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Abstract: The rapidly growing number of theoretically predicted protein structures requires robust methods that

can utilize low-quality receptor structures as targets for ligand docking. Typically, docking accuracy falls off dramat-

ically when apo or modeled receptors are used in docking experiments. Low-resolution ligand docking techniques

have been developed to deal with structural inaccuracies in predicted receptor models. In this spirit, we describe the

development and optimization of a knowledge-based potential implemented in Q-Dock, a low-resolution flexible

ligand docking approach. Self-docking experiments using crystal structures reveals satisfactory accuracy, comparable

with all-atom docking. All-atom models reconstructed from Q-Dock’s low-resolution models can be further refined

by even a simple all-atom energy minimization. In decoy-docking against distorted receptor models with a root-

mean-square deviation, RMSD, from native of �3 Å, Q-Dock recovers on average 15-20% more specific contacts

and 25–35% more binding residues than all-atom methods. To further improve docking accuracy against low-quality

protein models, we propose a pocket-specific protein–ligand interaction potential derived from weakly homologous

threading holo-templates. The success rate of Q-Dock employing a pocket-specific potential is 6.3 times higher than

that previously reported for the Dolores method, another low-resolution docking approach.
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Introduction

Computational modeling of protein–ligand interactions is of

great importance in modern structural biology and has many

applications in investigating fundamental biochemical processes

and in the development of new pharmaceutical compounds.1–3

During the past years, a number of diverse algorithms for dock-

ing small molecules into receptor proteins have been devel-

oped4–7 and evaluated in terms of docking accuracy and the

ability to predict binding affinities.8–10 In general, docking algo-

rithms seek to identify the lowest free energy position of a

ligand in the binding site of the receptor protein. These algo-

rithms are designed to reproduce the experimentally given struc-

ture of a receptor protein complexed with a ligand and to rank

all generated solutions such that the conformation closest to the

experimental structure appears as the top model. There are two

key elements of a docking approach: First, a scoring function is

required that accurately ranks the generated set of solutions.

Second, a fast and effective search algorithm is necessary to

explore the conformational space of protein–ligand interactions.

Search efficiency is particularly important in virtual screening

experiments11,12 that require many thousands of possible ligands

to be docked into a receptor structure in an acceptable amount

of time, usually no more than few minutes per ligand.

Docking programs typically utilize high-resolution receptor

structures determined by experiment or theoretical modeling.13-15

Virtual screening reveals that the success of the docking calcula-

tion typically depends on the quality of the receptor structure

with the success rate decreasing from ligand-bound to ligand-

free to modeled structures.16 This drop off is correlated with the

degree of protein movement in the active site; protein active site

rearrangements greater than 1.5 Å lead to almost complete lack

of recovery of the ‘‘true’’ binding mode.17 Furthermore, decoy-

docking experiments using deformed trypsin structures with a
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Ca RMSD varying from 1 to 3 Å as targets for docking of 47

ligands experimentally known to bind to trypsin revealed that

the specific native contacts between the ligands and their recep-

tor structures are rapidly lost with the deformation of the recep-

tor structure.18

On the other hand, protein models can now be routinely

determined by high-throughput modeling procedures for entire

proteomes. Many of the protein structures generated by structure

prediction algorithms appear as attractive targets for the devel-

opment of biologically active compounds.19 As demonstrated by

CASP7, the quality of theoretical methods for protein tertiary

structure prediction has improved, and in many cases, predicted

models are comparable to low-resolution experimental struc-

tures.20,21 Nonetheless, these models have significant structural

inaccuracies in side-chain and backbone coordinates when com-

pared to ligand-bound, experimentally solved structures. An esti-

mated one half of weakly homologous protein models have a

RMSD from the native binding site[2 Å.22

A variety of different docking techniques have been devel-

oped to address this problem. Most account for receptor flexibil-

ity by docking ligands against a precalculated ensemble of re-

ceptor conformations23 or by softening the criterion for the steric

fit between the ligand and receptor.24 To overcome the limita-

tion of computationally expensive modeling of macromolecules,

the Flexibility Tree combining a variety of efficient motion

descriptors has been recently developed and implemented in the

FLIP-Dock program.25 Other docking techniques capable of

dealing with significant structural inaccuracies employ a low-

resolution representation of the protein. It has been shown that a

ultra low (�7 Å resolution) representation of molecular structure

averages all high-resolution structural details and dramatically

improves the tolerance to receptor structure deformation.26 A

similar approach used to dock small molecules into low-resolu-

tion models demonstrated that even low-quality receptor struc-

tures could be efficiently utilized in docking experiments.27

Nevertheless, most low-resolution docking approaches neglect

ligand flexibility.

The desire to improve the state-of-the-art motivated us to de-

velop Q-Dock, an approach that effectively utilizes low-quality

protein structures as targets for flexible ligand docking. Q-Dock

describes both the ligand and the protein in a reduced represen-

tation. Ligand flexibility is accounted for by docking an ensem-

ble of precalculated discrete ligand conformations with Monte

Carlo Replica Exchange (REMC) used to optimize the binding

mode of the ligand in the binding site of the rigid receptor pro-

tein. Here, we describe the development and optimization of a

coarse-grained knowledge-based potential implemented in Q-

Dock. The performance of Q-Dock is compared with several

popular all-atom programs for flexible ligand docking in a self-

docking experiment using the crystal structures of target recep-

tors. Next, we evaluated the efficiency of Q-Dock in a decoy-

docking study against a set of distorted receptor structures

whose Ca RMSD from the crystal structure ranges from 1 to 3

Å. Finally, with regards towards improving the quality of

ligand–receptor pose predictions, we take full advantage of

pocket-specific potentials derived from weakly homologous

threading templates and apply them to the docking of ligands

against modeled receptor structures.

Methods

Dataset

The structures of protein–ligand complexes were selected from

the Protein Data Bank28 according to the following criteria: Pro-

tein structures determined by X-ray crystallography to a resolu-

tion �2.5 Å and that have at least 50 residues were chosen. Or-

ganic molecules, cofactors, single nucleotides, and short peptides

composed of standard or modified amino acids were considered

as ligands if the number of predefined functional groups (listed

in Table 1) was �5 and �25. To exclude nonspecific ligand

interactions, a minimum number of five residues in contact with

the ligand atoms are imposed. Interatomic contacts are calcu-

lated by LPC29 that defines contacts based on an analysis of

interatomic surfaces. Structures containing two or more ligands

within 9 Å of each other were rejected. Subsequently, the com-

plexes were subjected to a clustering procedure that uses a cut-

off of 35% amino acid sequence identity between clusters. Two

homologous proteins (members of one cluster) were accepted

into the dataset only if the Tanimoto coefficient,30 TC, calcu-

lated for their ligands was below 0.5. A high TC (typically 0.7–

1.0) is indicative of very high chemical similarity. In this man-

ner, a dataset of 1636 complexes was created, which can be con-

sidered as nonredundant with respect to protein–ligand interac-

tions. This dataset was then divided into two sets: a training set

of 818 complexes used to derive the statistical potential and

then to optimize force field parameters and weights and a bench-

mark set of 818 structures used exclusively to assess the derived

potentials. Training set proteins with a sequence identity �35%

to any of the 34 targets used in the docking experiment

Table 1. Predefined Chemical Groups Used to Decompose Ligands into

Quasichemical Building Blocks.

Number Description Symbol/formula

1 Aromatic rings mono-, heterocyclic

five-, six-membered

2 Ether ��C��O��C��
3 Thioether ��C��S��C��
4 Carbonyl [C¼¼O

5 Thiocarbonyl [C¼¼S

6 Halogene ��Cl; ��Br; ��F; ��I

7 Guanidine ��NHC(NH2)NH

8 Amide ��CONH��
9 Carboxyl ��COOH

10 Amine (primary,

secondary, tertiary)

��NH2;[NH;[N��

11 Phosphate ��PO4

12 Sulphate ��SO4

13 Nitro group ��NO2

14 Metals Fe; Zn; Mg; Ca

15 Hydroxyl group ��OH

16 Thiol group ��SH

17 A fragment of aliphatic

chain composed of

at least 2 carbons not

connected to groups 7-16

�� (C��C)x��; �� (C¼¼C)x��;

�� (CBC)x��
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(described below) were exchanged with randomly selected

benchmark proteins so that no proteins with �35% sequence

identity to any docking target are used to derive and optimize

the force field parameters.

The performance of Q-Dock was evaluated in a self-docking

experiment for the set of protein–ligand complexes for which

comparative assessments of several programs for all-atom flexi-

ble molecular docking were reported.31-33 From the original

dataset we removed three structures of cytochrome P-450 that

contain two ligands in the binding pocket. The resulting set con-

sists of 34 protein–ligand complexes (PDB codes: 1abe, 1abf,

1apt, 1apu, 1cbx, 1cil, 1cnx, 1etr, 1ets, 1ett, 1gsp, 1icm, 1icn,

1nnb, 1nsc, 1nsd, 1okl, 1pph, 1rhl, 1rls, 1tng, 1tni, 1tnj, 1tnk,

1tnl, 1tpp, 2ifb, 3cpa, 3ptb, 3tmn, 5abp, 5tln, 6cpa, 6tmn).

Next, we used Q-Dock in a decoy-docking study against dis-

torted receptor structures. The decoy dataset consists of 291

models of trypsin of which 93, 101 and 97 structures have a Ca
RMSD from the crystal structure of 1, 2 and 3 6 0.5 Å, respec-

tively. The distorted receptor models were used as targets for

docking 47 ligands co-crystallized with trypsin. Details concern-

ing the preparation of distorted models of trypsin and ligand

selection are presented elsewhere.18 We compared the results of

Q-Dock decoy-docking with the results reported for all-atom

docking by Kim and Skolnick.18

Finally, the performance of Q-Dock was evaluated for

weakly homologous protein models used as targets for docking

flexible ligands. From the set of 318 proteins, for which the

results of the Dolores method were reported,27 we selected 206

proteins up to 300 residues in length. Protein structure modeling

consisted of template identification followed by an assembly/

refinement procedure. First, for each target protein weakly ho-

mologous structure templates were selected from a nonredundant

PDB library by our threading algorithm PROSPECTOR_3,34,35

which was designed to identify analogous as well as homolo-

gous templates. We note that only threading templates with a

sequence similarity to the target protein \35% were used in the

modeling procedure. Subsequently, threading templates were

submitted to TASSER,36–38 a coarse-grained template assembly/

refinement procedure guided by tertiary restraints extracted from

threading templates. Weakly homologous protein models were

then taken as targets for the prediction of ligand binding sites

using FINDSITE, a method that identifies ligand-binding sites

based on binding site similarity among superimposed groups of

template structures identified from threading.22 Ligand-binding

sites predicted by FINDSITE were used to extract pocket-spe-

cific protein–ligand restraints from the threading templates to

support low-resolution docking of flexible ligands into the theo-

retical receptor structures using Q-Dock.

Q-Dock Force Field

To quantitatively describe protein–ligand interactions, a com-

bined knowledge-based potential was derived from the regular-

ities observed in training protein–ligand complexes. The generic

part of the force field (EGEN) consists of four energy terms that

account for different energetic contributions. ECP (contact poten-

tial) accounts for the attractive and repulsive interactions

between protein residues and ligand functional groups, i.e. it

favors a specific orientation of a small molecule in the binding

pocket. The surface-dependent terms ESL and ESP are in general

less specific, scaled to the portion of the accessible solvent area

of ligand functional groups and binding pocket residues that

become buried upon complex formation. The differences in the

accessible solvent area in the complexed and fully solvated

states are used to express the burial likelihood for ligand func-

tional groups and binding pocket residues. Moreover, we include

a bias to the expected number of contacts, ECN (spatially neigh-

boring residues), for ligand functional groups. Finally, to ensure

the best native-like recognition capability, the force field param-

eters were optimized against the ensemble of ligand decoys and

the energy terms were combined with optimized weight factors.

Reduced Model of Protein–Ligand Complexes

A knowledge-based potential implemented in Q-Dock was

developed for simplified models of ligands and receptor proteins.

We employed the following coarse-grained representation of

protein–ligand complexes: Protein residues are represented by

Ca atoms and single points at their side-chain centers of mass.

For glycine residues, only the Ca positions are used. Ligand

molecules are first decomposed into 17 chemical groups, which

are listed in Table 1. A single effective point is then placed at

the center of mass of each group. Since conformational space

for protein–ligand interactions is defined continuously, a repul-

sive potential is essential to account for the volume exclusion

among a ligand and a protein. We defined two repulsion shells:

a ligand group – side-chain repulsion shell SRij and a ligand

group—backbone repulsion shell BR
j . The pair-specific repulsive

shell SRij was defined as the minimum distance between effective

points of the side chain center of mass of amino acid i and

ligand functional group j. For each effective ligand point, a

backbone repulsion shell BR
j is defined as the minimum observed

distance from any Ca atom in crystal structures of protein–

ligand complexes. The excluded volume between units is

approximated by a strong energy penalty when the distance

between them is below the cutoff values of SRij or B
R
j .

Ligand—Side-Chain Contact Potential

For each pair of amino acid i and ligand functional group j, a
unique contact shell was defined. The limiting values for the

pair-specific SCij were calculated for the protein–ligand com-

plexes present in the dataset using the Matthew’s correlation

coefficient, MCC:

MCC ¼ TP 3 TN� FP 3 FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp (1)

where TP and TN is the number of true positives and true nega-

tives and FP and FN is the number of false positives and false

negatives, respectively. TP, TN, FP, and FN were obtained by

comparison to the interatomic interactions calculated for all-

atom models. A residue and a ligand functional group are

defined to be in contact if any of their heavy atoms were found

to be in contact as reported by the LPC algorithm,29 which is
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based on the inter-atomic contact surface analysis. For each pair

of effective points i and j, a pair-specific contact shell SCij is

determined by a distance cutoff that maximizes MCC.

The limiting distances were subsequently used to extract the

observed number of contacts between a given pair of amino acid

i and ligand functional group j in the training set of protein–

ligand complexes (nij). The observed number of contacts is then

compared to that expected in a reference state where there are

no specific interactions:

n0ij ¼ N 3 xi 3 xj (2)

where n0ij is the expected number of contacts between amino

acid i and ligand functional group j, N is the total number of

contacts between any pair of protein–ligand effective points, and

xi and xj are the mole fraction of units i and j in the training set,

respectively. For protein residues, the mole fractions are calcu-

lated with respect to surface residues only. A surface residue is

defined having �30% of its total surface exposed. We used

POPS-A39 for the solvent accessible area calculations.

The potential of mean force PC between amino acid i and

ligand functional group j is simply given by:

Pc
ij ¼ �ln

nij
n0ij

(3)

Non-Polar Surface-Dependent Potential

The change in a solvent accessible area upon complex formation

is accounted for as a surface-dependent potential. The non-polar

surface-dependent potential PS is based on the differences in the

accessible solvent area of a ligand functional group or a protein

residue in the complexed and fully solvated states:40

PS
i ¼ � ln

gi ASACð Þ
gi ASASð Þ (4)

where gi is the probability distribution of the solvent accessible

area attached to unit i in the complexed state (ASAC) compared

to the solvated state (ASAS). The distribution function g is calcu-

lated for ligand groups and amino acids by a statistical analysis of

the protein–ligand complexes present in the training set. For pro-

teins, only binding pocket residues are taken into consideration.

The solvent accessible area of coarse-grained models of both

ligands and proteins was approximated by the modified method

of Wodak and Janin41,42 (the details are given in the Appendix).

Contact Number

A bias to the expected number of neighboring residues for each

ligand functional group is incorporated into the force field as

ECN ¼
XL
j¼1

jNj � N0
j j (5)

where L is the total number of effective points in the ligand

molecule, Nj is the observed number of contacting residues (cal-

culated using the pair-specific contact shell SCij ) and N0
j is the

expected number of neighbors (the mean value calculated for

protein–ligand complexes in the training set).

Generation of Decoys

The energy parameters as well as the energy weight factors

were optimized against an ensemble of decoy conformations.

For each protein–ligand complex, an ensemble of nonredundant

flexible decoys was constructed as follows: In the first step, 109

ligand orientations were created. A sphere of 7 Å radius cen-

tered on the center of mass of the ligand in the native conforma-

tion was imposed, such that if a ligand molecule leaves the

sphere it will enter through the opposite side. Subsequently, the

number of ligand variations was reduced by using hard-sphere

steric potentials SRij and BR
j to account for volume exclusion

between the ligand and the protein. To avoid the overaccumula-

tion of some ligand orientations, a pairwise position similarity

cutoff was used to ensure that the RMSD of any pair of decoys

is larger than 3.5 Å. In addition, for each 20 non-native decoys

(RMSD from native [3.5 Å), one native-like conformation

(RMSD from native �3.5 Å) was generated and included into

the decoy ensemble to account for the ligand distribution around

the native position.

Parameter Optimization

Similarly to Genetic Algorithms, Evolution Strategies (ESs) are

algorithms which imitate the principles of natural evolution as a

method to solve parameter optimization problems.43,44 ESs are

random strategies, and as such are particularly robust and cope

well with a large number of variables, or rugged objective func-

tions. We employed the ES algorithm to improve the native-like

recognition capability by the optimization of the force field pa-

rameters against the ensemble of ligand decoys. For each energy

term, its parameters were optimized independently using the val-

ues derived from the statistical analysis as the initial set. The

objective function to minimize (G) was the combination of the

correlation between the energy function and the RMSD from the

native ligand position (CC), the Z-score (the dimensionless ratio

of the first and second moments of the energy distribution within

the native-like pool and the decoy pool) and the B-score (the

fraction of decoys with an energy higher than that of at least

one native-like conformation):

G ¼ 1

1þ 1
N

PN
p¼1 CCp

3
1

1þ 1
N

PN
p¼1 Z-scorep

3
1

1þ 1
N

PN
p¼1 B-scorep

ð6Þ

where N is the total number of training protein–ligand com-

plexes, and CCp, Z-scorep, B-scorep are the coefficients calcu-

lated for a complex p.

Weight Optimization

It was already shown for reduced protein models that the com-

bined energy with optimized weight factors has higher correla-
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tion coefficients and native-like recognition ability than a naı̈ve

combination of energy terms (all the weight factors set to 1) and

each of the single energy terms alone.45 We used this observa-

tion to optimize the energy weight factors. The optimization was

done using the CERN MINUIT package.46 Similar to the optimi-

zation of force field parameters, this procedure minimizes the

objective function G as defined by eq. (6).

Ligand Move Set

We allow rotational and translational freedom of a small mole-

cule within a restricted area of the receptor protein. A spherical

distribution is sampled to generate random vectors, located on a

spherical surface. To speed up the conformational space sam-

pling, their normalized components47 (|v|2 5 x21 1 x22 1 . . . 1
x26 5 1) are used as the scaling factors of the translational (1.0

Å) and rotational (108) steps of a random walk. For each pro-

tein–ligand complex, we also allow for the random perturbation

of the ligand’s internal conformation sampled according to a

uniform distribution.

Similar to other docking algorithms that employ a pre-dock-

ing generation of multiple ligand conformations,5,48 ligand flexi-

bility in Q-Dock is accounted for by docking an ensemble of

ligand discrete conformations into the receptor protein. First, the

set of conformations is generated for the all-atom ligand repre-

sentations using the torsion angles as the degrees of freedom.

Torsion angles are identified with the aid of the Autotors pro-

gram available from AutoDock.6,49 The number of states for

each ligand dihedral angle depends on the hybridization of the

linked atoms: three states (60, 180, 3008) are considered for two

sp3 hybridized atoms, two states (0, 1808) for two sp2 hybridized

atoms and 12 states (starting from 08 with 308 step) for all other
combinations.5 Conformations with steric clashes (when the dis-

tance between two nonbonded atoms\2 Å) are excluded. More-

over, a structural similarity cutoff is imposed to ensure that any

two ligand conformations in the ensemble have a RMSD [1 Å.

Subsequently, all-atom ligand representations are decomposed

into 17 chemical groups, see Table 1, and a single effective

point is placed at the center of mass of each group.

Energy Minimization

For a reasonable force field, a ligand native pose should appear

as the lowest energy conformation. To determine the deviation

of the lowest energy pose from experiment, we performed sim-

ple low-resolution energy minimization using the Simplex

method50 starting from the crystal structures. Energy minimiza-

tion was carried out for training as well as benchmark protein–

ligand complexes using the statistical and optimized sets of pa-

rameters with optimized energy weight factors.

Binding Mode Optimization (Docking)

To efficiently explore the conformational space in docking simu-

lations, we used Replica Exchange Monte Carlo (REMC).51-53

The temperature range was chosen such that at the lowest tem-

perature a protein–ligand complex is stable in the native struc-

ture, whereas at the highest temperature, a ligand freely explores

conformational space. A 7 Å radius sphere is imposed to prevent

the ligand molecule from moving too far from the binding site

in the high temperature replicas. Q-Dock utilizes 16 replicas

where each is created by randomly choosing the position of a

ligand in the vicinity of the binding pocket. The simulations

consist of 100 attempts at replica exchange and 100 MC steps

between replica swaps. The lowest energy ligand conformation

identified in all replica trajectories is taken as the final model.

Pocket-Specific Protein–Ligand Potential

To improve docking accuracy particularly against low-quality

protein models, we incorporated into the force field a pocket-

specific protein–ligand interaction potential that is derived from

weakly homologous (\35% sequence identity to a target pro-

tein) threading holo-templates. First, structure templates are

identified by the threading algorithm PROSPECTOR_334,35 and

used to predict ligand-binding sites and binding residues by

recently developed FINDSITE algorithm.22 A short overview of

FINDSITE is provided in the Appendix. To derive a pocket-spe-

cific protein–ligand interaction potential, we used binding pock-

ets predicted for each target protein by FINDSITE. Protein–

ligand contacts are calculated for all threading templates that

share a top-ranked predicted binding site. These are used to

extract the observed number of contacts between a binding resi-

due corresponding to position k in the target sequence (the

chemical properties of binding residues are ignored) and ligand

functional group of type j. Subsequently, the expected number

of contacts in a reference state is calculated as in eq. (2). Then,

a pocket-specific potential of mean force EPS between a binding

residue at position k in the target sequence and a ligand func-

tional group of type j is given by eq. (3), but now averaged over

the FINDSITE identified ligands and functional groups. The

total energy now becomes the sum of weighted generic energy

terms (EGEN) and the pocket-specific energy (EPS):

ETOT ¼ EGEN þ wPSEPS (7)

The weight wPS was optimized using the objective function

G [eq. (6)] over the subset of 426 proteins �400 residues in

length selected from the training set. During the optimization of

wPS, the generic weights were kept fixed at previously optimized

values. Native-like recognition capability was then separately

assessed for the subsets of proteins �400 residues selected from

the training (426 cases) and benchmark complexes (400 cases).

Reconstruction of All-Atom Models and Simple

High-Resolution Refinement

The final models obtained from Q-Dock simulations can be eas-

ily transformed into their all-atom representation. Reconstruction

consists of the translation and rotation of all-atom ligand struc-

tures and the adjustment of dihedral angles so that the centers of

mass of the functional groups overlap exactly with those pre-

dicted by the low-resolution docking simulation. The rebuilt pro-

tein–ligand complexes are subsequently refined by a simple

energy minimization procedure using Amber854 with the all-

atom force field ff0355 used for proteins in conjunction with the

general Amber force field,56 GAFF, for ligand molecules.
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Hydrogen atoms are added by the Open Babel package.57 To

speed up ligand parameterization, partial charges on ligands

atoms were approximated by the Gasteiger-Marsili58 formalism.

A Coulombic potential on a 1 Å grid was calculated by LEaP

(Amber8) in order to place chloride or sodium ions at positions

of the highest or lowest electrostatic potential around a protein–

ligand complex to neutralize it. Long-range non-bonded interac-

tions were truncated using a 12 Å cutoff (electrostatic and

vdW). The protein was kept fixed during the simulation, whereas

the conformation of the ligand is energy minimized in 250

cycles of steepest-descent followed by 250 cycles of a conjugate

gradient procedure.

Results

Ligand—Side-Chain Contact Potential

The averaged interactions between ligand functional groups and

surface residues in the nonredundant library of 818 training pro-

tein–ligand complexes were used as a reference state for the cal-

culation of a log odds potential that expresses the likelihood of

interaction between ligand groups and protein residues. The av-

erage value of the MCC [defined in eq. (1)] for contacts using

the reduced representation as compared to a detailed atomic

model is 0.8, which suggests that the extracted contacts between

effective points in reduced models reproduce well the real con-

tacts between ligands and receptor proteins observed in all-atom

structures. In general, favorable and unfavorable interactions

between amino acids and ligand functional groups are found to

be consistent with their physicochemical properties.

Non-Polar Surface-Dependent Potential

Solvent effects are accounted for as a nonpolar surface-depend-

ent potential. We observed that a very small portion of hydro-

phobic groups surface remain solvent accessible, rather, the

complete burial of hydrophobic groups is strongly favorable.

Simultaneously, a ‘‘partially’’ buried state is favorable for most

hydrophilic groups. The optimization procedure significantly

enhances the preferences of polar and nonpolar functional

groups. Similar characteristics are observed for binding pocket

residues.

Contact Number

For the statistically derived set of parameters, the contact num-

ber simply expresses the average number of neighboring resi-

dues calculated for training protein–ligand complexes. The opti-

mization procedure caused a significant increase in the expected

contact number and corresponds to a strong penalty for ligand

conformations that partially form a complex with the receptor

protein (characterized by fewer contacts compared to the native

conformation).

Minimization of Native Complexes

An accepted quality measure for the results of docking small

molecules into the receptor proteins is the root-mean-square

deviation, RMSD, from the ligand position in the complex crys-

tal structure.31-33 As a consequence of the imperfections of the

force field as well as experimental deficiencies affecting refer-

ence conformations, often the energy minimum does not exactly

correspond to the native conformation.40 Nevertheless, for a rea-

sonable force field, the lowest energy pose of a ligand should

not deviate substantially from the native conformation. To ascer-

tain the deviation from experiment when Q-Dock’s force field is

used, we performed a simple energy minimization, starting from

the crystal structure. The simulations were carried out separately

for each force field parameter set using the optimized weights

factors for energy terms. The results obtained for the training

and the benchmark set are shown in Figure 1. The minimization

procedure slightly shifted down the central tendency of energy

(Fig. 1A) and causes an acceptable deviation from the crystal

structures. In most cases, the lowest energy ligand positions do

not deviate by more than 2.0 Å from the experimental structure

(Fig. 1B) and preserve [90% the of the native protein–ligand

contacts (Fig. 1C).

Native-Like Recognition Capability

The quality of the native-like discriminatory power of Q-Dock

was assessed by the correlation between the energy and RMSD

from the native ligand position (CC), the relative energy gap

between native-like structures and the ensemble of non-native

decoys (Z-score), and the fraction of decoys with an energy

higher than at least one native-like structure (B-score). The

summary of native-like recognition capability is presented in

Table 2. The parameters optimized on ligand decoys exhibit

considerably higher discriminatory power than the statistically

derived potential. Furthermore, the optimization of weight fac-

tors improved native-like recognition capability. Finally, the

slight difference between the coefficients calculated for the train-

ing and benchmarking set excludes possible specificity toward

the training complexes. Thus, in all subsequent calculations,

only results for the optimized parameters are reported.

Weight Optimization for Pocket-Specific Restraints

To further improve docking accuracy against the crystal struc-

tures as well as low-quality predicted receptor structures, a

pocket-specific protein–ligand interaction potential (EPS) was

derived from weakly homologous (\35% sequence identity to a

target protein) threading holo-templates and combined with the

generic potential derived from the regularities observed in crys-

tal structures of the training complexes [see eq. (7)]. The value

of wPS 5 3.1 was found to maximize the native-like recognition

capability (see Table 2).

Docking Results for Receptor Crystal Structures

The performance of Q-Dock was evaluated for 34 protein–ligand

complexes for which comparative assessments of all-atom algo-

rithms for flexible ligand docking were reported.31-33 The crystal

structures of proteins were taken as targets for flexible ligand

docking using the optimized generic parameters set (EGEN) as

well as the generic potential combined with the pocket-specific

threading restraints (ETOT). No proteins with [35% sequence
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identity to targets are in the training dataset. The top docked

solutions obtained from Q-Dock simulations were transformed

into their all-atom representations and refined by a simple

energy minimization in an all-atom force field.

The results of docking simulations evaluated by the RMSD

from the crystal structure are presented in Table 3. The overall

performance of Q-Dock is comparable to many all-atom

approaches; the average RMSD calculated for all-atom models

reconstructed from top-ranked docked conformations obtained

using (EGEN) and (ETOT) is 3.90 and 3.03 Å, respectively. In

Figure 2, we show the examples of the energy versus the RMSD

correlation for neuraminidase (Fig. 2A, PDB-ID: 1nsc), intestinal

fatty acid binding protein (Fig. 2B, PDB-ID: 1icm), ribonuclease

T1 (Fig. 2C, PDB-ID: 1rhl) and thermolysin (Fig. 2D, PDB-ID:

3tmn). With the pocket-specific restraints (ETOT), the global

minimum is frequently closer to the native ligand pose. More-

over, the higher correlation between the energy and RMSD

speeds up the convergence of the binding mode optimization.

Furthermore, we found that the high-resolution refinement

improved the quality of the final models reconstructed from

low-resolution images provided by Q-Dock. This is particularly

pronounced for already well-docked solutions. Indeed, the vast

majority of models with a RMSD \3.5 Å move toward the

native pose. Next, we assessed the ability to select the native-

like ligand conformation from the ensemble used to mimic

ligand flexibility. Interestingly, native-like ligand conformers are

often observed in the top docked solutions, even if the internal

ligand energy was not evaluated and no energy minimization

was applied. The average internal ligand RMSD from the native

conformation calculated for the models reconstructed from top-

ranked Q-Dock solutions obtained using (EGEN) and (ETOT) is

0.75 and 0.62 Å, respectively, whereas the average RMSD cal-

culated for all conformations present in the ligand ensembles is

1.80 Å.

Examples of successful all-atom refinement are shown for

neuraminidase and carboxypeptidase A in Figure 3. For neur-

aminidase (Fig. 3A, PDB-ID: 1nnb), the RMSD of the inhibitor

2-deoxy 2,3-dehydro-N-acetyl neuraminic acid rebuilt from low-

resolution Q-Dock’s top model is 3.99 Å. The final RMSD cal-

culated for the inhibitor after all-atom refinement is 2.13 Å. The

lowest energy pose of a phosphonate in the active site of car-

boxypeptidase A (Fig. 3B, PDB-ID: 6cpa) reported by Q-Dock

Figure 1. Distribution of the combined generic energy EGEN (A), RMSD from the native structure (B)

and the fraction of preserved native contacts (C) for minimized low-resolution models of training (top

panel) and benchmark (bottom panel) protein–ligand complexes. White and gray boxes denote the

crystal and minimized complexes, respectively. The results are presented for the two different sets of

parameters used in the minimization procedure: statistically derived (S) and optimized (G) potentials.

Boxes end at the quartiles Q1 and Q3; a horizontal line in a box is the median. ‘‘Whiskers’’ point at

the farthest points that are within 3/2 times the interquartile range. Outliers, minima, and maxima are

presented as dots and stars, respectively.
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corresponds to a RMSD of 2.84 Å. High-resolution refinement

shifted the ligand toward the native pose with a final RMSD of

1.18 Å.

Docking Results for Deformed Receptor Structures

In this experiment, we used 291 distorted models of bovine tryp-

sin with a 1, 2 and 3 6 0.5 Å Ca RMSD from the crystal struc-

ture as targets for low-resolution flexible ligand docking using

Q-Dock. Forty-seven different ligands known experimentally to

bind to trypsin were docked into each deformed receptor struc-

ture. No high-resolution refinement was applied. The results

were compared to those reported for all-atom decoy-docking

using AutoDock and FlexX.18 Figure 4 presents the accuracy of

flexible ligand docking against the set of distorted receptor struc-

tures in terms of the fraction of correctly predicted specific

native contacts and binding residues (nonspecific contacts). We

find that Q-Dock is far less sensitive to the deformation of the

receptor protein than all-atom approaches. The average fraction

of binding residues predicted by AutoDock, FlexX, and Q-Dock

for 1/2/3 Å RMSD decoys is 0.85/0.57/0.36, 0.70/0.43/0.26 and

0.87/0.68/0.62, respectively. Moreover, the average fraction of

specific native contacts recovered by AutoDock, FlexX and Q-

Dock for 1/2/3 Å RMSD decoys is 0.75/0.46/0.27, 0.59/0.33/

0.19, and 0.62/0.47/0.42, respectively. In the case of the most

distorted receptor structures (Ca RMSD of 3 6 0.5 Å), Q-Dock

was capable to predict on average 25–35% more binding resi-

dues and 15–20% more specific native contacts than all-atom

approaches.

Docking Results for Receptor Models

The weakly homologous protein models used in this study were

generated by a threading-based protein structure prediction pro-

Table 2. Summary of Q-Dock’s Native-Like Recognition Capability for a Large Set of Ligand Decoys.

Energya Coefficientb

Statistical set of parametersc Optimized set of parametersd

Training set Benchmark set Training set Benchmark set

(full)g (full)g (full)g (�400)g (full)g (�400)g

ECP CC 0.30 0.26 0.48 0.51 0.47 0.49

Z-score 1.18 1.01 1.90 2.12 1.81 1.96

B-score 0.92 0.90 0.97 0.98 0.96 0.97

ESL CC 0.29 0.27 0.31 0.33 0.29 0.33

Z-score 0.67 0.64 0.91 1.02 0.84 0.96

B-score 0.89 0.88 0.92 0.93 0.91 0.92

ESP CC 0.27 0.27 0.50 0.52 0.51 0.52

Z-score 0.88 0.86 1.85 1.99 1.88 1.95

B-score 0.92 0.91 0.97 0.97 0.97 0.97

ECN CC 0.27 0.29 0.46 0.48 0.47 0.48

Z-score 0.89 0.90 1.61 1.77 1.63 1.73

B-score 0.89 0.90 0.96 0.96 0.96 0.96

EPS CC – – – 0.48 – 0.47

Z-score – – – 2.47 – 2.40

B-score – – – 0.97 – 0.97

EGEN EGEN EGEN ETOT EGEN ETOT

EGEN/ETOT CCe 0.38 0.34 0.53 0.59 0.52 0.58

Z-scoree 1.30 1.26 1.99 2.39 1.97 2.28

B-scoree 0.90 0.90 0.97 0.98 0.97 0.98

CCf 0.42 0.41 0.54 0.64 0.53 0.63

Z-scoref 1.34 1.33 2.04 3.01 2.01 2.89

B-scoref 0.93 0.92 0.98 0.99 0.97 0.99

aEnergy terms: ECP, ligand—side-chains contact potential; ESL, ESP, non-polar surface-dependent potential for ligand

groups and binding pocket residues, respectively, ECN, contact number; EPS, pocket-specific energy; EGEN, combined

generic energy terms; ETOT, combined generic terms with pocket-specific restraints.
bCC, correlation coefficient between energy and RMSD to native structure; Z-score, the relative energy gap between

native-like structures and the ensemble of non-native decoys; B-score, fraction of decoys with energy higher than at

least one native-like structure.
cDerived from the statistical analysis of the training complexes.
dOptimized over the training set decoys and objective function G.
eCalculated for the naı̈ve weight factors of energy terms.
fCalculated for the optimized weight factors.
gCalculated for the complete set (full) of proteins or the subset of proteins �400 residues in length.
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cedure that consists of structure template identification by PRO-

SPECTOR_334,35 followed by template assembly/refinement

using TASSER.36–38 Subsequently, the modeled protein struc-

tures were submitted to ligand-binding site prediction using a

recently developed FINDSITE algorithm that can accurately

identify binding sites in experimentally solved protein structures

as well as in approximate, theoretical models.22 Here, FIND-

SITE predictions were used to derive a pocket-specific potential

for each target protein. We provided Q-Dock with the modeled

receptor structures, predicted binding sites and pocket-specific

restraints and carried out flexible ligand docking simulations

employing (ETOT) [eq. (7)] as an objective function in ligand

Table 3. Comparison of RMSD values for the top models from all-atom and coarse-grained flexible

ligand docking.

PDB ID

All-atom docking Q-Dock (EGEN/ETOT)
a

AutoDockb DOCKb FlexXb ICMb GOLDb SODOCKc T10d T20d Rebuilte Refinedf

1abe 0.16 1.87 0.55 0.36 0.18 0.25 0.56 0.56 2.92/2.63 2.33/2.41

1abf 0.48 3.25 0.76 0.61 0.50 0.31 0.68 0.70 3.28/3.80 3.19/4.01

1apt 1.89 8.06 5.95 0.88 8.82 2.18 5.72 4.79 0.93/0.71 0.77/0.69

1apu 9.10 7.58 8.43 2.02 10.70 1.42 1.32 1.32 2.08/0.91 1.75/0.73

1cbx 1.33 3.13 1.32 0.82 1.87 7.12 0.62 0.62 1.33/4.50 1.17/4.53

1cil 5.81 2.78 3.52 2.00 6.04 2.80 1.86 1.86 4.91/4.91 5.04/5.04

1cnx 10.90 7.35 6.83 2.09 6.32 7.15 6.20 6.20 9.21/9.21 9.36/9.36

1etr 4.61 6.66 7.26 0.87 5.99 1.14 1.09 1.09 1.59/1.31 0.56/0.53

1ets 5.06 3.93 2.11 6.22 2.39 2.15 1.97 1.97 0.83/3.68 0.72/2.66

1ett 8.12 1.33 6.24 0.99 1.30 2.57 0.82 0.82 3.28/2.50 2.60/2.51

1nnb 0.92 4.51 0.92 1.09 0.84 0.71 1.67 3.97 3.99/2.46 2.13/2.32

1nsc 1.40 4.86 6.00 1.80 1.02 0.89 1.47 1.40 4.69/0.82 4.24/0.45

1nsd 1.20 4.51 1.56 1.04 0.96 0.47 1.85 1.85 5.14/0.81 4.68/0.86

1okl 8.54 5.65 4.22 3.03 3.55 1.52 2.84 2.84 4.63/6.62 4.97/4.97

1pph 5.14 3.91 3.27 1.44 4.23 0.92 4.00 0.53 6.55/6.67 6.92/6.88

1tng 0.62 0.86 1.08 0.71 1.89 2.32 0.70 0.69 3.33/3.27 3.58/1.72

1tni 2.61 5.26 2.73 3.40 4.93 3.92 2.22 2.22 5.99/3.82 5.40/4.50

1tnj 1.21 1.56 1.73 2.17 1.90 2.12 1.42 1.50 7.21/5.32 8.16/4.89

1tnk 1.69 1.87 1.70 2.53 3.08 1.50 1.16 1.14 3.00/4.55 2.17/4.44

1tpp 1.80 3.25 1.95 1.71 2.33 1.65 2.43 2.53 0.56/2.62 1.88/2.46

2ifb 3.09 1.43 8.94 1.04 2.61 1.91 2.09 5.19 3.14/1.29 3.03/0.96

3cpa 8.30 8.30 9.83 1.60 4.96 1.37 2.22 2.22 1.51/1.26 1.41/1.14

3ptb 0.80 0.59 1.11 0.49 1.09 0.34 0.56 0.54 8.85/3.27 9.02/2.60

3tmn 4.51 7.09 5.30 1.36 3.96 4.10 3.65 3.65 6.20/2.05 6.13/1.03

5abp 0.48 3.89 4.68 0.88 0.59 0.23 0.48 0.51 3.66/3.13 3.81/2.94

5tln 5.34 1.39 6.33 1.42 1.60 9.18 1.21 1.21 5.50/1.25 5.16/1.07

6cpa 8.30 8.30 9.83 1.60 4.96 1.11 4.00 4.00 2.84/2.61 1.18/1.33

6tmn 8.72 7.78 4.51 2.60 8.54 2.99 2.21 2.21 2.17/1.79 1.41/1.05

Average
g

4.00 4.32 4.24 1.67 3.47 2.30 2.04 2.08 3.90/3.14 3.67/2.79

1icm 1.80 3.99 2.94 1.11 2.30 5.26 3.62/2.28 3.42/1.20

1icn 3.99 3.88 2.95 1.35 2.05 7.79 3.13/3.19 2.35/2.54

1gsp 2.67 1.16 3.71 0.54 0.70 0.54 4.72/2.83 4.63/2.28

1tnl 0.41 2.08 3.74 1.93 1.61 0.46 4.77/5.20 4.23/5.36

1rhl 0.96 0.71 1.15 3.53 1.08 0.86 4.45/1.02 4.43/0.69

1rls 0.98 1.75 4.33 0.79 1.16 0.68 2.47/0.73 1.68/0.65

Averageh 3.62 3.96 4.04 1.65 3.12 2.35 3.90/3.03 3.63/2.67

In Q-Dock simulations we employed the generic part of the force field (EGEN) as well as the generic potential

combined with pocket-specific threading restraints (ETOT).
aObtained using EGEN or ETOT energy function.
bReported by Bursulaya et al.31

cReported by Chen et al.32

dReported by Taufer et al.33

eCalculated for all-atom structures reconstructed from the reduced models.
fCalculated for the reconstructed structures further refined in an all-atom force field.
gAverage over first 28 complexes (1abe to 6tmn).
hAverage over all 34 complexes (1abe to 1rls).
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binding mode optimization and the selection of final models.

Furthermore, to evaluate the improvement of docking accuracy

against low-to-moderate quality protein models resulting from

including pocket-specific restraints, we performed simulations

using (EGEN) (optimized generic energy terms only) instead of

(ETOT). The performance of Q-Dock was then compared with

the results reported for Dolores which is another low-resolution

approach that docks rigid ligand structures into receptor pro-

teins.27 The results obtained for the set of 206 target proteins

evaluated in terms of the fraction of predicted specific protein–

ligand contacts as well as the fraction of recovered binding resi-

dues are shown in Figure 5.

We note the higher accuracy of ligand-binding site prediction

using FINDSITE compared to the grid-based method imple-

mented in Dolores;27 the fraction of proteins with at least one

native specific contact is 0.73 for Dolores and is 0.92 and 0.93

Figure 2. Energy plotted as a function of RMSD for REMC trajectories collected for neuraminidase

(A), intestinal fatty acid binding protein (B), ribonuclease T1 (C), and thermolysin (D). The simula-

tions were carried out using the optimized generic parameters set (EGEN) as well as the generic poten-

tial combined with the pocket-specific threading restraints (ETOT).
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for Q-Dock employing (EGEN) and (ETOT), respectively. In gen-

eral, Q-Dock predicts considerably more specific protein–ligand

contacts than Dolores, especially if pocket-specific restraints are

applied (Fig. 5, circles). For example, the fraction of proteins

with �50% of recovered specific native contacts is 0.07, 0.30

and 0.46 for Dolores and Q-Dock employing (EGEN) and (ETOT),

respectively. Interestingly, the fraction of predicted binding resi-

dues depends entirely on the accuracy of ligand-binding site pre-

diction and not the presence of pocket-specific restraints (Fig. 5,

squares). The restraints support the recovering of specific con-

tacts as the result of the improved ability to predict a ‘‘true’’

ligand binding mode in the putative binding site of the receptor

model.

Discussion

Despite progress in protein structure prediction, theoretical pro-

tein models frequently have structural inaccuracies in their side-

chain and backbone coordinates when compared to experimen-

tally determined structures. Since all-atom docking approaches

were found to be highly sensitive to the structural distortions of

the ligand binding region,16,17,59 they are inapplicable to such

models. This deficiency has motivated the development of proto-

cols capable of docking small molecules into the structurally

distorted ligand-binding sites using low-resolution docking tech-

niques.26,27,60,61 In this spirit, we have developed Q-Dock, an

approach that effectively utilizes low-quality protein structures

as targets for flexible ligand docking. The force field imple-

mented in Q-Dock combines two classes of energy terms:

generic knowledge-based potentials derived from the regularities

observed in crystal protein–ligand complexes and pocket-specific

potentials extracted for each target protein from ligand-bound

forms of weakly homologous structure templates. The combined

knowledge-based potential implemented in Q-Dock was derived

from the statistics of crystal protein–ligand complexes and fur-

ther optimized to increase the native-like recognition capability.

The resulting potentials for low-resolution modeling of protein–

ligand interactions seem to make good physical sense; they can

be rationalized in terms of fundamental ligand–protein interac-

tions including ionic interactions, hydrogen bonds, aromatic

stacking or hydrophobic interactions.

Self-docking utilizing crystal structures of receptor proteins

as targets for flexible ligand docking revealed that the accuracy

of Q-Dock is comparable to all-atom approaches; in most cases,

the native-like structures appear as the lowest-energy conforma-

tions. Furthermore, the low-resolution models can be trans-

formed back into their all-atom representations and efficiently

refined even by a simple all-atom minimization. For the vast

majority of reasonably well-docked conformations reported by

Q-Dock, the high-resolution refinement procedure considerably

improved the quality of final models. Thus, low-resolution mod-

eling serves as a valuable initial step for a more detailed struc-

tural analysis, as well as a complement to experimental and

computational data obtained by other techniques.26,62 Moreover,

the results obtained by docking of the ensemble of discrete

ligand conformations into receptor proteins shows that ligand

flexibility can be successfully included in low-resolution dock-

ing. Despite the fact the ligand internal energy was ignored,

native-like ligand conformers were frequently observed in top

docked solutions.

The main practical advantage of a coarse-grained docking

methodology, such as Q-Dock, is the possibility of utilizing low-

quality receptor structures routinely produced by proteome-scale

protein structure modeling projects. Our decoy-docking study of

flexible ligands against the distorted receptor models revealed

Figure 3. Examples of a high-resolution refinement for neuraminidase (A) and carboxypeptidase A

(B). Low-resolution images representing Q-Dock top-ranked solutions, all-atom models rebuilt from

coarse-grained models and refined structures are presented in left, middle and right column, respec-

tively. The native and predicted ligand pose is colored black and grey, respectively. Receptor proteins

are shown as transparent balls/sticks (reduced models) and sticks (all-atom models).
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that Q-Dock recovers on average 25–35% more binding residues

and 15–20% more specific native contacts than all-atom

approaches. In more than 90% of the cases, at least one ligand-

binding residue was correctly predicted. Moreover, in almost

one-third of the cases, the fraction of recovered specific protein–

ligand contacts was �50%.

Figure 4. Comparison of the flexible ligand docking results for 47 different ligands and deformed

structures of trypsin with Ca RMSD of 1, 2 and 3 6 0.5 Å obtained using AutoDock (A), FlexX (B)

and Q-Dock (C). Top and bottom plots show the fraction of predicted binding residues and the fraction

of recovered specific protein–ligand contacts, respectively.
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To full advantage of predicted binding regions, we proposed

a pocket-specific protein–ligand interaction potential derived

from weakly homologous structure templates selected by thread-

ing that can be used as valuable supplementary restraints in

ligand docking against low-quality receptor structures. This

yields a 6.3 times higher success rate of Q-Dock compared to

the previously published Dolores method.27

The tolerance to structural inaccuracies in receptor models

clearly enhances the importance of protein models as reliable

targets for virtual screening or structure-based drug design.

Q-Dock represents a practical tool for utilizing the rapidly

growing number of theoretically predicted protein structures in

experiments that require an effective flexible ligand docking

procedure.
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Appendix

Solvent Accessible Surface Estimation

To calculate the accessible surface area (ASA), we used an

analytical approximation approach adapted from Wodak and

Janin.42 This fast and reliable analytical model expresses the

ASA as a function of interatomic distances only, and works at

both the atomic and residue levels. It has been shown that when

it is applied to simplified models of proteins41,63 and nucleic

acids,63 it reproduces the surface area calculated by accurate all-

atom algorithms. The total solvent accessible area of a molecule

is expressed as the sum of the ASA attached to all of its atoms:

ASA ¼
XN
i¼1

Ai (A1)

For a given atom i, the following expression can be applied

to account for the intersecting spheres of the neighboring atoms:

Ai ¼ Si
YN
i6¼i

1� pipijbij rij
� �

Si

� �
(A2)

where Si is the accessible solvent area of isolated atom i, bij(rij)
is the area cut out by the overlap of the atom j at a distance rij
5 |ri 2 rj|, and pi, pij are the empirical correction factors.

The ASA of isolated atom i with radius Ri can be calculated

using a solvent probe with radius RSP (usually equal to 1.4 Å64)

as follows:

Si ¼ 4p Ri þ Rsp

� �
(A3)

The area cut out of Ai by atom j can be calculated from

bij rij
� � ¼

p Ri þ Rsp

� �
Ri þ Rj þ 2Rsp � rij
� �

1þ Rj�Ri

rij

� �
if rij < Ri þ Rj þ 2Rsp

0 otherwise

8>><
>>:

ðA4Þ

where Ri and Rj are the radii of atom i and j, respectively.
Originally, the method was tested for the all-atom as well as

reduced representations of protein structures considering Ca
atoms only. In our approach, the surface area is estimated based

on the positions of the Ca atoms and centers of mass of residue

side chains and ligand functional groups. The initial full set of

parameters for the 20 amino acids (radii R, empirical correction

factors pi and pij) were taken from Cavallo et al.39 The radii for

ligand functional groups were obtained by statistical analysis of

isolated ligand functional groups present in the set of protein-

ligand complexes used in this study:

Ri ¼
ffiffiffiffiffiffiffiffi
hSii
4p

r
(A5)

where Ri is the estimated radius of ligand group i and hSii is the
average surface of the isolated group i, as calculated for all-

atom models by LPC.29

Subsequently, the initial set of parameters for protein resi-

dues and ligand functional groups was submitted to an optimiza-

tion procedure to minimize the variance of ASA calculated for

reduced models of protein–ligand complexes from the ASA cal-

culated for their all-atom models by POPS-A39 and LPC.29 Since

in our model it is the residues in contact with a ligand that are

important for protein–ligand interactions, the parameters for pro-

Figure 5. Fraction of predicted specific and nonspecific (binding

residues) native contacts identified by Dolores method and Q-Dock

using weakly homologous protein models as targets for docking

small ligands. Flexible ligand docking simulations by Q-Dock were

carried out employing only generic energy terms with the optimized

set of parameters (EGEN) as well as using generic terms combined

with pocket-specific restraints derived from threading templates

(ETOT).
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teins were optimized over binding pocket residues only. For the

optimized set of parameters, the accessible surface area calcu-

lated for all-atom models is reproduced by this coarse-grained

method, considering ligands and proteins individually as well as

in the complexed state with an average correlation coefficient of

0.94. The approximation of accessible surface area seems to be

well suited for the practical use in low-resolution docking simu-

lations using Q-Dock.

Prediction of Ligand Binding Sites by FINDSITE

To predict ligand-binding sites in protein models and to derive a

pocket-specific potential for protein–ligand interactions, we used

the recently developed FINDSITE approach that detects ligand-

binding sites based on the binding site similarity across super-

imposed groups of threading templates.22 FINDSITE not only

works well for crystal structures but also exhibits a good toler-

ance to structural inaccuracies in modeled protein structures (up

to a global backbone RMSD from the crystal structure of 8–10

Å); thus it is particularly well suited for ligand-binding site pre-

diction in weakly homologous protein models. FINDSITE

employs template identification, structure superimposition and

binding sites clustering as follows: First, for a given target

sequence, structure templates are selected from a nonredundant

PDB library by the threading program PROSPECTOR_3.34,35

PROSPECTOR_3 evaluates the score significance in terms of

the Z-score of the sequence assigned to a given structure based

on the average of the best alignment given by Dynamic Pro-

gramming over the template library. FINDSITE requires thread-

ing templates with Z-scores �4. For the purpose of benchmark-

ing, from the threading templates reported by PROSPECTOR_3

we used only those that have\35% sequence identity to the tar-

get protein. Subsequently, structures that contain a bound ligand

molecule are identified and superimposed onto a reference struc-

ture using the structural alignment algorithm TM-align.65 In this

study, we used TASSER-generated36–38 models as reference

structures for the template superimposition. Upon superimposi-

tion, the centers of mass of ligands bound to threading templates

are clustered. Then each cluster represents one putative binding

site. Finally, the predicted binding sites are ranked according to

the number of threading templates that share a common binding

pocket. For each target protein, we selected a top-ranked pre-

dicted ligand-binding site for ligand docking and the derivation

of a potential for pocket-specific protein–ligand interactions.
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