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INTRODUCTION

In the postgenomic era, the rapid accumulation of proteins whose func-

tions have not yet been experimentally characterized has created a great

demand for automated computational tools that can provide insights into

their function.1,2 Many methods have been developed to address this issue;

they can be roughly divided into sequence-based and structure-based

approaches (for reviews see Ref. 3–5). The simplest approaches infer func-

tion from close homologues as detected by sequence similarity.6–9 How-

ever, the functional divergence observed at high levels of sequence identity

(60–70%) significantly complicates annotation transfer by homology.10,11

To address this problem, some sequence-based techniques exploit family

specific sequence identity thresholds,11 increase their accuracy by detecting

the presence of functionally discriminating residues12 or by identifying

small sequence signatures and functional motifs.13–16 Nevertheless, purely

sequence-based approaches are in general limited to higher levels of

sequence identity; predictions in the ‘‘twilight zone’’ of sequence similar-

ity17 may be inaccurate. When accuracy is maintained, it is often at the

expense of adequate coverage.18

To extend functional inference approaches to low levels of sequence

identity, a number of structure-based methods have been developed.19–22

Template-free methods rely on the purely structural properties of the target

protein of interest. They analyze the geometrical and physicochemical fea-

tures of a protein surface in order to detect functionally important sites.

Most of these techniques focus on the detection of clefts and cavities that

likely bind ligands.23–29 Other methods consider blind docking of small

molecules to the protein’s structure,30 scanning of the protein surface with

chemical probes,31,32 or they provide functional information by examin-

ing various physicochemical properties of the protein residues to infer

binding sites.19 These include the degree of surface residue conserva-

tion,33,34 the electrostatic potential,35,36 the hydrophobicity distribu-

tion,37 perturbed pKa values38 or the destabilizing effect of local surface

residues on the protein’s structure.39,40

Similar to function annotation approaches based on short sequence

motifs, local structural signatures are also widely used to identify function-

ally important sites in proteins.41–43 Here, the library of predefined three-
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ABSTRACT

To exploit the vast amount of sequence

information provided by the Genomic

revolution, the biological function of these

sequences must be identified. As a practi-

cal matter, this is often accomplished by

functional inference. Purely sequence-

based approaches, particularly in the ‘‘twi-

light zone’’ of low sequence similarity lev-

els, are complicated by many factors. For

proteins, structure-based techniques aim

to overcome these problems; however,

most require high-quality crystal struc-

tures and suffer from complex and equiv-

ocal relations between protein fold and

function. In this study, in extensive

benchmarking, we consider a number of

aspects of structure-based functional

annotation: binding pocket detection, mo-

lecular function assignment and ligand-

based virtual screening. We demonstrate

that protein threading driven by a strong

sequence profile component greatly

improves the quality of purely structure-

based functional annotation in the ‘‘twi-

light zone.’’ By detecting evolutionarily

related proteins, it considerably reduces

the high false positive rate of function in-

ference derived on the basis of global

structure similarity alone. Combined evo-

lution/structure-based function assign-

ment emerges as a powerful technique

that can make a significant contribution

to comprehensive proteome annotation.
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dimensional arrangements of a small set of key residues

is used to screen a target protein structure in order to

identify similar motifs that often indicate a common

function.44–46 In general, methods based on structure

calculations, as well as local structure comparison

approaches are successful when applied to high-resolu-

tion structures; their performance typically drops off

when approximate protein models, particularly these

modeled using remote protein homology,47,48 are used

as the target structures.49–51 Given the current state-of-

the-art in protein structure prediction,52–55 powerful

structure-based methods that effectively utilize low-to-

moderate quality protein models for function assignment

would be of considerable practical assistance in pro-

teome-scale function prediction. However, all of this is

moot until one ascertains what precisely are the limits of

functional inference given exact experimental structures.

This will constitute the upper bound that any approach

using predicted structures could achieve.

It is well known that within a protein family, the

global fold is more strongly conserved than the protein’s

sequence.56 Hence, at low sequence identity levels,

structure-based identification of remote homology and

functional relationships inevitably outperforms sequence-

based methods.57–60 Examination of known protein

structures in the SCOP database61 reveals the tendency

of certain protein folds to bind substrates at a similar

location, suggesting that very distantly homologous

proteins often have common binding sites.62 This obser-

vation forms the basis for FINDSITE, a structure/evolu-

tion-based approach for ligand-binding site prediction

and function annotation.49 However, one should bear in

mind that divergent and convergent evolution results in

a non-unique relationship between protein fold and pro-

tein function.63,64 Therefore, template-based function

inference using solely global structure similarity might

lead to a high false positive rate.

While a variety of purely structure-based approaches

to functional inference have been developed,36,60,65,66

their precision, sensitivity, and specificity have not been

assessed in a large-scale benchmark. To address this issue,

in this article, we present the results of a large-scale

benchmark comparison of structure-based and threading-

based approaches to the inference of protein function,

given the experimental structure of the protein of inter-

est. The simplest structure-based approach for functional

inference merely requires significant structural similarity

between a pair of proteins. As shown below, to achieve a

low false positive rate, using structure alone requires a

high structure similarity threshold, which results in very

low coverage. This problem can be addressed by intro-

ducing various filters. Here, we demonstrate that the use

of threading47,67 identified templates that share a com-

mon binding site greatly reduces the high false positive

rate in template-based function annotation by detecting

evolutionarily related homologues. Furthermore, rather

similar ligands tend to bind at a given common location

in the protein’s structure; this emphasizes the importance

of a local component, such as spatial ligand clustering, in

ligand selection for virtual screening. We compare the set

of templates selected on the basis of significant structure

similarity to these identified from protein threading with

respect to the conservation of ligand-binding sites and

chemical properties of bound ligands. In the ‘‘twilight

zone’’ of sequence identity, the accuracy of function

assignment is assessed at the level of binding site predic-

tion, molecular function transfer and the construction of

ligand templates for use in virtual screening.

MATERIALS AND METHODS

Dataset

We consider a representative dataset of 901 nonhomol-

ogous protein-ligand complexes that cover the PDB at

35% sequence identity, where the lengths of the proteins

are between 50 and 400 residues and the minimum and

maximum number of ligand atoms ranges from 6 to

100.49 Of these, we selected 842 targets for which at least

one weakly homologous (less than 35% sequence iden-

tity) template with a Z-score47 �4 and a TM-score68

�0.4 can be identified by threading. Thus, all templates

with a sequence identity >35% to the target are excluded

from all aspects of the analysis. Moreover, a subset of 710

targets for which a gene ontology (GO) annotation is

provided by Gene Ontology69 or UniProt70 was used to

assess the performance of the molecular function transfer.

The datasets are available at http://cssb.biology.gatech.

edu/skolnick/files/FINDSITE.

Overview of structure-based and
threading-based approaches to
function assignment

To assess the importance of protein threading for tem-

plate-based function assignment (our variant of which is

the FINDSITE algorithm4,49), as shown in Figure 1, we

apply four procedures for template selection. For a given

target, template structures are selected from the template

library either by structure alignment to the native target

structure (assumed to be apo throughout this analysis)

using a purely structure-based approach or threading,

(threading-based approach). For the case of functional

inference, we can simply collect the GO terms for tem-

plates above a structural similarity threshold, (left hand

pane) structure-based approach (no local filtering). We

can also estimate an upper bound for the performance of

a purely structure-based approach by using only those

templates that in addition to the significant global struc-

ture similarity to their targets also have ligand-binding

sites in similar locations to the target structure (struc-

ture-based approach, correct pocket localization). Here,

we consider template structures whose binding pockets
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are within a distance of 4 Å from the target pockets

upon structure alignment. If no such templates can be

identified for a given target protein, the distance is grad-

ually increased by 1 Å until at least one template is

found.

For binding site based functional inference, both struc-

ture-based and threading-based approaches, follow the

same procedure to predict binding pockets and to assign

the function (Fig. 1, two right panes). Ligand-bound

template structures are superimposed onto the target’s

structure using the TM-align structure alignment algo-

rithm71; see below. Then, binding pockets are identified

by the spatial clustering of the centers of mass of tem-

plate-bound ligands by an average linkage clustering pro-

cedure and ranked by the number of binding ligands.

This step is termed ‘‘local filtering.’’ Thus, this is a bind-

ing site matching approach based on the location and

frequency of bound ligands. It is not based on identifying

clefts present in the protein structure. The simulation

time depends on the number and size of the identified

template proteins and varies from minutes to hours on a

single state of the art processor core. For template-based

binding site prediction, the fraction of templates that

share a common top-ranked binding site is used to

construct a primary confidence index that classifies the

reliability of the pocket prediction as easy, medium, or

hard.48 We demonstrate below that the overall accuracy

of binding site prediction is well correlated with this clas-

sification. In all cases, the performance of structure- and

threading-based approaches is compared with randomly

selected patches on the target protein surface.

Structure-based template selection

Given a native structure, the structure-based approach

uses structural alignments to identify the set of relevant

templates. In general, protein structure alignment

approaches attempt to establish equivalences between a

pair of structures based on their three-dimensional con-

formation where the equivalent residues are not a priori

given.71–73 Here, we use the TM-align structure align-

ment algorithm71 that combines the TM-score68 rota-

tion matrix and Dynamic Programming to identify the

‘‘best’’ structural alignment. By weighting small inter-

structural distances stronger than large distances, the

TM-score rotation matrix is more sensitive to the global

topology than the traditionally used global root-mean-

square-deviation74 (RMSD). Moreover, the statistical sig-

nificance of the alignment for a given TM-score is

protein length independent. For a pair of randomly

Figure 1
Flowchart of structure- and threading-based approaches to function inference. Details are given in the text.
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related protein structures, their average TM-score is 0.30,

with a standard deviation of 0.01. For each target

protein, structurally similar templates (with <35%

sequence identity to the target protein) are selected from

the template library based on the TM-score reported by

TM-align. Here, we used the TM-score threshold of 0.4,

which is indicative of highly significant structural

similarity.75 A detailed comparison of the performance

of TM-align with other algorithms has been done

elsewhere.71,76,77

Threading-based template selection

Protein threading was developed to match target

sequences to proteins adopting very similar structures.67

In practice, threading that employs a strong sequence

profile component47 works by detecting evolutionary

related proteins.49 For a given sequence, template struc-

tures are identified from a nonredundant fold library by

threading the target sequence through the template struc-

tures and selecting the best alignment by a scoring func-

tion. Score significance is evaluated by a Z-score (score

in standard deviation units relative to the mean of the

structure template library) of the sequence mounted in a

given template structure using the best alignment given

by dynamic programming. For threading-based template

selection, we used the PROSPECTOR_3 program,47 but

in principle any-state-of-the-art algorithm can be used

with comparable results (unpublished results). From the

threading templates provided by PROSPECTOR_3, we

used only those templates with <35% sequence identity

to the target protein, a Z-score �4 and a TM-score �0.4

between the template and the experimental structure.

Template selection by a sequence
profile–profile algorithm

Ligand-binding site prediction using the set of tem-

plates selected by threading is compared to those identi-

fied by a sequence profile-profile alignment algorithm.

Here, we use HHpred 1.5.0.1, which is based on the pair-

wise comparison of profile hidden Markov models

(HMMs).78 For a given target sequence, the HMM pro-

file is constructed from a nonredundant sequence library

and the secondary structure is predicted by PSIPRED

2.61.79 Subsequently, each query HHM is calibrated on a

nonredundant SCOP61 library. Remote homologues

(<35% sequence identity to the target and a TM-score

�0.4) are selected from the template library using an

estimated probability of 0.5 for a template to be evolutio-

narily related to the target sequence. If no hits are

detected at the 0.5 threshold for a given target protein, a

probability of 0.3 is used. The set of templates selected

by HHpred are used to replace those identified by

threading or structure alignment in ligand binding site

prediction by FINDSITE (see two right panes in Fig. 1).

Template-free pocket prediction methods

The results of ligand-binding site prediction using the

template-based approach (FINDSITE49) were compared

to those obtained using geometric template-free algo-

rithms: LigsiteCS34 and Fpocket.26 LigsiteCS, an extension

of Ligsite,24 uses the Connolly molecular surface (BALL

implementation80), which is a combination of the van

der Waals surface of the protein and the probe sphere

surface to detect putative binding sites. Fpocket employs

Voronoi tessellation (Qhull implementation81) and eval-

uates the identified binding sites using a pocket score

that considers several pocket descriptors: the number of

alpha spheres, the cavity density, a polarity score, a mean

local hydrophobic density and the ratio of apolar/polar

alpha spheres. For both programs, the default set of

parameters was used.

Inference of molecular function

Each target protein is annotated with a set of GO

terms69 extracted from the template proteins. Molecular

function is transferred from the templates to the target

protein with a probability that corresponds to the frac-

tion of templates annotated with a particular GO term.

GO parent nodes are traced to explore the more general

ontology classes. Function transferability is investigated

for an increasing probability threshold from 0.0 (all tem-

plate GO terms are transferred to the target) to 0.95

(only highly conserved GO terms that are common for

95% of the templates are transferred). Of course, such an

approach has all the disadvantages and advantages of the

GO description of molecular function. Function annota-

tion using the sets of threading and structure templates

is compared with randomly assigned molecular function

according to the frequencies of GO terms in the dataset.

The results are assessed by Precision-Recall analysis82

with the precision and recall defined as:

Precision ¼ TP

TPþFP
ð1Þ

Recall ¼ TP

TPþ FN
ð2Þ

where TP, FP, and FN denote true positives, false posi-

tives and false negatives, respectively.

In addition to the molecular function annotation, the

conservation of GO terms with respect to the TM-score

is evaluated for all target-template pairs. Here, we use

Matthew’s correlation coefficient (MCC) to quantify the

functional similarity between a template and its target:

MCC¼ TP3TN� FP3FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞ3ðTPþ FNÞ3ðTNþ FPÞ3ðTNþ FNÞp

ð3Þ
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where TP, TN, FP, and FN denote respectively: true posi-

tives (number of GO terms common for both the target

and its template), true negatives (number of GO terms

absent in the template as well as in its target), false

positives (number of GO terms specific only for the tem-

plate), and false negatives (number of GO terms specific

only for the target).

Virtual screening

As in the case of FINDSITE,4,49 for the purely struc-

ture-based approach, we can also exploit information on

the chemical properties of the binding ligands to con-

struct ligand templates for ligand-based virtual screening.

For each predicted binding pocket, the bound ligands are

extracted from the template complex structures, con-

verted into 1024-bit SMILES strings83 and clustered

using a Tanimoto coefficient84 of 0.7. Subsequently, rep-

resentative molecules selected from the clusters are used

to rank the screening library using a weighted Tanimoto

coefficient (mTCave):

mTCave ¼
Xn

i¼1

wiTC
ave
i ð4Þ

where n is the number of ligand clusters, wi is the frac-

tion of ligands that belong to cluster i, and TCi
ave is the

average TC (TCave) calculated for the representative

ligand from cluster i and a library compound. The over-

lap between two fingerprints is measured by the average

Tanimoto coefficient, TCave, defined as84–86:

TCave ¼ ðTCþ TC0Þ=2 ð5Þ

where TC0 is the TC calculated for bit positions set to

zero rather than to one as in the traditional TC.84

As a background library in ligand-based virtual screen-

ing, we use the KEGG compound library88 that consists

of 12,158 chemically diverse molecules. The performance

of threading and structure based template selection is

assessed based on the ranks assigned to the compounds

complexed with the target proteins in the crystal structure

with respect to the background molecules and compared

to random ligand selection. Finally, similar to the primary

confidence index for pocket detection, we demonstrate

that the relative size of the largest cluster of ligands

extracted from the predicted binding sites (with a

minimum of five ligands) can be used as a secondary

confidence index to assess the reliability of ligand ranking.

RESULTS

Functional and structural relationships
between templates and their targets

First, we analyze the conservation of ligand binding

features in the templates selected by threading and struc-

ture alignment with respect to the target crystal struc-

tures. Figure 2 shows the fraction of templates whose

binding pocket center is within 4 and 8 Å from the tar-

get’s pocket center as a function of the TM-score. We

again note that a TM-score �0.4 indicates significant

structural similarity. Clearly, threading effectively detects

and eliminates evolutionarily unrelated proteins with

different binding site localization, particularly for a TM-

score <0.7. For example, only 6% (18%) of the templates

selected based on structure similarity alone and having a

TM-score between 0.4 and 0.5 bind ligands within a dis-

tance of 4 Å (8 Å) from the target bound ligand [Fig.

2(A)]. Using threading, this fraction increases to 34%

(49%) [Fig. 2(B)]. As shown in subsequent analysis, the

higher fraction of templates that bind ligands in similar

locations greatly improves the accuracy of the pocket pre-

diction and the ranking capability in particular.

Next, the conservation of molecular function accord-

ing to the gene ontology classification, one of the most

common classification systems for proteins that pro-

vides the functional description for both enzymes and

nonenzymes,69 is presented for all target-template pairs

in Figure 3. Here, we use GO molecular functions,

which typically describe molecular events such as cata-

lytic or binding activities that can be directly linked to

the active or binding sites. A relatively low functional

similarity between structure templates selected based on

TM-score alone and their targets is observed for a TM-

score <0.7 [Fig. 3(A)]. However, the number of tem-

plates annotated with similar GO terms increases if

threading filtered templates are considered [Fig. 3(B)].

For a TM-score of 0.4–0.5, the fraction of templates

that have similar molecular functions, as assessed by a

MCC �0.7 (�0.5), is 3% (9%) and 17% (34%) for the

structure-based and threading-based set of templates,

respectively. Moreover, as shown in Figure 3(C), the

fraction of templates having the same gene ontology

classification as the target significantly improves when

local filtering by the common binding site localization

is applied. Here, for a TM-score of 0.4–0.5, the fraction

Figure 2
Fraction of templates selected by (A) structure alignment and (B)

threading that have a binding pocket center within 4 and 8 Å from the

target pocket center as a function of the TM-score.
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of threading templates with a MCC �0.7 (�0.5) to

their targets is 22% (41%). Furthermore, as it is evi-

dent in Figure 4, protein threading also tends to detect

templates that bind similar ligands to the target-bound

molecules. For a TM-score of 0.4–0.5, 8% (14%) of the

structure-based templates bind ligands whose Tanimoto

coefficient to the native ligand is �0.7 (�0.5) [Fig.

4(A)]. This fraction increases to 28% (39%) if the tem-

plates identified by threading are used [Fig. 4(B)].

Additionally, local component, filtering by the common

localization of the binding pockets, promotes the selec-

tion of ligands with even higher chemical similarity to

the target-bound compounds for all values of the TM-

score above 0.4, This is shown in Figure 4(C), where

only threading filtered templates that have binding sites

within 8 Å from the target-bound ligands are

considered. Here, 50% of ligands have a Tanimoto coef-

ficient �0.7 in the ranges of TM-scores between 0.4

and 0.5. This effect is of particular importance in

virtual screening, where the screening library is ranked

by fingerprint-based ligand profiles constructed from

the compounds extracted from the template complex

structures.

These results suggest that in practice, a high struc-

tural similarity cutoff should be used for the template

selection in purely structure-based function assignment.

The disadvantage of such an approach is that this struc-

turally discriminative threshold eliminates most func-

tionally related templates; thus the number of suitable

targets for template-based function annotation would be

limited. As shown in Figure 5, 90% of the templates in

our dataset have a TM-score <0.7 to their targets. In

the evolutionarily related set of templates, as provided

by threading, 60% of the templates have a TM-score

<0.7; these would be undetected if one applied a

discriminative TM-score cutoff of 0.7. Hence, protein

threading appears as a more functionally oriented filter

that allows using more permissive structural similarity

cutoffs with the false positive cases eliminated by

evolutionary restraints.

Figure 4
Fraction of templates selected by (A) structure alignment and (B, C) threading that bind similar ligands to the target-bound molecules as a

function of the TM-score. Chemical similarity of ligands is assessed by a Tanimoto coefficient (TC) �0.7 and �0.5. In C, templates that bind

ligands with a distance from the target-bound ligand >8 Å are excluded.

Figure 3
Fraction of templates annotated with similar GO terms as their targets as selected by (A) structure alignment and (B, C) threading as a function of

the TM-score. Functional similarity is assessed by a Matthew’s correlation coefficient (MCC) �0.7 and �0.5. In C, templates that bind ligands with

a distance from the target-bound ligand >8 Å are excluded.
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Template detection by threading

Finally, for each target protein, we identify the largest

set of templates with similar binding pockets and assess

the recall and precision of their detection by threading.

These templates are selected based on significant global

structure similarity (TM-score �0.4), similar ligand-

binding site localization (the distance between target-

bound and template-bound ligands upon the structure

alignment of the proteins �4 Å) and the chemical prop-

erties of the bound ligands (Tanimoto coefficient between

target-bound and template-bound ligands �0.7). Figure

6 presents the recall and precision of the template identi-

fication by threading with respect to the global target-

template structure similarity. Above a TM-score of 0.5,

the recall of templates with similar pocket localization is

>0.66. When the chemical similarity of the bound

ligands is also taken into account, the recall of the tem-

plates increases to >0.79 for a TM-score �0.5. This

clearly demonstrates that protein threading effectively

detects template structures that bind chemically similar

ligands in similar locations. However, the substantially

lower precision values suggest that the threading-identi-

fied set of templates also contain many false positives,

that is, proteins which, despite their global structure

similarity to the target, bind ligands in different locations

or tend to bind chemically unrelated (Tanimoto coeffi-

cient <0.7) molecules in similar locations. As we show in

the function annotation benchmarks (see below), this

false positive rate can be considerably reduced using sub-

sequent filtration by the subset of templates that share

the most frequent binding site.

Function annotation benchmarks

Next, we assess the performance of purely structure-

based and threading-based templates, in comprehensive

function annotation in the ‘‘twilight zone’’ of sequence

similarity. Protein function has many facets, ranging

from biochemical to cellular to phenotypical.3,88 In this

work, we focus on catalytic and binding activities that

involve direct interactions with small molecules and

report the results of functional annotation at the level of

binding pocket detection, molecular function assignment

and ligand-based virtual screening.

Primary confidence index for pocket
detection

Binding pockets are identified by the spatial clustering

of the center of mass of template-bound ligands aligned

to the target crystal structure and ranked by the number

of binding ligands. Figure 7(A,B) show for purely struc-

ture similarity based approach and the threading-based

approach the fraction of targets for which the binding

pocket center can be predicted within a distance of 4 and

8 Å as a function of the fraction of templates that share

a common top-ranked binding site, with a minimum of

five templates identified. Quite similar behavior for struc-

ture-based and threading-based approaches is seen. High

accuracy in binding pocket prediction typically requires a

relatively high fraction (�0.4) of the templates that have

a common pocket. If this fraction drops below 0.2, the

chances that the top-ranked binding site is predicted

within 4 or 8 Å are rather low (�20% using 4 Å as a hit

criterion). We use this observation to construct a primary

confidence index that classifies targets as Easy (�0.4),

Medium (<0.4 and �0.2) and Hard (<0.2 or <5

templates) for binding pocket prediction.

Figure 5
Cumulative fraction of template proteins selected by structure

alignment and threading that have a TM-score to the target crystal

structure � the value on the x-axis to the right of the corresponding

bar graph.

Figure 6
Recall and precision of template detection by threading as a function of

the target-template global structure similarity (assessed by the TM-

score, x-axis).
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The fraction of Easy, Medium and Hard targets in the

benchmark set of 842 proteins is presented in Figure 8

for the set of templates selected by structure similarity

and threading. The high content of false positives in the

structure-based set of templates leads to mainly moderate

confidence predictions (44.1%) [Fig. 8(A)]. In contrast,

most of the proteins in the dataset appear as Easy targets

if the threading filtered set of templates is used [Fig.

8(B)]. Consequently, for these targets, the threading-

based template selection approach identifies binding

pockets with quite high accuracy, as shown below.

Binding pocket prediction

The performance of structure-based and threading-

based template identification in binding site detection

and ranking is presented in Figure 9. Figure 9(A) shows

the cumulative fraction of proteins for which the center

of the best of top five predicted binding sites was pre-

dicted within some distance from the center of mass of a

ligand in the crystal complex. As the set of structure-

based templates can be considered as a superset with

respect to the templates selected by threading, all binding

pockets identified using threading-based templates are

also detected by employing the structure-based set. This

explains the relatively small difference (5%) in the pocket

distance prediction using a 8 Å cutoff as a hit criterion,

if the best of top five predicted binding sites is consid-

ered. However, a significant drop off in the ranking capa-

bility is observed when structure-based templates are

used [Fig. 9(A), inset]. For the set of templates selected

by structure similarity and threading, the best predicted

binding pocket is at rank 1 in 56.3 and 78.5% of the

cases, respectively. In addition, Figure 9(B) presents the

ranking accuracy when the top 100 predicted binding

pockets are considered. Here, the ability of the structure-

and threading-based approach to assign the best pocket

with rank 1 is 50.2% and 75.9%, respectively.

Using the set of structure templates with similar bind-

ing site localization (see Materials and Methods), an esti-

mated upper bound for pocket detection accuracy is

93.9% (98.0%) for a distance threshold of 4 Å (8 Å)

[Fig. 9(A), Structure/pockets curve]. To provide a better

assessment for the performance of the threading-based

approach with respect to the theoretical limit, we subse-

quently divided the dataset into two subsets. The first

subset consists of 555 targets for which there is at least

one template that bind ligands within a distance of 4 Å

from the binding site in the target structure and whose

Tanimoto coefficient to target-bound compounds is

�0.7. The second subset comprises 259 targets for which

no templates that bind similar ligands within 4 Å or only

these that bind chemically dissimilar ligands (TC < 0.7)

can be identified. We note that 28 targets for which

HHpred78 failed to detect remotely related templates

with <35% sequence identity and a TM-score of �0.4

are removed from this analysis; thus threading provides

slightly higher coverage. In Figure 10, we compare

the performance of the threading-based approach and

the sequence profile-profile algorithm (HHpred) to the

Figure 8
Primary confidence of FINDSITE predictions using the set of templates

selected by structure alignment and threading.

Figure 7
Fraction of targets for which the top-ranked binding pocket’s center was predicted within a distance of 4 and 8 Å from the center of mass of a

ligand in the crystal complex as a function of the primary confidence index for (A) structure-based and (B) threading-based approach. The primary

confidence index corresponds to the fraction of templates that share a common top-ranked predicted binding site.
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cleft-based methods for binding site prediction: Ligsi-

teCS34 and Fpocket,26 separately for each subset of tar-

gets. Figure 10(A) shows the results obtained for the first

subset of 555 targets. Here, the performance of both

methods that employ sequence profiles, the threading-

based approach and HHpred, is very close to the theoret-

ical limit at detecting binding sites with a similar location

in the structure that are associated with binding ligands

with similar chemical properties, whereas the accuracy of

both cleft-based methods is significantly lower. Consider-

ing a distance cutoff of 4 Å and the best of top five pre-

dicted binding sites, the accuracy of the threading-based

approach, HHpred, LigsiteCS, and Fpocket for the first

subset is 91.0, 90.4, 49.4, and 51.9%, respectively (98.9,

99.1, 78.6, and 86.7% for a 8 Å cutoff, respectively). The

strong preference of sequence profile driven methods to

detect binding sites that bind similar ligands (see Figs. 4

and 6) explains the relatively lower accuracy of the

threading-based approach and HHpred in pocket detec-

tion for the second subset of 259 targets [Fig. 10(B)].

Most of the templates that bind dissimilar ligands in sim-

ilar locations remain undetected by threading and

HHpred; therefore their performance is well below the

estimated theoretical limit. Here, the performance of the

cleft-based methods is notably higher. Again, considering

a distance cutoff of 4 Å and the best of top five predicted

binding sites, the accuracy of the threading-based

approach, HHpred, LigsiteCS, and Fpocket for the second

subset is 49.4, 50.2, 54.4, and 47.5%, respectively (70.3,

70.7, 82.6, and 84.2% for a 8 Å cutoff, respectively). As

expected, the performance of LigsiteCS and Fpocket is

comparable for both subsets of targets. We also find that

the deterioration in accuracy of the sequence profile

driven approaches observed for the second subset is

accompanied by a significantly higher fraction of

Medium and Hard targets according to the primary con-

fidence index (see above); this is shown as the inset bar

plots in Figure 10.

GO function transfer

The prediction of the binding pocket localization is

typically the initial step in function annotation that is

followed by more detailed molecular function assign-

ment, for example, using the GO ontology.69 The accu-

racy of the function transfer from the structure- and

threading-based templates to the target is evaluated by

Precision-Recall graphs that have been suggested to

provide an appropriate measure for skewed class distri-

butions,82 as such, they are frequently used for assessing

GO protein function prediction methods.90,91 Figure

11(A,B) presents the Precision-Recall graphs for the top-

ranked and the best of top five predicted binding

pockets, respectively. Because of the relatively high false

positive rate, both precision and recall are notably lower

for the top-ranked binding sites using structure-based

templates [Fig. 11(A)]. This is because in almost half of

the cases (49.8%), the best pocket is at a lower rank [see

Fig. 9(B)]. If the best of top of five binding sites is con-

sidered, then the precision of function annotation using

the templates selected by structure similarity (open

squares) is comparable to the precision obtained for the

threading filtered set of templates (solid circles) [Fig.

11(B)]; however, it is comparable only at significantly

lower recall levels (by 20–30%). Moreover, a minor

improvement is observed if a local component (spatial

clustering of ligands, solid triangles) is applied in purely

structure-based function assignment [Fig. 11(B)]. Inter-

estingly, the overall accuracy of molecular function trans-

fer using structure templates with similar binding site

localization as the native structure (solid squares) is

lower than that when only threading identified templates

are used. That is, global structure similarity and the com-

Figure 9
Performance of FINDSITE in binding site prediction using the set of

templates selected by structure alignment and threading compared with
randomly selected patches on the target protein surface and similar

pockets identified in the template structures (Structure/pockets). (A)

Cumulative fraction of proteins with a distance between the center of

mass of a ligand in the crystal complex and the center of the best of

top five predicted binding sites displayed on the x-axis. Inset plot shows

the rank of the best of top five predicted binding sites. (B) Best pocket

rank considering the top 100 predicted binding pockets.
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mon binding site location do not automatically imply a

common molecular function. These results clearly show

that threading not only eliminates false positives with

respect to the binding site location, but also detects and

removes proteins that, despite common binding sites,

have unrelated molecular functions, and thus bind

Figure 10
Performance of FINDSITE in binding site prediction using the set of templates selected by threading and HHpred compared with LigsiteCS, Fpocket

and similar pockets identified in the template structures (Structure/pockets). Results are presented as the cumulative fraction of proteins with a

distance between the center of mass of a ligand in the crystal complex and the center of the best of top five predicted binding sites displayed on the

x-axis. Binding site prediction accuracy is reported for (A) the subset of 555 proteins with at least one template structure that binds a similar

ligand in the similar location and (B) the subset of 259 proteins with no such templates (see text for details). Inset bar plots show the fraction of

easy, medium, and hard targets using the primary confidence index.

Figure 11
Precision-Recall graphs for GO molecular function prediction using the set of templates selected by structure alignment and threading, compared to

random function assignment and function transfer from similar pockets identified in the template structures (Structure/pockets). The results are

shown for (A) the top-ranked and (B) the best of top five predicted binding sites.
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chemically dissimilar ligands. In addition to the

more accurate function annotation, this important fea-

ture of protein threading can be further exploited in

the construction of molecular fingerprints for virtual

screening.

Ligand-based virtual screening

Finally, in the last step of the comprehensive function

annotation, we carry out virtual screening simulations

for the 842 proteins present in the benchmark dataset.

Here, we apply a simple fingerprint-based method to

rank a diverse and relatively large screening library (see

Materials and Methods) and assess the rank of the

natively bound ligand, that is, the compound co-crystal-

lized with the target protein. Figure 12(A,B) present the

results for the top-ranked and the best of top five pre-

dicted binding sites compared to random ligand selec-

tion. Similar to the case of molecular function transfer,

the performance in virtual screening is significantly better

when threading-based set of templates is used. Native

ligands are found in the top 1% (10%) of the ranked

library in 28.7% (52.1%) and 50.2% (71.4%) of the

cases, when the scoring fingerprints are constructed using

ligands extracted from top-ranked binding sites predicted

from the structure- and threading-based set of templates,

respectively [Fig. 12(A)]. Of course, this difference can be

trivially explained by the ineffective ranking of the bind-

ing sites caused by the high false positive content in the

set of templates selected by structure similarity alone; the

molecular fingerprints are constructed from ligands that

occupy incorrectly predicted pockets. Nevertheless, even

when the best of top five binding sites is used in virtual

screening [Fig. 12(B)], the accuracy when threading tem-

plates are employed is still notably higher than that

obtained using the structure-based set of templates. The

native ligand is ranked within the top 1% (10%) in

54.4% (75.3%) of threading-based and 37.6% (62.6%) of

structure-based, cases respectively. Furthermore, ligand

fingerprints provided by protein threading perform com-

parably (top ranked binding pockets) or better (the best

of top five predicted pockets) in ligand-based virtual

screening than these extracted from the binding pockets

with similar localization in the template and native

structures (Fig. 12, Structure/pockets). These results dem-

onstrate that threading identifies functionally related

templates bound to chemically similar ligands.

Secondary confidence index for ligand
ranking

The fraction of templates that share a common top-

ranked predicted binding site is used to construct a pri-

mary confidence index, which is well correlated with the

overall accuracy of pocket detection (see Fig. 7). How-

ever, as we show in this study, the common localization

of ligand-binding sites does not always imply a common

molecular function. Therefore, ligand-based virtual

screening that follows the prediction of binding pockets

requires a separate confidence index. Here, we use the

relative size of the largest cluster of ligands extracted

from the predicted binding sites (see Materials and Meth-

ods) to construct a secondary confidence index for

assessing the reliability of ligand ranking. Figure 13

presents the fraction of targets for which the native

ligand was ranked within the top 1 and 10% of the

screening library using both structure-based [Fig. 13(A)]

and threading-based [Fig. 13(B)] approaches with respect

to the secondary confidence index. Effective ligand-based

virtual screening requires relatively a high fraction (�0.4)

of the ligands that form the largest cluster of chemically

similar molecules. If this criterion is satisfied, one can

expect the native ligands to be ranked within the top 1%

Figure 12
Performance of ligand-based virtual screening to identify the native

bound ligand using the set of templates selected by structure alignment

and threading. The native ligand ranking accuracy using ligand

templates extracted from (A) the top-ranked and (B) the best of top

five predicted binding sites is compared to random ligand selection and

ligand ranking using spatially similar pockets identified in the template

structures (Structure/pockets). Dashed lines delineate the top 1% and

10% of the ranked screening library.
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(10%) of the screening library by the structure- and

threading-based approach in at least 44.9% (72.0%) and

60.0% (75.7%) of the cases, respectively. The accuracy of

ligand ranking drops dramatically if the fraction of

ligands in the most populated cluster is <0.2, which

indicates that the template proteins bind a collection of

chemically diverse ligands. It is noteworthy that when the

threading-based set of templates is used, the fraction of

highly confident targets according to the secondary confi-

dence index is higher than for the set templates selected

by structure similarity; the fraction of ligands that form

the largest cluster is �0.4 for 64.4 and 46.8% of the cases

for the threading-based and structure-based approach,

respectively.

Performance of the threading-based
approach (FINDSITE) in CASP8

In addition to the results of ligand-binding site predic-

tion and virtual screening reported in this study for a

representative dataset of protein-ligand complexes, we

assess the performance of the threading-based approach,

FINDSITE,49 in CASP8. FINDSITE was an integral part

of the SiteHunter server (group number 163) in the

function prediction category. The predicted binding sites

for small ligands are presented in Table I for 13 CASP8

targets (metal ion binding proteins are excluded from

this analysis since the version of FINDSITE used in

CASP8 was strictly designed to predict binding sites for

organic molecules49). In 11 cases, the binding pocket

center was predicted within a distance of 4 Å from the

center of mass of a ligand in the crystal complex. More-

over, for all targets, the best predicted binding pocket is

on rank 1. Using binding residues identified by LPC,92

the median Matthew’s correlation coefficient for residues

predicted by FINDSITE to bind a ligand is 0.73. In

CASP8, we also carried out a ligand-based virtual screen-

ing against the KEGG compound library88 (12,158

diverse molecules) in order to predict binding ligands.

The results were included in the ‘‘Remark’’ section of the

submission files (available from CASP8 website). Here,

we include the native ligand (co-crystallized with the tar-

get protein) and re-rank the screening library using

ligand fingerprint profiles constructed by FINDSITE in

CASP8. The native ligand is ranked within the top 1%

(10%) of the screening library for 8 (11) targets (Table

I). For targets T0431, T0485, and T0508, the native

ligand is found at rank 1.

DISCUSSION

Over the past years, a number of protein function pre-

diction techniques have been developed to facilitate the

functional annotation of the sequenced genomes. Power-

ful structure/template-based methods41,45,49,59,60,93

are particularly well-suited for practical applications in

the ‘‘twilight zone’’ of sequence similarity, which roughly

covers �2/3 of known protein sequences.94 However,

due to the complex and equivocal relations between pro-

tein fold and function, very conservative similarity

thresholds or target-specific thresholds are requisite for

the effective function transfer by structure similarity

alone.95 An alternate way to significantly reduce the rela-

tively high false positive rate caused by using more per-

missive cutoffs is to introduce evolutionary restraints.

The evolutionary similarities of the protein functional

sites provided by the Evolutionary Trace method have

been successfully exploited to improve the accuracy of

transfer of functional annotations.96 Sequence profile–

profile algorithms that amplify the patterns defining

protein families have been demonstrated to detect remote

homologies with strong functional similarities.78,97

Several other methods for function prediction

integrate sequence-based searches to establish functional

relationships.98,99

Figure 13
Fraction of targets for which the native ligand was ranked within the top 1% and 10% of the screening library as a function of the secondary

confidence index for (A) structure- and (B) threading-based approach. The secondary confidence index corresponds to the relative size of the

largest cluster of ligands extracted from the best of top five predicted binding sites.

Protein Functional Annotation

PROTEINS 129



In this work, we demonstrate that threading, which

employs a strong sequence-profile component,47 plays an

important role as a selective evolutionary filter in the

template-based function annotation of proteins. It con-

siderably enriches the set of selected templates with those

that have similar binding pockets, molecular functions

and bind chemically similar ligands. Thus, it significantly

improves the efficiency and confidence of the function

assignment. Conceptually, similar are the AnnoLite and

AnnoLyze programs that combine sequence and structure

similarity for the comparative protein annotation.93 In

these algorithms, a significant template-target structural

similarity is established when at least 75% of the tem-

plate’s Ca atoms can be aligned to the target structure

within 4 Å RMSD. This criterion roughly corresponds to

a TM-score of 0.5; thus, as shown here, it is too promis-

cuous for the efficient function transfer by structure sim-

ilarity. Therefore, to avoid the high false positive rate, a

decreasing cutoff for sequence identity is applied. Because

closely homologous templates with the sequence identity

to the target up to 90% were included in their bench-

mark set, it is rather difficult to assess the performance

of the AnnoLite/AnnoLyze in the ‘‘twilight zone’’ of the

sequence identity. Furthermore, a very similar approach

was used to assign new GO annotations to PDB sequen-

ces,100 with the results suggesting that a permissive

structural similarity threshold of 5 Å RMSD for the

aligned region typically requires a high sequence identity

of the aligned residues, while in the low sequence identity

regime, a more selective cutoff of 2 Å RMSD should be

used.66 Here, we show that in the ‘‘twilight zone’’ of the

sequence identity, sequence profile driven threading pro-

vides more sensitive means for detecting evolutionarily

related proteins; thus, it maximizes the set of templates

and the number of suitable targets by relaxing the

structure similarity criteria.

This important feature also allows for the accommoda-

tion of the structural imperfections of the theoretical

protein models used as targets for template-based func-

tion annotation. In this work, we focused on the crystal

structures of the target proteins; however, as we reported

previously,4,49 template-based methods that employ pro-

tein threading47 and global structure comparisons71 are

generally more suitable than binding pocket detection by

local geometry for practical applications using protein

models. The deformation of binding regions in predicted

target structures was estimated for weakly homologous

models to be �2 Å RMSD4; this may critically affect the

accuracy of the approaches employing the local structure

similarity. For example, local structure matching using

automated functional templates (AFT) identifies binding

sites in protein models that have a RMSD from the crys-

tal structure <3 Å,44 whereas FINDSITE (which is a

threading-based template selection algorithm) tolerates

global structural inaccuracies in protein models to the

RMSD from the crystal structure up to 8–10 Å.49

The ultimate aim of computational function annota-

tion is to discover lead compounds with preferred

pharmacological properties or those that can be further

subjected to chemical modifications to attain a desired

Table I
Performance of the SiteHunter Server in CASP8

Target protein TASSER model accuracy FINDSITE (threading-based approach)

CASP-ID PDB-ID Native ligand

Global Local Pocket prediction Virtual screening

RMSDa TM-score RMSDb Rankc Distanced
MCC for

binding residuese
Native

ligand rankf

T0422 3d8b ADP 8.34 0.83 1.73 1 0.91 0.82 4
T0426 3da2 4MD 0.92 0.98 1.90 1 1.15 0.63 7
T0429 3db3 ARG-M3L-SER 11.39 0.23 9.81 1 7.96 0.11 7014
T0430 3dlz AMP 13.48 0.46 7.97 1 2.96 0.56 97
T0431 3dax HEM 3.63 0.75 3.36 1 1.28 0.41 1
T0445 3dao 1PE 1.56 0.92 3.68 1 3.90 0.56 4167
T0450 3da1 FAD 2.65 0.92 1.73 1 0.51 0.74 124
T0477 3dkp ADP 4.54 0.85 2.88 1 7.54 0.63 15
T0483 3dls ADP 4.89 0.85 2.55 1 1.40 0.85 134
T0485 3dlc SAM 5.15 0.79 2.40 1 0.91 0.74 1
T0490 3dme FAD 2.87 0.88 2.04 1 0.70 0.73 124
T0494 2vx3 D15 3.96 0.88 1.77 1 0.77 0.84 35
T0508 3dou SAM 1.62 0.92 2.47 1 1.27 0.84 1

SiteHunter employs a threading-based approach (FINDSITE) to predict binding site for small organic molecules in protein models generated by TASSER. The accuracy

of TASSER models used in ligand-binding site detection is also reported.
aCa RMSD [Å].
bAll-atom RMSD[Å] calculated over the binding residues.
cRank of the best predicted binding site.
dDistance between the center of mass of a ligand in the crystal complex and the center of the predicted binding sites.
eMatthew’s correlation coefficient calculated for the predicted binding residues.
fPredicted rank of the native ligand in the KEGG compound library of 12,158 molecules.
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activity toward a given protein target. Many virtual

screening techniques have been developed to achieve

this goal.101,102 One approach is ligand-based virtual

screening that typically requires a collection of already

known active compounds.103 In contrast, for a target

protein given just the protein’s sequence, in addition to

the binding pocket localization and molecular function,

another approach provides a set of molecules extracted

from the template-ligand complex structures.49 These

can be used as the template ligands when no other in-

formation concerning potential binders is available. It

has been already reported for a-helical proteins that

related proteins tend to bind similar ligands.104 Here,

we show that this observation is in fact more general

and applies to all evolutionarily related proteins. Evolu-

tion tends to conserve not only the functionally impor-

tant region in the protein structure but also conserves a

subset of ligand binding features. Thus, protein thread-

ing, when used as the evolutionary component in the

template-based function assignment, typically detects

templates that bind compounds with distinct chemical

relationships to the target-bound molecules. Further-

more, the chemical similarity of ligands is higher if they

bind to common binding sites; this emphasizes the

importance of a local component in structure based

functional inference algorithms, which in practice corre-

sponds to the spatial clustering of the template-bound

ligands.

Paradoxically, from the point of view of protein

structure prediction, an ideal threading algorithm whose

performance is comparable to that of structure align-

ment, would not improve the inference of molecular

function as it would reduce to the purely structure

based approach examined here with its demonstrated

poorer results. This dictates two independent directions

for the further development of threading algorithms.

For the purpose of protein structure prediction, struc-

ture-based threading with the capabilities to detect

structurally related templates should be pursued to

detect those unrecognized templates with a similar fold.

On the other hand, effective function inference requires

an evolutionary-oriented version of threading that

employs a strong sequence profile component. Interest-

ingly, the variant of threading used here as well as

HHpred, a sequence profile–profile method, already per-

forms very close to the estimated theoretical limit for

template-based function inference. Rather, it is the

absence of structurally and functionally related templates

that is the major limiting factor. The growing number

of protein crystal structures solved in the complexed

state will expand the pool of suitable targets for

sequence profile driven template-based annotation of

proteins. Thus, the combined evolution/structure-based

function assignment emerges as a powerful technique to

assist in comprehensive and fully automated proteome

annotation.

ACKNOWLEDGMENTS

This article is dedicated to the memory of Dr. Angel

Ortiz, a very talented scientist and fine human being

who passed away long before his time.

REFERENCES

1. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG,

Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanati-

des P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD,

Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD,

Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau

J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slay-

man C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D,

Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S,

Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E,

Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran

I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eil-

beck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu

Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai

Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina

N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D,

Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A,

Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J,

Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong

W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C,

Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H,

Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A,

Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S,

Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B,

Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J,

Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S,

Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I,

Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri

V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D,

Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R,

Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Wil-

liams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J,

Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B,

Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer

K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R,

Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J,

Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne

M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Espar-

ham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Goro-

khov M, Graham K, Gropman B, Harris M, Heil J, Henderson S,

Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft

C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDa-

niel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M,

Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson

M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M,

Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X. The sequence of

the human genome. Science 2001;291:1304–1351.

2. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agar-

wal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonar-

akis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry

E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR,

Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD,

Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM,

Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A,

Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies

J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ,

Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L,

Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P,

Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D,

Protein Functional Annotation

PROTEINS 131



Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Graf-

ham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Har-

dison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hla-

vina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I,

Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karls-

son EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent

WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp

D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M,

Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L,

Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S,

McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP,

Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M,

Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan

MN, Nicol R, Ning Z, Nusbaum C, O’Connor MJ, Okazaki Y,

Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson

J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting

CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin

EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J,

Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T,

Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A,

Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C,

Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp

J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade

CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetter-

strand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams

S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP,

Zdobnov EM, Zody MC, Lander ES. Initial sequencing and com-

parative analysis of the mouse genome. Nature 2002;420:520–562.

3. Punta M, Ofran Y. The rough guide to in silico function predic-

tion, or how to use sequence and structure information to predict

protein function. PLoS Comput Biol 2008;4:e1000160.

4. Skolnick J, Brylinski M. FINDSITE: a combined evolution/struc-

ture-based approach to protein function prediction. Brief Bioin-

form 2009;10:378–391.

5. Wolfson HJ, Shatsky M, Schneidman-Duhovny D, Dror O, Shul-

man-Peleg A, Ma B, Nussinov R. From structure to function:

methods and applications. Curr Protein Pept Sci 2005;6:171–183.

6. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local

alignment search tool. J Mol Biol 1990;215:403–410.

7. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,

Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of pro-

tein database search programs. Nucleic Acids Res 1997;25:3389–3402.

8. Lipman DJ, Pearson WR. Rapid and sensitive protein similarity

searches. Science 1985;227:1435–1441.

9. Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R. Pfam:

multiple sequence alignments and HMM-profiles of protein

domains. Nucleic Acids Res 1998;26:320–322.

10. Rost B. Enzyme function less conserved than anticipated. J Mol

Biol 2002;318:595–608.

11. Tian W, Skolnick J. How well is enzyme function conserved as a

function of pairwise sequence identity? J Mol Biol 2003;333:863–882.

12. Tian W, Arakaki AK, Skolnick J. EFICAz: a comprehensive

approach for accurate genome-scale enzyme function inference.

Nucleic Acids Res 2004;32:6226–6239.

13. Henikoff JG, Henikoff S. Blocks database and its applications.

Methods Enzymol 1996;266:88–105.

14. Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langen-

dijk-Genevaux PS, Pagni M, Sigrist CJ. The PROSITE database.

Nucleic Acids Res 2006;34 (Database issue):D227–D230.

15. Neduva V, Russell RB. DILIMOT: discovery of linear motifs in pro-

teins. Nucleic Acids Res 2006;34 (Web Server issue):W350–W355.

16. Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mat-

tingsdal M, Cameron S, Martin DM, Ausiello G, Brannetti B, Cos-

tantini A, Ferre F, Maselli V, Via A, Cesareni G, Diella F, Superti-

Furga G, Wyrwicz L, Ramu C, McGuigan C, Gudavalli R, Letunic

I, Bork P, Rychlewski L, Kuster B, Helmer-Citterich M, Hunter

WN, Aasland R, Gibson TJ. ELM server: a new resource for inves-

tigating short functional sites in modular eukaryotic proteins.

Nucleic Acids Res 2003;31:3625–3630.

17. Rost B. Twilight zone of protein sequence alignments. Protein Eng

1999;12:85–94.

18. Arakaki AK, Huang Y, Skolnick J. EFICAz2: Enzyme function in-

ference by a combined approach enhanced by machine learning.

BMC Bioinformatics 2009;10:107.

19. Gherardini PF, Helmer-Citterich M. Structure-based function pre-

diction: approaches and applications. Brief Funct Genomic Proteo-

mic 2008;7:291–302.

20. Hawkins T, Kihara D. Function prediction of uncharacterized pro-

teins. J Bioinform Comput Biol 2007;5:1–30.

21. Watson JD, Laskowski RA, Thornton JM. Predicting protein func-

tion from sequence and structural data. Curr Opin Struct Biol

2005;15:275–284.

22. Whisstock JC, Lesk AM. Prediction of protein function from pro-

tein sequence and structure. Q Rev Biophys 2003;36:307–340.

23. Brady GP, Jr., Stouten PF. Fast prediction and visualization of pro-

tein binding pockets with PASS. J Comput Aided Mol Des

2000;14:383–401.

24. Hendlich M, Rippmann F, Barnickel G. LIGSITE: automatic and

efficient detection of potential small molecule-binding sites in pro-

teins. J Mol Graph Model 1997;15:359–363, 389.

25. Laskowski RA. SURFNET: a program for visualizing molecular

surfaces, cavities, and intermolecular interactions. J Mol Graph

1995;13:323–330, 307–328.

26. Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source plat-

form for ligand pocket detection. BMC Bioinformatics 2009;10:168.

27. Liang J, Edelsbrunner H, Woodward C. Anatomy of protein pock-

ets and cavities: measurement of binding site geometry and impli-

cations for ligand design. Protein Sci 1998;7:1884–1897.

28. Petrek M, Otyepka M, Banas P, Kosinova P, Koca J, Damborsky J.

CAVER: a new tool to explore routes from protein clefts, pockets

and cavities. BMC Bioinformatics 2006;7:316.

29. Xie L, Bourne PE. A robust and efficient algorithm for the shape

description of protein structures and its application in predicting

ligand binding sites. BMC Bioinformatics 2007;8 (Suppl 4):S9.

30. Hetenyi C, van der Spoel D. Blind docking of drug-sized com-

pounds to proteins with up to a thousand residues. FEBS Lett

2006;580:1447–1450.

31. Ruppert J, Welch W, Jain AN. Automatic identification and repre-

sentation of protein binding sites for molecular docking. Protein

Sci 1997;6:524–533.

32. Silberstein M, Dennis S, Brown L, Kortvelyesi T, Clodfelter K,

Vajda S. Identification of substrate binding sites in enzymes by

computational solvent mapping. J Mol Biol 2003;332:1095–1113.

33. Armon A, Graur D, Ben-Tal N. ConSurf: an algorithmic tool for

the identification of functional regions in proteins by surface map-

ping of phylogenetic information. J Mol Biol 2001;307:447–463.

34. Huang B, Schroeder M. LIGSITEcsc: predicting ligand binding sites

using the Connolly surface and degree of conservation. BMC

Struct Biol 2006;6:19.

35. Jones S, Shanahan HP, Berman HM, Thornton JM. Using electro-

static potentials to predict DNA-binding sites on DNA-binding

proteins. Nucleic Acids Res 2003;31:7189–7198.

36. Petrey D, Honig B. GRASP2: visualization, surface properties, and

electrostatics of macromolecular structures and sequences. Methods

Enzymol 2003;374:492–509.

37. Brylinski M, Prymula K, Jurkowski W, Kochanczyk M, Stawowczyk

E, Konieczny L, Roterman I. Prediction of functional sites based

on the fuzzy oil drop model. PLo S Comput Biol 2007;3:e94.

38. Ondrechen MJ, Clifton JG, Ringe D. THEMATICS: a simple com-

putational predictor of enzyme function from structure. Proc Natl

Acad Sci USA 2001;98:12473–12478.

39. Dessailly BH, Lensink MF, Wodak SJ. Relating destabilizing regions

to known functional sites in proteins. BMC Bioinformatics

2007;8:141.

M. Brylinski and J. Skolnick

132 PROTEINS



40. Elcock AH. Prediction of functionally important residues based

solely on the computed energetics of protein structure. J Mol Biol

2001;312:885–896.

41. Ausiello G, Gherardini PF, Marcatili P, Tramontano A, Via A,

Helmer-Citterich M. FunClust: a web server for the identification

of structural motifs in a set of non-homologous protein structures.

BMC Bioinformatics 2008;9 (Suppl 2):S2.

42. Kleywegt GJ. Recognition of spatial motifs in protein structures. J

Mol Biol 1999;285:1887–1897.

43. Stark A, Sunyaev S, Russell RB. A model for statistical significance

of local similarities in structure. J Mol Biol 2003;326:1307–1316.

44. Arakaki AK, Zhang Y, Skolnick J. Large-scale assessment of the

utility of low-resolution protein structures for biochemical func-

tion assignment. Bioinformatics 2004;20:1087–1096.

45. Laskowski RA, Watson JD, Thornton JM. Protein function predic-

tion using local 3D templates. J Mol Biol 2005;351:614–626.

46. Wallace AC, Borkakoti N, Thornton JM. TESS: a geometric hash-

ing algorithm for deriving 3D coordinate templates for searching

structural databases. Application to enzyme active sites. Protein Sci

1997;6:2308–2323.

47. Skolnick J, Kihara D, Zhang Y. Development and large scale bench-

mark testing of the PROSPECTOR_3 threading algorithm. Proteins

2004;56:502–518.

48. Zhang Y, Arakaki AK, Skolnick J. TASSER: an automated method

for the prediction of protein tertiary structures in CASP6. Proteins

2005;61 (Suppl 7):91–98.

49. Brylinski M, Skolnick J. A threading-based method (FINDSITE)

for ligand-binding site prediction and functional annotation. Proc

Natl Acad Sci USA 2008;105:129–134.

50. Erickson JA, Jalaie M, Robertson DH, Lewis RA, Vieth M. Les-

sons in molecular recognition: the effects of ligand and protein

flexibility on molecular docking accuracy. J Med Chem 2004;47:

45–55.

51. McGovern SL, Shoichet BK. Information decay in molecular dock-

ing screens against holo, apo, and modeled conformations of

enzymes. J Med Chem 2003;46:2895–2907.

52. Battey JN, Kopp J, Bordoli L, Read RJ, Clarke ND, Schwede T.

Automated server predictions in CASP7. Proteins 2007;69 (Suppl

8):68–82.

53. Kopp J, Bordoli L, Battey JN, Kiefer F, Schwede T. Assessment of

CASP7 predictions for template-based modeling targets. Proteins

2007;69 (Suppl 8):38–56.

54. Read RJ, Chavali G. Assessment of CASP7 predictions in the high

accuracy template-based modeling category. Proteins 2007;69

(Suppl 8):27–37.

55. Zhou H, Pandit SB, Lee SY, Borreguero J, Chen H, Wroblewska L,

Skolnick J. Analysis of TASSER-based CASP7 protein structure pre-

diction results. Proteins 2007;69 (Suppl 8):90–97.

56. Chothia C, Lesk AM. The relation between the divergence of

sequence and structure in proteins. EMBO J 1986;5:823–826.

57. Gibrat JF, Madej T, Bryant SH. Surprising similarities in structure

comparison. Curr Opin Struct Biol 1996;6:377–385.

58. Irving JA, Whisstock JC, Lesk AM. Protein structural alignments

and functional genomics. Proteins 2001;42:378–382.

59. Kristensen DM, Ward RM, Lisewski AM, Erdin S, Chen BY, Fofa-

nov VY, Kimmel M, Kavraki LE, Lichtarge O. Prediction of enzyme

function based on 3D templates of evolutionarily important amino

acids. BMC Bioinformatics 2008;9:17.

60. Lisewski AM, Lichtarge O. Rapid detection of similarity in protein

structure and function through contact metric distances. Nucleic

Acids Res 2006;34:e152.

61. Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a struc-

tural classification of proteins database for the investigation of

sequences and structures. J Mol Biol 1995;247:536–540.

62. Russell RB, Sasieni PD, Sternberg MJ. Supersites within superfolds.

Binding site similarity in the absence of homology. J Mol Biol

1998;282:903–918.

63. Gerlt JA, Babbitt PC. Divergent evolution of enzymatic function:

mechanistically diverse superfamilies and functionally distinct

suprafamilies. Annu Rev Biochem 2001;70:209–246.

64. Hegyi H, Gerstein M. The relationship between protein structure

and function: a comprehensive survey with application to the yeast

genome. J Mol Biol 1999;288:147–164.

65. Jambon M, Andrieu O, Combet C, Deleage G, Delfaud F, Geour-

jon C. The SuMo server: 3D search for protein functional sites.

Bioinformatics 2005;21:3929–3930.

66. Ponomarenko JV, Bourne PE, Shindyalov IN. Assigning new GO

annotations to protein data bank sequences by combining struc-

ture and sequence homology. Proteins 2005;58:855–865.

67. Jones DT, Hadley C. Threading methods for protein structure pre-

diction. In: Higgins D, Taylor WR, editors. Bioinformatics:

sequence, structure and databanks. Heidelberg: Springer-Verlag;

2000. pp 1–13.

68. Zhang Y, Skolnick J. Scoring function for automated assessment of

protein structure template quality. Proteins 2004;57:702–710.

69. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,

Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP,

Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE,

Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the

unification of biology. The Gene Ontology Consortium. Nat Genet

2000;25:25–29.

70. Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeck-

mann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M,

Martin MJ, Mazumder R, O’Donovan C, Redaschi N, Suzek B.

The Universal Protein Resource (UniProt): an expanding universe

of protein information. Nucleic Acids Res 2006;34 (Database

issue):D187–D191.

71. Zhang Y, Skolnick J. TM-align: a protein structure alignment algo-

rithm based on the TM-score. Nucleic Acids Res 2005;33:2302–

2309.

72. Levitt M, Gerstein M. A unified statistical framework for sequence

comparison and structure comparison. Proc Natl Acad Sci USA

1998;95:5913–5920.

73. Shindyalov IN, Bourne PE. Protein structure alignment by incre-

mental combinatorial extension (CE) of the optimal path. Protein

Eng 1998;11:739–747.

74. Kabsch W. A discussion of the solution for the best rotation to

relate two sets of vectors. Acta Crystallogr A 1978;34:827–828.

75. Zhang Y, Hubner IA, Arakaki AK, Shakhnovich E, Skolnick J. On

the origin and highly likely completeness of single-domain protein

structures. Proc Natl Acad Sci USA 2006;103:2605–2610.

76. Pandit SB, Skolnick J. Fr-TM-align: a new protein structural align-

ment method based on fragment alignments and the TM-score.

BMC Bioinformatics 2008;9:531.

77. Teichert F, Bastolla U, Porto M. SABERTOOTH: protein structural

alignment based on a vectorial structure representation. BMC Bio-

informatics 2007;8:425.

78. Soding J. Protein homology detection by HMM-HMM compari-

son. Bioinformatics 2005;21:951–960.

79. Jones DT. Protein secondary structure prediction based on posi-

tion-specific scoring matrices. J Mol Biol 1999;292:195–202.

80. Kohlbacher O, Lenhof HP. BALL–rapid software prototyping in

computational molecular biology. Biochemicals Algorithms Library.

Bioinformatics 2000;16:815–824.

81. Barber CB, Dobkin DP, Huhdanpaa HT. The Quickhull algorithm

for convex hulls. ACM Trans on Mathematical Software

1996;22:469–483.

82. Davis J, Goadrich M. The relationship between Precision-Recall and

ROC curves. In: Proceedings of the 23rd International Conference

on Machine Learning, Pittsburgh, PA. 2006. pp 233–240.

83. Daylight Theory Manual. 4.9. Aliso Viejo, CA: Daylight Chemical

Information Systems, Inc.; 2007.

84. Tanimoto TT. An elementary mathematical theory of classification

and prediction. New York: IBM; 1958.

Protein Functional Annotation

PROTEINS 133



85. Xue L, Godden JW, Stahura FL, Bajorath J. Design and evaluation

of a molecular fingerprint involving the transformation of property

descriptor values into a binary classification scheme. J Chem Inf

Comput Sci 2003;43:1151–1157.

86. Xue L, Godden JW, Stahura FL, Bajorath J. Similarity search pro-

files as a diagnostic tool for the analysis of virtual screening calcu-

lations. J Chem Inf Comput Sci 2004;44:1275–1281.

87. Xue L, Stahura FL, Bajorath J. Similarity search profiling reveals

effects of fingerprint scaling in virtual screening. J Chem Inf Com-

put Sci 2004;44:2032–2039.

88. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and

genomes. Nucleic Acids Res 2000;28:27–30.

89. Skolnick J, Fetrow JS. From genes to protein structure and func-

tion: novel applications of computational approaches in the

genomic era. Trends Biotechnol 2000;18:34–39.

90. Chua HN, Sung WK, Wong L. Using indirect protein interactions

for the prediction of Gene Ontology functions. BMC Bioinfor-

matics 2007;8 (Suppl 4):S8.

91. Wass MN, Sternberg MJ. ConFunc–functional annotation in the

twilight zone. Bioinformatics 2008;24:798–806.

92. Sobolev V, Sorokine A, Prilusky J, Abola EE, Edelman M. Auto-

mated analysis of interatomic contacts in proteins. Bioinformatics

1999;15:327–332.

93. Marti-Renom MA, Rossi A, Al-Shahrour F, Davis FP, Pieper U,

Dopazo J, Sali A. The AnnoLite and AnnoLyze programs for com-

parative annotation of protein structures. BMC Bioinformatics

2007;8 (Suppl 4):S4.

94. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A.

Comparative protein structure modeling of genes and genomes.

Annu Rev Biophys Biomol Struct 2000;29:291–325.

95. von Grotthuss M, Plewczynski D, Vriend G, Rychlewski L. 3D-Fun:

predicting enzyme function from structure. Nucleic Acids Res

2008;36(Web Server issue):W303–W307.

96. Ward RM, Erdin S, Tran TA, Kristensen DM, Lisewski AM, Lich-

targe O. De-orphaning the structural proteome through reciprocal

comparison of evolutionarily important structural features. PLoS

ONE 2008;3:e2136.

97. Rychlewski L, Jaroszewski L, Li W, Godzik A. Comparison of

sequence profiles. Strategies for structural predictions using

sequence information. Protein Sci 2000;9:232–241.

98. Laskowski RA, Watson JD, Thornton JM. ProFunc: a server for

predicting protein function from 3D structure. Nucleic Acids Res

2005;33(Web Server issue):W89–W93.

99. Lopez G, Valencia A, Tress ML. Firestar–prediction of function-

ally important residues using structural templates and alignment

reliability. Nucleic Acids Res 2007;35(Web Server issue):W573–

W577.

100. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig

H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic

Acids Res 2000;28:235–242.

101. Muegge I, Oloff S. Advances in virtual screening. Drug Discov

Today 2006;3:405–411.

102. Walters WP, Stahl MT, Murcko MA. Virtual screening—an over-

view. Drug Discov Today 1998;3:160–178.

103. Stahura FL, Bajorath J. New methodologies for ligand-based virtual

screening. Curr Pharm Des 2005;11:1189–1202.

104. Mitchell JB. The relationship between the sequence identities

of alpha helical proteins in the PDB and the molecular

similarities of their ligands. J Chem Inf Comput Sci 2001;41:

1617–1622.

M. Brylinski and J. Skolnick

134 PROTEINS


