-chain parameters, e.g. peptide bound planarity, 
bad non-bonded interactions and Cα tetrahedral distortion. "ese may 
help users assess how a predicted structure compares with well-re#ned 
experimental structures (Figure 8C).

In addition to the web-based service, we also provide the source 
code of e"read allowing users to install the so!ware package and 
build protein structures locally. "ere are three major steps for the 
local setup including the installation of: 1) required Perl modules, 2) 
third-party so!ware for single-threading algorithms, and 3) e"read 

Figure 7: Wall clock time and speedups of parallel GPU-BLASTp relative to serial NCBI BLASTp. Performance is evaluated on three testing systems: (A) Xeon 2.4GHz/
M2050, (B) Xeon 2.5GHz/M2070, and (C) Xeon 2.4GHz/C2075. For each sequence length bin, the average value with the corresponding standard deviation is plotted. 
In the top pane, speedups below and over 2 are colored in yellow and green, respectively.
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so!ware and the corresponding threading libraries. We note that all 
third-party programs are free for academic and non-commercial use; 
however, users are responsible for obtaining so!ware licenses and 
complying with legal and other requirements. Upon the completion 
of the so!ware installation, all single-threading tools as well as e"read 
will be available locally for the identi#cation of structural templates and 
the construction of target-to-template alignments. Finally, structural 
modeling protocols, Modeller [21] and TASSER-Lite [22], can be 
used to build the three-dimensional model for a given target sequence 
followed by a simple all-atom re#nement using molecular mechanics.

As a proof of concept, we use e"read to build a structural 
model for the 59-residue fragment of an uncharacterized protein 
from domestic horse [44] (UniProt ID: F6VMN7), for which the 
experimental structure is unavailable. "e #rst step is the construction 
of threading alignments. We start with obtaining the amino acid 
sequence of F6VMN7in FASTA format from UniProt [45]. Next, we 
deploy each protein threading/fold recognition algorithm with the 
sequence of F6VMN7 as an input to identify suitable templates and to 
generate the corresponding target-to-template alignments. Structural 
templates are selected from both full-chain and domain-only libraries. 
Because di$erent threading algorithms generate target-to-template 
alignments in di$erent formats, the output #les are converted to the 
e"read format using conversion scripts included in the e"read 
so!ware distribution. Next, the target-to-template alignments 
constructed by individual threading algorithms are concatenated as 
one of the input #les for e"read. In addition to this input, two other 
#les, the target sequence in FASTA format and the threading libraries, 
are required to generate the #nal consensus alignments. As the second 
step, we use Modeller and TASSER-Lite separately to build structure 
models from e"read alignments. Typically, more than one model is 
predicted, therefore model construction is followed by ranking and 
quality assessment. Speci#cally, for eRank/Modeller, three input #les, 
including the target F6VMN7 sequence and two #les generated by 
PSIPRED and e"read, are required to rank the constructed models and 
assign TM-scores as con#dence estimates. In #gure 9A, the top-ranked 
e"read/Modeller model is shown in PDB format and its molecular 

structure is visualized in VMD [46]. For e"read/TASSER-Lite, the 
inter-residue contacts are #rst predicted using eContact; subsequently, 
residue contacts, target sequence and e"read alignments are used as 
input to construct the three-dimensional model. Similar to eRank/
Modeller, eRank/TASSER-Lite is then deployed to rank protein models 
and assign the modeling con#dence. "e resulting top-ranked model 
constructed for F6VMN7 by e"read/TASSER-Lite is shown in #gure 
9B. Figure 9C shows the global superposition of the top-ranked models 
generated by e"read/Modeller and e"read/TASSER-Lite. Both 
models are remarkably similar to each other (RMSD is 0.74Å), which 
indicates a high con#dence for the structure modeling of this target. 
However, there exist some di$erences. For example, the model built 
using e"read/Modeller (yellow) has longer beta sheets compared to 
that using e"read/TASSER-Lite (green), with approximately 27% and 
13% of residues assigned by STRIDE [29] to the β-sheet conformation, 
respectively. It suggests that despite the likely correct global topology, 
the model constructed by e"read/TASSER-Lite may require more 
rigorous local structure re#nement to improve the secondary structure 
content [9].

Conclusion
Systems biology is emerging as a promising discipline in the #eld 

of biology. Powered by modern computer technologies, it aims to help 
comprehend molecular interactions at the systems level. Towards 
this goal, acquiring extensive knowledge of protein structures and 
their functions is essential. Continuing advancements in sequencing 
technologies spark o$ the rapid accumulation of gene and gene product 
sequences; yet, the annotation of these sequences is falling far behind. 
"erefore, a high-throughput protein annotation is a daunting task 
in bioinformatics. Up to date, various computational tools have been 
developed to reach this goal. Di$erent from sequence-based methods 
that heavily depend on high sequence identity to already annotated 
protein sequences, structure-based methods are making headway 
in function inference in the “twilight zone” [6] of sequence identity. 
Consequently, the genome-wide coverage of annotated proteins can 
be systematically expanded. Among many template-based approaches, 

Figure 8: Snapshot of a sample result page from the eThread webserver. (A) The constructed models are visualized using AstexViewer. The stereochemical quality of 
the predicted models is assessed by PROCHECK using (B) Ramachandran map and (C) main-chain parameters graphs.
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Figure 9: Sample results of top-ranked models in PDB format visualized in VMD. The models are constructed by (A) eThread/Modeller and (B) eThread/TASSER-Lite. 
Structure alignment between the two predicted models is shown in (C).

protein meta-threading is of particular interest, primarily because this 
approach integrates multifaceted factors to enhance the prediction 
accuracy. Towards this e$ort, we developed e"read that combines ten 
single-threading algorithms supported by machine learning to identify 
suitable templates for the prediction of protein structure and function 
[9].

"e heterogeneous collection of algorithms used in e"read creates 
a challenge for the optimal utilization of system resources. In this 
communication, we thoroughly pro#le e"read and its component 
methods in terms of the total wall clock time and memory consumption, 
as well as the resource distribution at major computing stages. "e 
pro#ling results show that the total CPU time and memory utilization 
di$er dramatically among single-threading methods; yet, the overall 
resource required typically scales well with the target protein length. 
Furthermore, in a simple experiment using several simulated multi-
core systems, we show that meta-threading pipelines closely follows 
Gustafson-Barsis’ law [33], thus systems-level applications, eg. genome-
wide modeling of protein structure and function, are exemplary tasks 
for large computer clusters. 

In addition to parallel computing using multiple CPU cores, we also 
examine whether using a GPU-accelerated platform would shorten the 
production time. "e benchmarking results are encouraging; however, 
to signi#cantly speed up protein meta-threading pipelines requires a 
substantial code development and porting individual algorithms to 
CUDA. Here, one of the most promising targets for GPU computing 
is PSI-BLAST, which is used by several component methods. A GPU 
implementation of this algorithm could signi#cantly accelerate the 
entire meta-threading pipeline. Similarly to GPU computing, alternative 

technologies, such as Intel Many Integrated Core architecture, also 
hold a considerable promise to speed up bioinformatics applications. 

We provide a user-friendly web service freely to the academic 
community and non-commercial users; we also provide source code 
of e"read, which can be deployed locally on a high-performance 
computing platform for high-throughput protein structure and 
function modeling. "e web-based gateway, stand-alone so!ware, 
benchmarking results and datasets, as well as documentation and 
illustrative tutorials are available at www.brylinski.org/ethread.
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