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INTRODUCTION

With the continuing advances in genome sequencing, there has

been a rapid accumulation of protein sequences, whose molecular

functions are yet to be annotated.1,2 Consequently, the meticulous

functional characterization of all gene products in a given pro-

teome has become one of the greatest challenges in the postge-

nomic era. This ambitious goal can be achieved by combining ex-

perimental and computational efforts.3 In this spirit, a number of

sequence- and structure-based methods for function inference by

computational means have been developed.4–6 One particular

group of highly efficient and broadly applicable algorithms that

show a considerable promise for proteome-scale functional anno-

tation consists of evolution/structure-based approaches,7–10 whose

common underlying principle is that protein function is transfera-

ble between evolutionarily related proteins. Of course, protein

function is multifaceted, ranging from biochemical processes to

phenotypical responses.11 The critical functional aspects giving

rise to life emerge from interactions among molecular species

present in a cell, such as proteins, small organic molecules, nucleic

acids, and metal ions. The latter bind to a broad spectrum of pro-

teins to facilitate many important biological functions and funda-

mental chemical processes.12–14

The metal-binding complement of a typical proteome comprises

about one-quarter to one-third of all gene products.12,15 Metallo-

proteins belong to many different functional classes16; the most

important are enzymes, transport and storage proteins, gene

expression regulators, and signal transduction proteins.17–19 The

presence of metal ions is critical not only for many specific molec-

ular functions that cannot be easily performed by a relatively lim-

ited repertoire of chemical groups in naturally occurring amino

acids, but also for the folding and the stability of protein struc-

tures.20 Recognition of the importance of metal binding in

numerous cellular processes has stimulated the development of
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ABSTRACT

The rapid accumulation of gene sequences, many of

which are hypothetical proteins with unknown

function, has stimulated the development of accu-

rate computational tools for protein function pre-

diction with evolution/structure-based approaches

showing considerable promise. In this article, we

present FINDSITE-metal, a new threading-based

method designed specifically to detect metal-bind-

ing sites in modeled protein structures. Compre-

hensive benchmarks using different quality protein

structures show that weakly homologous protein

models provide sufficient structural information

for quite accurate annotation by FINDSITE-metal.

Combining structure/evolutionary information

with machine learning results in highly accurate

metal-binding annotations; for protein models con-

structed by TASSER, whose average Ca RMSD from

the native structure is 8.9 Å, 59.5% (71.9%) of the

best of top five predicted metal locations are within

4 Å (8 Å) from a bound metal in the crystal struc-

ture. For most of the targets, multiple metal-bind-

ing sites are detected with the best predicted bind-

ing site at rank 1 and within the top two ranks in

65.6% and 83.1% of the cases, respectively. Further-

more, for iron, copper, zinc, calcium, and magne-

sium ions, the binding metal can be predicted with

high, typically 70% to 90%, accuracy. FINDSITE-

metal also provides a set of confidence indexes that

help assess the reliability of predictions. Finally, we

describe the proteome-wide application of FIND-

SITE-metal that quantifies the metal-binding com-

plement of the human proteome. FINDSITE-metal

is freely available to the academic community at

http://cssb.biology.gatech.edu/findsite-metal/.
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computational methods aimed specifically at the predic-

tion of metal-binding sites in proteins. Global sequence

similarity methods that use BLAST searches21 are gener-

ally applicable in the high sequence identity regime,22,23

but their ability to detect functional relationships falls off

dramatically in the twilight zone of sequence iden-

tity.24,25 In the absence of closely homologous sequen-

ces, another group of methods that employ short

sequence motifs searches can be employed.26–28 How-

ever, local sequence matching approaches suffer from low

coverage of metal-binding sites, since many are nonlocal

in sequence without any distinct spacing patterns.29,30

To overcome these problems, a number of structure-

based approaches have been developed. Since global

structure similarity between proteins may lead to a very

high false positive rate due to the complex and ambigu-

ous relationships between protein structure and func-

tion,31 most metal-binding site predictors utilize highly

conserved local structural patterns32–34 and focus on

the local physicochemical environment around a metal-

binding site.35 Despite their high accuracy in benchmark

simulations carried out using known metal-binding pro-

tein structures, the ability to detect novel metal-binding

sites may be somewhat limited.30

Another complicating fact is that the local geometrical

matching typically requires high quality structures, pref-

erably solved by X-ray crystallography or constructed

from very close homology. As demonstrated for 653

structures modeled at different resolutions, the precise

recognition of the functional site location typically

requires high-resolution structures whose root-mean-

square deviation, RMSD, from the native structures is 1

to 2 Å.36 Similar limitations apply to purely structure-

based metal-binding site detectors that use all-atom force

fields.37 While such high accuracy of modeled protein

structures is generally achievable in template-based struc-

ture prediction using closely homologous templates,38,39

most models constructed from remote homology, despite

having the correct global topology, have an RMSD far

above 2 Å resolution,40,41 with significant structural

inaccuracies in the binding regions.42,43 If the goal is

function inference at the level of entire proteomes (where

very high quality models are present for only a small

fraction of proteins), effective structure-based approaches

that cope well with structural inaccuracies in modeled

protein structures are required. Combined evolution/

structure-based function inference was previously demon-

strated to be quite successful in the detection of binding

sites for small organic molecules7,44,45 and DNA46,47

in the presence of only remotely related templates.

Here, we extend the application of the FINDSITE algo-

rithm, originally designed to identify ligand-binding

sites,7,48 to predict metal-binding sites in weakly homol-

ogous protein models using distantly related templates.

We begin with a statistical analysis of the conservation of

metal-binding patterns in remotely related proteins fol-

lowed by comprehensive large-scale benchmarks using

different quality protein models as the structures used

for binding site prediction. The results for proteins that

bind to transition metals (cobalt, copper, iron, manga-

nese, nickel, and zinc) as well as to hard metals (calcium

and magnesium) are assessed in terms of the predicted

binding site location, the accuracy of identified binding

residues and the precision of the binding metal predic-

tion. Furthermore, we demonstrate that the performance

of FINDSITE-metal is notably improved by integrating

structure/evolutionary information and machine learning.

The important feature of FINDSITE-metal is that it

offers a set of confidence indexes, which help assess the

reliability of its predictions. Finally, we describe a pro-

teome-wide application of FINDSITE-metal that provides

a detailed functional characterization of the metal-bind-

ing complement of the human proteome. FINDSITE-

metal is freely available to the academic community at

http://cssb.biology.gatech.edu/findsite-metal/.

METHODS

Dataset

The metal-binding proteins used in this study were

obtained from the Metalloprotein site Database and

Browser (MDB),49 which provides quantitative informa-

tion on all metal-containing sites available from struc-

tures in the PDB.50 Only proteins bound to the follow-

ing eight metal ions were included in the dataset: Ca, Co,

Cu, Fe, Mg, Mn, Ni, and Zn. For each binding metal, a

non-redundant set was compiled using PISCES.51 For

proteins 50-600 residues in length, redundancy was

removed at the 35% pairwise sequence identity level. The

final non-redundant dataset comprises 860 proteins, of

which 201, 29, 35, 117, 152, 87, 21, and 251 bind to Ca,

Co, Cu, Fe, Mg, Mn, Ni, and Zn, respectively. For each

metal-binding site, a set of binding residues was identi-

fied using the interatomic contacts provided by the LPC

software52 with the remaining residues classified as non-

binding. The list of proteins and associated metal-bind-

ing ions can be found at http://cssb.biology.gatech.edu/

findsite-metal/.

Protein structure modeling

For each target protein, we have constructed several

models of different quality in terms of their RMSD53

from the native structure. In addition to the crystal

structures, we use three sets of uniformly distorted struc-

tures with an average RMSD of 2, 4, and 6 Å from

native. The distorted structures were generated starting

from the crystal structures by a simple Monte Carlo pro-

cedure that deforms protein structures to a desired reso-

lution.54 Moreover, we apply a state-of-the-art template-

M. Brylinski and J. Skolnick

736 PROTEINS



based structure prediction algorithm55 to construct a set

of weakly homologous protein models. First, for each tar-

get protein, distantly related template structures (<35%

sequence identity to the target) were identified in a non-

redundant PDB library by our meta-threading procedure

that employs the SP3,56 SPARKS2,57 and PROSPEC-

TOR_358,59 algorithms. Subsequently, full-length models

were assembled by chunk-TASSER.55 Finally, all-atom

models from the top ranked chunk-TASSER structures

were constructed by Pulchra60 and energy minimized in

the CHARMM22 force field61 using the Jackal modeling

package.62 The benchmark dataset in terms of the aver-

age quality of protein structures as assessed by RMSD,53

TM-score,63 and MaxSub64 is summarized in Table I.

Template identification

FINDSITE-metal is a template-based procedure for

metal-binding site prediction. Here, template proteins are

identified in a non-redundant PDB library using meta-

threading that employs three threading procedures:

SP3,56 SPARKS2 57 and PROSPECTOR_3.58,59 Only

weakly homologous (<35% sequence identity to the tar-

get) template structures that have a Z-score of �4

reported by at least one threading method are included.

The initial set of templates provided by threading is used

to retrieve all metal-binding protein structures from the

PDB that are homologous to at least one threading-iden-

tified template. Multiple instances of a metal-binding

template protein (>90% sequence identity) are only

retained if they bind either to a different metal ion or to

the same metal but in a different location, with a dis-

tance of >4 Å. Otherwise, only one PDB structure is

included. Again, we remove all PDB templates with

>35% sequence identity to the target. Finally, only those

template structures that have a TM-score to the provided

target structure of �0.4 are retained. If distorted or mod-

eled proteins are used as the targets for metal-binding

site prediction, the TM-score is calculated versus these

structures. This structure similarity threshold ensures

that the template-to-target structure alignments generated

by fr-TM-align65,66 are statistically significant.

Metal-binding site prediction

Similar to the original FINDSITE approach,7,48 FIND-

SITE-metal employs structure alignments provided by fr-

TM-align65,66 to superimpose metal-binding templates

detected by threading onto the target structure (either

crystal or modeled). Subsequently, upon global superpo-

sition of the template structures, template-bound metal

ions are clustered using an average linkage clustering

procedure and the resulting clusters are ranked by the

number of binding metals. Each cluster represents a pu-

tative metal-binding site with the predicted metal loca-

tion at the cluster geometrical center (averaged coordi-

nates of all template-bound metals).

Binding residue prediction

For each metal-binding cluster, the initial set of bind-

ing residues is calculated as follows: Each target residue

is assigned a probability that corresponds to the fraction

of templates that have a residue in equivalent position in

contact with a metal, including pseudo counts:

pBi ¼ c þ fi
ffiffiffi
n

p
nþ ffiffiffi

n
p ð1Þ

where pi
B is the metal-binding probability, c is the num-

ber of templates that have the equivalent residue in con-

tact with a metal, n is the total number of templates, and

fi is the frequency of occurrence of residue i in Uni-

ProtKB/Swiss-Prot67 (see Release notes for UniProtKB/

Swiss-Prot release 56.0). Residue equivalences are calcu-

lated from structure alignments generated by fr-TM-align.

Prediction of binding metal preferences

Similarly, for each putative binding site, we calculate

the preferences toward different metal ions using a frac-

tion of templates that bind particular type of metal:

pMj ¼ c þ fj
ffiffiffi
n

p
nþ ffiffiffi

n
p ð2Þ

where pj
M is the probability of binding metal j (we use

eight different metal types: Ca, Co, Cu, Fe, Mg, Mn, Ni,

Table I
Structure Quality of the Target Proteins used in this Study

Crystal 2� RMSD 4� RMSD 6� RMSD TASSER

No. proteins 761 756 728 721 747
No. metal-binding sites 1038 1036 1000 986 1034
Target protein Ca RMSDa – 1.99 � 0.06 3.99 � 0.07 5.98 � 0.10 8.93 � 6.58
Target protein TM-scorea – 0.89 � 0.05 0.75 � 0.07 0.66 � 0.07 0.68 � 0.19
Target protein MaxSuba – 0.78 � 0.02 0.55 � 0.06 0.47 � 0.07 0.52 � 0.20
Binding site RMSDa [�] – 0.58 � 0.51 1.05 � 1.04 1.50 � 1.64 2.74 � 2.42
No. observed binding residuesa 3.14 � 0.98 3.14 � 0.98 3.14 � 0.98 3.13 � 0.98 3.13 � 0.99
No. predicted binding residuesa 3.83 � 1.91 3.76 � 1.90 3.59 � 1.89 3.25 � 1.82 3.69 � 1.93

aAverage value � one standard deviation.
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and Zn), c is the number of templates that bind metal j,

n is the total number of templates, and fj is the frequency

of occurrence of metal j in a non-redundant subset of

the MDB.49

The uncertainty of metal binding (ME) is quantified

by the Shannon’s entropy68:

ME ¼ �
X8

j¼1

pMj log2 p
M
j ð3Þ

Low ME values are indicative of relatively homogenous

metal-binding sites, i.e. similar locations in evolutionarily

related proteins tend to bind the same type of metal. We

use ME to construct a reliable confidence index for bind-

ing metal prediction.

Machine learning

The accuracy of metal-binding residue prediction is

further improved by machine learning using classifica-

tion-based Support Vector Machines (SVM). Here, we

use libSVM 2.969 to build a C-SVC model with a radial

basis function. To avoid memorization of the dataset, we

use a twofold cross validation protocol. The complete

dataset of the target complexes was randomly divided

into two subsets with <35% sequence identity between

any two proteins that belong to the different subsets.

Subsequently, each subset was used to train the model,

and then predictions were made for the remaining tar-

gets, excluded from the training procedure. The con-

structed SVM model employs the set of 25 features sum-

marized in Table II. We use the trained SVM classifier to

assign each residue with a probability to bind a metal

ion (probability being a positive). One of the features

used in SVM is the TM-score to native estimated for the

target structure. Using crystal structures, this value is 1.0.

For structures distorted to 2, 4, and 6Å RMSD, we train

the model on the TM-score values calculated versus

native structures; however, in validation, we use random

TM-score values sampled from a normal distribution cal-

culated using the mean and standard deviation for a

given dataset of distorted structures (Table I). For exam-

ple, the estimated TM-score for each target from the set

of structures distorted to 4 Å RMSD is selected randomly

from a normal distribution with a mean of 0.75 and a

standard deviation of 0.07. For TASSER models, the TM-

score is estimated from the C-score, the confidence score

calculated from TASSER simulations.70 This is described

in the following section.

TM-score estimation

Previously, the C-score was introduced as a structure

prediction confidence index.70 A positive C-score indi-

cates that the modeled structure is very likely to be topo-

logically similar to native at the structurally significant

level. Here, C-score values are used to estimate the TM-

score versus native for protein structures modeled by

TASSER. To find the correlation between the C-score and

Table II
Set of Features used in Metal-Binding Residue Prediction as well as in the Confidence Estimation by Machine Learning

Binding residue prediction by SVM Confidence index by Bayesian classifier

Feature Description Feature Description

1 Estimated TM-score to nativea 1 Estimated TM-score to nativea

2 Distance between the Ca atom and the predicted site
center

2 Template fractionc

3 Binding probabilityb 3, 4 Average TM-score of templates to the target structure
and its standard deviation

4 Template fractionc 5 Average deviation of template-bound metals from
predicted site center

5, 6 Average TM-score of templates to the target structure
and its standard deviation

6 Binding metal entropyd

7 Average deviation of template-bound metals from
predicted site center

7 Sequence profile scoree

8 Binding metal entropyd 8 No. metal-bound templates
9 Sequence profile scoree 9 No. putative binding residuesh

10-17 Binding metal preferencesf 10 Average metal-binding probability for binding
residuesh

18-25 Residue preferences for different metal typesg 11 Fraction of templates that bind the top-ranked
predicted metal

aTM-score to native for the target structure estimated from modeling procedure or by model quality assessment.
bCalculated from Eq. (1).
cFraction of templates that have a residue in equivalent position in contact with a metal.
dCalculated from Eq. (3).
eSequence profile score calculated for alignments constructed by fr-TMalign.
fPredicted binding metal preferences, Eq. (2).
gGeneric residue preferences to bind each type of metal ions.
hPredicted by SVM.
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the TM-score, we use the results of large-scale bench-

mark simulations carried out for a standard, non-redun-

dant dataset of proteins that cover the PDB at the 35%

sequence identity. The dataset consists of 1489 single

protein chains up to 100 residues in length, 2494 pro-

teins between 100 and 200 residues and 1203 larger pro-

teins between 200 and 300 residues. Structure models are

constructed by TASSER from weakly homologous tem-

plate structures (<35% sequence identity) identified by

threading.58,59 The regression analysis is performed

using the C-score values calculated from TASSER simula-

tions and the TM-score values calculated versus crystal

structures of the targets.

Binding site re-ranking

The identity of metal-binding residues is typically

highly conserved across a set of evolutionarily related

proteins. We use this observation to re-rank binding sites

by a sequence profile score, which involves the summa-

tion over all 20 amino acid types of the product of the

probabilities that a given amino acid occupies the equiva-

lent position in the target and template and is derived

from structure alignments generated by fr-TM-align for a

set of weakly homologous metal-binding templates. Puta-

tive binding sites, initially ranked by the number of bind-

ing metals, are re-ranked by the total sequence profile

score calculated over binding residues predicted by the

SVM.

Prediction confidence

FINDSITE-metal uses three confidence indexes that

estimate the chances of (i) the metal position to be pre-

dicted within a distance of 4 Å, (ii) the Matthew’s corre-

lation coefficient for the binding residues to be at least

0.5, and (iii) the binding metal type to be correctly pre-

dicted. The prediction confidence is estimated by a Naı̈ve

Bayes classifier71 from a set of features listed in Table II.

A separate classifier is trained for each confidence index.

Similar to the binding residue prediction by SVM, we

use a twofold cross validation protocol. We find that the

raw instance scores returned by the Bayesian classifier

make rather poor confidence estimates, because they are

grouped around the extreme values (0 and 1). Therefore,

we apply a calibration procedure to normalize confidence

estimates generated by the classifier. Here, we use the

Pool Adjacent Violators (PAV) algorithm72 that trans-

forms the raw scores into well-calibrated posterior proba-

bilities, which are further used as the confidence esti-

mates.

Comparison with a sequence-based
method

We compare the performance of FINDSITE-metal to

SVM-Prot, an SVM-based method that predicts the func-

tional class of metal-binding proteins from sequence

derived physicochemical properties.73 Here, we use the

same nonredundant MDB dataset, which is described in

the previous sections. To make results comparable

between SVM-Prot and FINDSITE-metal, for the latter,

we employ weakly homologous TASSER models as the

target structures. Moreover, we use only distantly related

(<35% sequence identity to target) metal-bound tem-

plate structures identified by meta-threading. In this

manner, the predictions are made by both approaches

solely using sequence information as the input. The

SVM-Prot server at http://jing.cz3.nus.edu.sg/cgi-bin/

svmprot.cgi was queried automatically and the results

were parsed for metal-binding assignments. The class of

binding metal is selected based on the p-value reported

by SVM-Prot. For FINDSITE-metal, the metal type is

selected based on the highest preference calculated using

Eq. (2). The results are assessed separately for each metal

type (Ca, Co, Cu, Fe, Mg, Mn, Ni, and Zn) using a

standard receiver operating characteristic (ROC) analysis.

Prediction of metal-binding sites in the
human proteome

Amino acid sequences of all gene products identified

in the human proteome were obtained from the Ensembl

genome database.74 Here, we use 56,376 protein sequen-

ces 50 to 600 residues in length selected from the human

assembly GRCh37, release 55. For each sequence, a Ca
backbone model was built by TASSER70,75 from tem-

plate structures identified by SP3,56 SPARKS2,57 and

PROSPECTOR_3.58,59 Subsequently, all-atom models

reconstructed by Pulchra60 from low-resolution TASSER

structures were subject to short energy minimization

using Jackal.62 The set of meta-threading identified tem-

plates and the modeled structures were then used by

FINDSITE-metal to detect putative metal-binding sites in

the human proteome. Each predicted binding site was

assigned a confidence and further characterized by the

prediction of metal-binding residues, the class of binding

metal and the molecular function.

RESULTS

Metal-binding templates

FINDSITE-metal employs a set of evolutionarily

related metal-binding templates selected by threading.

The average number of templates per target is 18. Upon

the global superposition onto the target structure, puta-

tive metal-binding sites are detected by a clustering pro-

cedure. First, for a given set of templates, we analyze

what is the optimal clustering cutoff in terms of the aver-

age distance from the metal position in the target struc-

ture and the ranking ability by the cluster multiplicity. In

Figure 1, we show that the average distance of the best

Metal-Binding Site Prediction by FINDSITE-Metal
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binding site increases with the clustering threshold. Small

cutoff values result in many puny clusters, one of which

is typically close to the native metal-binding site; how-

ever, this is at the expense of a poor ranking capability

(Fig. 1, inset). On the other hand, if a large cutoff is

used, the ranking becomes more efficient, but the average

distance from the natively bound metal position

increases. As a trade-off between the accuracy of the site

prediction and the ranking ability, we use a clustering

cutoff of 8 Å in further calculations.

Analysis of metal-binding residues

Metal binding in proteins typically requires a specific

geometrical arrangement of relatively few residues, whose

identity strongly depends on the type of binding

metal.13,76–78 This is shown in Figure 2, where we com-

pare the amino acid preferences to bind different metals.

The electron donors in the side chains are mainly the

carboxyl oxygen atoms of Asp and Glu, the imidazole

nitrogen of His and the thiol group of Cys. Moreover,

the amide nitrogen and oxygen of Asn and the thioether

group of Met also coordinate divalent metal ions. Cal-

cium, magnesium and manganese ions preferentially bind

to the acidic chain of Asp. Zinc, with a lower coordina-

tion number preference, is typically chelated by Cys and

His. Histidine residues also have strong preference to-

ward binding of cobalt, copper, iron, nickel and zinc

atoms. These results correlate very well with the recent

statistical analysis of the chemical environment of metal

binding in proteins.79 Binding patterns are potentially

important for the prediction of metal-binding residues. If

the type of metal is correctly predicted, the differential

metal-binding preferences of amino acid side chains can

be used to increase the accuracy of binding residue

prediction.

Binding metal preferences

In this section, we show that evolutionarily remotely

related proteins tend to bind similar metals in equivalent

locations. For each target protein and the corresponding

set of threading identified templates, we calculate the

preferences toward binding native and non-native metal

ions. The native metal preference is equivalent to the

fraction of templates that bind the same metal as the tar-

get structure. Likewise, the non-native preference is an

averaged fraction of templates that bind different metal

types in similar locations. Figure 3 shows that the native

metal preference is strongly correlated with the distance

between the target- and template-bound metal ions upon

the global superposition of their structures. For site dis-

tances less than 2 Å (4 Å), more than 70% (50%) of the

templates bind the same metal type as the target struc-

ture. This fraction drops dramatically for sites >4 Å

away from each other. Encouragingly, this tendency is

observed not only for crystal structures [Fig. 3(A)], but

also for the distorted target structures [Fig. 3(B–D)]. As

we demonstrate in the following sections, combining in-

formation on the predicted binding metal with the differ-

ential metal-binding preferences of amino acids improves

the accuracy of the prediction of binding residues partic-

ularly against modeled protein structures.

TM-score estimation

Before we discuss the performance of FINDSITE-metal

in metal-binding site prediction, we shortly describe the

results of an analysis that focuses on the relationship

between the C-score and the TM-score. The TM-score

provides a length-independent measure of the structural

similarity between two proteins.63 A significant similarity

is indicated by a TM-score of >0.4. FINDSITE-metal

uses the estimated TM-score to native as one of the SVM

features to accurately predict metal-binding residues and

to estimate the prediction confidence. For a given protein

model, its TM-score can be directly calculated against the

native crystal structure, if known. However, in a real pre-

diction scenario when the experimental structure of a tar-

get is unavailable, the TM-score needs to be estimated.

Most contemporary structure prediction algorithms esti-

mate the reliability of structure modeling using some

score.80–82 TASSER, a template-based structure assem-

bly/refinement approach,70,75 calculates a confidence

score, called the C-score. To estimate the TM-score for a

target structure modeled by TASSER, we carried out a

regression analysis using the results of large-scale bench-

marks on a non-redundant and representative dataset of

5186 proteins. For each modeled target structure, we cal-

culate the TM-score versus its crystal structure and plot

Figure 1
Average distance (inset: average cluster rank) of the best template-

bound metal location from the position of a metal in the crystal

structure as a function of the clustering cutoff.
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Figure 3
Binding preferences for native and non-native metal ions for the template sites located within a distance d from a metal position in the target

structure. Target crystal structures, structures distorted to 2, 4, and 6 Å Ca RMSD are shown in A, B, C, and D, respectively.

Figure 2
Amino acid preferences toward binding different metal ions.
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it against the C-score obtained from TASSER simulations;

this is shown in Figure 4. Next, we calculate the regres-

sion line, which in this case is:

TM-score ¼ 0:13173 3 C-scoreþ 0:42895 ð4Þ

with a Pearson correlation coefficient of 0.81. We use this

equation to estimate the TM-score for target structures

modeled by TASSER. A high correlation between the

TM-score and a modified version of the C-score was also

reported for I-TASSER.83 We note that FINDSITE-metal

does not require the exact TM-score; all benchmark

results reported here were obtained using TM-score esti-

mates rather than the exact values (see Methods section).

In principle, any other model quality assessment that cor-

relates with the TM-score can also be used.

Accuracy of the predicted metal position

FINDSITE-metal predicts putative metal-binding loca-

tions by the clustering of template-bound metal ions

upon the global superposition of the template structures.

In Figure 5, we assess how far is the predicted site center

from a metal position in the crystal structure, when the

crystal structures themselves as well as structures dis-

torted to a desired RMSD are used as the targets. Using

a distance of 4 Å as the hit criterion, the fraction of cor-

rectly predicted sites at the top five ranks is 69.5%,

67.2%, 58.9%, and 50.8% for the crystal structures and

structures distorted to 2, 4, and 6 Å RMSD, respectively.

The difference between crystal and distorted structures

diminishes with more promiscuous distance thresholds;

for 6 Å (8 Å), the difference between the fraction of cor-

rectly predicted metal-binding sites using crystal and the

most distorted structures is only 8.1% (3.9%). This is a

common feature of many template-based predictors that

employ structure alignments, which are sensitive to the

global topology rather than to the local structural fea-

tures.7,31,48

The ability of FINDSITE-metal to correctly rank the

predicted binding sites is assessed in Figure 5 (inset) for

two ranking protocols. Similarly to the original FIND-

SITE algorithm, predicted binding locations could be

ranked by the fraction of templates that share a common

site. Using ranking by fraction, in 67.8%, 67.0%, 66.8%,

and 66.5% of the cases, the best predicted site is at rank

1 for the crystal structures and structures distorted to 2,

4, and 6 Å RMSD, respectively. As demonstrated above,

binding metal types as well as residue profiles are

remarkably strongly conserved across a set of evolutio-

narily related proteins. Here, we use this observation to

re-rank the predicted sites by a sequence profile score

calculated versus metal-bound templates. Figure 5 (inset)

demonstrates that ranking by a sequence profile score

calculated for binding residues predicted by SVM (see

Methods section) yields 3% to 4% improvement with

respect to ranking by fraction. Furthermore, ranking abil-

ity is hardly affected by the distortion of the target struc-

ture; using the crystal structures and structures distorted

to 2, 4 and 6Å RMSD, the correct ranking by the

sequence score is found in 70.7%, 70.6%, 70.3% and

69.3% of the cases, respectively.

Binding residue prediction

Many algorithms for metal-binding residue prediction

use the fact that metal binding typically involves a limited

Figure 5
Accuracy of metal-binding site prediction by FINDSITE-metal using

crystal structures as well as structures distorted to 2, 4, and 6 Å Ca
RMSD. Main plot: the cumulative fraction of proteins with a distance

between the metal position in the crystal structure and the closest of

the top five predicted binding sites displayed on the x-axis, abbreviated

as the ‘‘Fraction of targets.’’ Inset: the rank of the predicted site closest

to the metal-binding site in the crystal structure using two different

ranking procedures: by the fraction of templates that share a common

site (‘‘by fraction’’) and by a sequence profile score (‘‘by sequence’’).

Figure 4
Correlation between C-score and TM-score to native for a large dataset

of protein models constructed by TASSER.
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set of strongly conserved binding patterns.30,33,84 Here,

we analyze the performance of FINDSITE-metal in the

prediction of binding residues using two classifiers: a prob-

ability-based residue selection and machine learning that

employs a set of sequence and structure derived features. A

probability-based approach simply assigns a residue with a

binding probability that corresponds to the fraction of

templates that have a residue harboring a metal ion in the

equivalent position. Figure 6 demonstrates that the overall

accuracy of binding residue prediction is significantly

improved when the SVM classifier is applied. For example,

at the cost of a 1% false positive rate, machine learning

increases the true positive rate by 7% (from 84% to 91%),

9% (from 81% to 90%), 11% (from 75% to 86%) and

12% (from 69% to 81%) for the crystal structures and

structures distorted to 2, 4 and 6 Å RMSD, respectively.

Similar improvement is observed in the Recall-Precision

graphs shown as the inset plots in Figure 6.

Prediction of binding metal

As demonstrated in the previous sections, similar bind-

ing sites across a set of evolutionarily related proteins

bind similar types of metal ions. We use this observation

to predict a metal that likely binds to the detected binding

sites. The fraction of dataset targets for which the binding

metal was correctly predicted is shown in Figure 7, sepa-

rately for each metal class. The highest accuracy, 70%–

90%, is observed for Fe, Cu, Zn, Ca and Mg binding pro-

teins. The fraction of proteins correctly predicted to bind

Mn, Co and particularly Ni is significantly lower; this is

caused by the underrepresentation of these proteins in the

PDB.50,79 Moreover, only very distant homologues are

used in this study that might have evolved to bind a dif-

ferent class of metal ions. It is noteworthy that the accu-

racy of binding metal prediction is highly insensitive to

the structural distortions of the target structures.

Predicted amino acid/metal composition

Analyzing all predicted binding residues and metal ions

across the non-redundant dataset, we can estimate the

rate of over- and under-prediction of certain amino acids

and metal types. Overall, we find that the predicted resi-

due as well as metal composition is in an excellent agree-

ment with these calculated directly from the PDB com-

plexes; this is shown in Table III. Typically, the amino

acid composition difference is less than a couple of per-

Figure 6
ROC plots (FPR, false-positive rate; TPR, true-positive rate) for metal-binding residue prediction by FINDSITE-metal using crystal structures (A)

and structures distorted to 2 Å (B), 4 Å (C) and 6 Å (D) Ca RMSD. Inset plots show corresponding Recall-Precision graphs (TPR, recall; PPV,

precision). Metal-binding residues are identified based on the probability estimation (Prob) as well as by machine learning (SVM).
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cent, with the exception of Cys that is slightly under-pre-

dicted by 2.6-3.7%. For low quality protein structures,

particularly these that are distorted to 4 Å and 6 Å

RMSD, we observe a moderate composition excess of Asp,

Glu and His residues of 1.0-5.5%. Considering the metal

composition across the dataset, most binding metal types

are correctly predicted with two exceptions: magnesium-

binding sites that are over-predicted by 7.9-8.6% and

manganese-binding sites are under-predicted by 6.3-7.0%.

Nevertheless, the residue/metal composition of metal-

binding sites is fairly well reproduced by FINDSITE-metal

predictions; this feature is important for large-scale func-

tional assignments at the level of entire proteomes.

TASSER models as targets for
FINDSITE-metal

Artificially distorted structures provide some notion

about the performance of a method using different qual-

ity target structures. However, from the point of view of

real applications, the most interesting results are these

obtained using protein structures modeled by a state-of-

the-art protein structure prediction approach. In this

study, using TASSER, we constructed protein models

from only weakly related template structures. In Figure 8,

the performance of FINDSITE-metal using TASSER mod-

els is compared in terms of the site location accuracy and

ranking capability to that using the crystal structures of

the targets. Unlike other structure-based approaches to

metal-binding site prediction that strongly rely on the

quality of the target structure,85,86 FINDSITE-metal is

insensitive to some extent to the structural distortions in

modeled proteins structures. Using a 4 Å (8 Å) distance

as a hit criterion, the accuracy drops by 10% (5%) if

weakly homologous TASSER models are used instead of

the crystal structures, with the ranking ability reduced by

4.5%. Furthermore, the high accuracy of binding residue

identification is retained; this is shown in Figure 9 as a

Table III
Observed and Predicted Residue and Binding Metal Composition for the Dataset of Protein Targets with Different Quality Structures

Crystal 2� RMSD 4� RMSD 6� RMSD

Residue compositiona [%]
Asp 27.1 26.6 20.5 27.1 26.9 20.2 27.2 30.0 2.8 27.6 32.4 4.8
Glu 14.4 15.4 1.0 14.4 16.0 1.6 14.4 17.9 3.5 14.6 20.1 5.5
His 23.7 22.8 20.9 23.5 24.1 0.6 24.0 25.0 1.0 24.1 27.2 3.1
Cys 12.7 9.1 23.6 13.2 9.5 23.7 12.2 8.6 23.6 11.2 8.6 22.6
Met 1.6 1.1 20.5 1.5 1.2 20.3 1.6 1.1 20.5 1.6 1.0 20.6
Asn 4.4 3.5 20.9 4.4 3.3 21.1 4.4 3.2 21.2 4.5 2.6 21.9
Other 16.1 21.5 5.4 15.9 19.0 3.1 16.2 14.2 22.0 16.4 8.1 28.3

Metal compositiona [%]
Ca 25.9 23.9 22.0 25.8 23.4 22.4 25.6 23.9 21.7 26.1 24.3 21.8
Co 3.0 0.7 22.3 3.0 0.6 22.4 2.8 0.6 22.2 2.9 0.4 22.5
Cu 4.3 4.3 0.0 4.3 4.3 0.0 4.4 4.3 20.1 4.5 4.4 20.1
Fe 12.7 14.8 2.1 12.8 15.0 2.2 13.2 15.0 1.8 13.2 15.7 2.5
Mg 15.0 22.9 7.9 15.0 23.0 8.0 15.3 23.9 8.6 15.2 23.4 8.2
Mn 10.3 4.0 26.3 10.5 3.9 26.6 10.6 3.9 26.7 10.8 3.8 27.0
Ni 2.0 0.4 21.6 1.8 0.1 21.7 1.9 0.2 21.7 1.6 0.2 21.4
Zn 26.8 29.0 2.2 26.8 29.7 2.9 26.2 28.2 2.0 25.7 27.8 2.1

aObserved, predicted values, and the differences are given in regular font, italics, and bold, respectively.

Figure 7
Accuracy of binding metal prediction in terms of the fraction of targets correctly assigned with the native binding metal.
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ROC plot and a Recall-Precision graph (inset). We also

find a good agreement between the number of binding

residues per site in the crystal structures of the complexes

(3.13 � 0.99) and the number of residues predicted for

TASSER models (3.69 � 1.93), see Table I.

Confidence indexes

Due to the inherent limitations of many template-

based approaches to functional annotation, such as the

unavailability of suitable templates or the possibility of

severe topological inaccuracies in the structures modeled

using remote homology, confidence indexes are required

to assess the prediction reliability. FINDSITE-metal

employs three confidence estimates for the predicted site

distance, the set of identified binding residues and the

class of binding metals. As described in the Methods sec-

tion, these indexes are calculated using calibrated Bayes-

ian classifiers. In Figure 10, we present the performance

of FINDSITE-metal, as assessed by the fraction of tem-

plates for which a correct prediction was made, for tar-

gets assigned with different confidence values: the bind-

ing site distance �4Å, the Matthew’s correlation coeffi-

cient, MCC, �0.5 and the confidence that the binding

metal is correctly identified. Our confidence indexes cor-

relate well with the prediction accuracy not only for the

target crystal structures, but also when distorted struc-

tures and TASSER models are used as the targets. We

note that the confidence is estimated for a given target

without using any information on the experimental

structure of the metal-protein complex.

Comparison with SVM-Prot

We compare the performance of FINDSITE-metal to

SVM-Prot, a sequence-based predictor of the functional

class of metal-binding proteins. In this analysis, the focus

is on the prediction of a metal-binding type. The results

for Ca, Co, Cu, Fe, Mg, Mn, Ni, and Zn binding proteins

are presented in Figure 11 and Table IV. FINDSITE-metal

achieves a relatively high sensitivity of >50% for five out

of eight functional classes (Fe, Cu, Zn, Ca, and Mg) at a

moderate false-positive rate below 20%. For the remaining

metal-binding proteins, the assignments are marginally

better than random. The accuracy of SVM-Prot is notably

better than random only for targets that bind to Fe, Zn,

and Mn. The sensitivity of SVM-Prot for zinc is higher

than using FINDSITE-metal; however, with a much higher

false-positive rate, which indicates a significant over-pre-

diction of zinc-binding proteins. SVM-Prot is also more

sensitive in detecting manganese-binding targets (29% sen-

sitivity at 5% false-positive rate). Nevertheless, considering

the overall accuracy of the functional class assignment,

FINDSITE-metal represents a significant improvement

over SVM-Prot. Since the benchmarking results reported

here seem encouraging, below we describe the application

of FINDSITE-metal to the entire human proteome.

Metal-binding complement of the human
proteome

In this study, we constructed structural models for

56,376 gene products in the human proteome, 50

Figure 9
ROC plot and Recall-Precision graph (inset) for metal-binding residue

prediction by FINDSITE-metal using crystal structures as well as

TASSER models. Binding residues are identified by the SVM.

Figure 8
Comparison of the metal-binding site prediction accuracy of

FINDSITE-metal for crystal structures and TASSER models. Main plot:

the cumulative fraction of proteins with a distance between the metal

position in the crystal structure and the closest of the top five predicted

binding sites displayed on the x-axis, abbreviated as the ‘‘Fraction of

targets.’’ Inset: the rank of the predicted site closest to the metal-
binding site in the crystal structure using ranking by a sequence profile

score.
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to 600 residues in length. 34,808 of these were

assigned with at least one metal-binding site. The

distribution of the estimated TM-score for putative

metal-binding proteins in the human genome is

shown in Figure 12. A TM-score of �0.4 was

assigned to 70.7% of the targets (24,617 gene prod-

Figure 10
Performance of FINDSITE-metal in terms of the fraction of targets whose binding site distance is �4 Å, whose Matthew’s correlation coefficient

(MCC) for the binding residues is �0.4 and whose binding metal is correctly identified as a function of the confidence index. Accuracy is reported

for crystal structures (A), structures distorted to 2 Å (B), 4 Å (C) and 6 Å (D) Ca and TASSER models (E) assigned with different confidence

values.
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ucts). Structural models for these sequences are very

likely to be correct, at least at the topological level.

Since FINDSITE-metal tolerates to some extent struc-

tural inaccuracies in modeled structures, these results

suggest that reliable predictions can be made for the

majority of proteins.

The prediction confidence for the metal-binding site

prediction in the human proteome is presented in Fig-

ure 13. For roughly one third of the gene products, the

estimated confidence that the distance of the top-ranked

site is predicted within 4 Å and the binding residues are

identified with a Matthew’s correlation coefficient of at

least 0.5 is higher than 40% to 50%. For three quarters

of the targets, the confidence of binding metal prediction

is >50%. Considering the large number of targets, FIND-

SITE-metal provides confident metal-binding informa-

tion for thousands of gene products in the human pro-

teome.

Figure 14 shows the statistics on the assigned metal-

binding class to the human metalloproteome. Nearly one

third of putative metal-binding proteins in the human

proteome were predicted as being calcium-binding and

another 30% as magnesium-binding. The third largest

class (one-quarter of putative metalloproteins) consists

of proteins that bind to zinc. Fe, Mn, Co, Cu, and Ni

were assigned to 5.4%, 3.6%, 1.9%, 1.4%, and 1.2% of

the targets, respectively. Benchmark results reported in

the previous sections suggest that the number of pro-

teins that bind to Mn, Co, and Ni might be somewhat

underestimated. Nevertheless, the composition of the

metal-binding complement of the human proteome

identified by FINDSITE-metal is consistent with other

studies.23,79

DISCUSSION

In this study, we describe the development of FIND-

SITE-metal, a new threading-based approach to metal-

binding site prediction from remote homology. FIND-

SITE-metal is essentially an extension of FINDSITE,

which was designed to identify binding sites for small

organic molecules.7,31,48 In large-scale benchmarking,

we demonstrate that FINDSITE-metal performs satisfac-

torily in the presence of only weakly related template

structures that are detectable by sequence profile-driven

threading.87 Moreover, it is highly insensitive to the de-

formation of the target structure; thus, it can be applied

to approximate protein structures modeled by state-of-

the-art structure prediction approaches. Highly con-

served binding patterns observed across the interactions

between metal ions and proteins constitute a perfect set

of attributes for machine learning applications. Indeed,

many metal-binding site predictors routinely use Sup-

port Vector Machines73,88 and Neural Networks.30,34

Figure 11
Comparison of the performance of SVM-Prot and FINDSITE-metal in

metal-binding protein prediction. FPR, false-positive rate; TPR, true-

positive rate, dashed line represents a random classifier.

Table IV
Comparison of the Performance of SVM-Prot and FINDSITE-Metal in

Metal-Binding Protein Prediction

Binding metal

SVM-Prot FINDSITE-metal

ACC SPC PPV ACC SPC PPV

Fe 0.826 0.858 0.381 0.913 0.943 0.642
Cu 0.946 0.981 0.154 0.984 0.994 0.829
Zn 0.663 0.653 0.443 0.766 0.848 0.598
Ca 0.748 0.976 0.553 0.812 0.906 0.664
Mg 0.820 0.956 0.000 0.832 0.865 0.439
Mn 0.891 0.955 0.407 0.904 0.985 0.515
Co 0.966 0.997 0.400 0.962 0.995 0.143
Ni 0.977 0.997 0.000 0.975 0.992 0.182

ACC, accuracy; SPC, specificity; PPV, precision.

Figure 12
Histogram of the coverage of the human metalloproteome by TASSER

models. TM-score is estimated from the C-score. Dashed line delineates

confidently predicted models with an estimated TM-score of �0.4.
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Here, we show that integrating structure/evolution in-

formation from threading and machine learning signifi-

cantly improves the accuracy of metal-binding residue

prediction. Similar to the use of local filters, such as

the clustering of molecular entities (ligands, DNA, or

metal ions) bound to proteins, machine learning

improves the prediction accuracy by reducing the false

positive rate.

Many existing approaches to metal-binding site predic-

tion focus either on a specific binding metal, e.g. zinc,88

copper89 or iron90 or selected amino acids, typically cys-

teine, histidine, glutamic and aspartic acid residues.30,33

The statistical analysis of the crystal structures of pro-

tein-metal complexes shows that although these four

amino acids dominate the metal-binding environment,

other residue types also contribute to the metal coordina-

tion spheres through the interactions with the backbone

carbonyl.79 FINDSITE-metal concomitantly considers

eight types of commonly occurring metal ion sites in

proteins; there are also no explicit restrictions imposed

on the identity of binding residues. This feature is im-

portant for proteome-scale applications, where the em-

phasis is on the quantification of interactions between

proteins and metal ions. In this study, we describe the

application of FINDSITE-metal to the human proteome

and provide the detailed structural characterization of its

metal-binding complement. Such knowledge is important

not only for helping to elucidate the molecular function,

but by providing information about which metals bind,

it may assist in the determining suitable crystallization

environments for use in structural genomics.91 In the

near future, we will next apply FINDSITE-metal to other

important eukaryotic as well as prokaryotic proteomes.

As any other computational method for functional in-

ference, FINDSITE-metal has several limitations. The

most prominent is the availability and detectability of

metal-bound template structures. Here, we show that

only evolutionarily distantly related templates are

required; however, in some cases, these may be absent in

the PDB or the template identification procedure may

Figure 13
Cumulative distribution of confidence indexes for metal-binding

proteins identified in the human proteome by FINDSITE-metal. Three

confidence indexes are reported for (A) site distance �4 Å, (B)

Matthew’s correlation coefficient for binding residues of �0.5, and (C)

binding metal.

Figure 14
Metal-binding complement of the human proteome. Number of

proteins predicted to bind a given metal is given in parenthesis.
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fail to detect them. We can expect the accuracy of FIND-

SITE-metal to gradually improve with the advances in

the development of sensitive threading algorithms as well

as with the continuous growth of the structural databases

and the progress of Structural Genomics projects.91

Regarding binding metal prediction, FINDSITE-metal

neglects the mechanisms that control how metallopro-

teins acquire their metals from the cellular pools. For

instance, it has been demonstrated for cupin A that the

compartment in which a protein folds may override its

binding preference to control its metal content.92 This is

a very challenging problem from the point of view of

fully automated function annotation and, to the best of

our knowledge, no effective algorithms have been devel-

oped so far to address this phenomenon.

Sensitive sequence profile driven threading detects evo-

lutionarily related homologues with respect to many

aspects of protein function. Binding of small organic

molecules, nucleic acids or metal ions are only a few

examples that can be extended to ultimately cover all

aspects of protein molecular function. Thus, combined

structure/evolution function annotation emerges as a

powerful technique for the large-scale functional screen-

ing of the available genomic information.

Availability

FINDSITE-metal source code as well as the bench-

marking results are freely available to the academic com-

munity from http://cssb.biology.gatech.edu/findsite-

metal/. Moreover, we set up a FINDSITE-metal web

server that can be accessed at the same URL. Modeling

results for the human proteome are available from http://

cssb.biology.gatech.edu/human/.
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